Properties

Label 416.1.h.b
Level $416$
Weight $1$
Character orbit 416.h
Self dual yes
Analytic conductor $0.208$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -104
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,1,Mod(207,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.207");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 416.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.207611045255\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.104.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.346112.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} + q^{5} - q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} + q^{5} - q^{7} - q^{13} + q^{15} - q^{17} - q^{21} - q^{27} + 2 q^{31} - q^{35} + q^{37} - q^{39} + q^{43} - q^{47} - q^{51} - q^{65} - q^{71} - q^{81} - q^{85} + q^{91} + 2 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
207.1
0
0 1.00000 0 1.00000 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by \(\Q(\sqrt{-26}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.1.h.b 1
3.b odd 2 1 3744.1.o.a 1
4.b odd 2 1 104.1.h.a 1
8.b even 2 1 104.1.h.b yes 1
8.d odd 2 1 416.1.h.a 1
12.b even 2 1 936.1.o.b 1
13.b even 2 1 416.1.h.a 1
16.e even 4 2 3328.1.c.e 2
16.f odd 4 2 3328.1.c.a 2
20.d odd 2 1 2600.1.o.d 1
20.e even 4 2 2600.1.b.b 2
24.f even 2 1 3744.1.o.b 1
24.h odd 2 1 936.1.o.a 1
39.d odd 2 1 3744.1.o.b 1
40.f even 2 1 2600.1.o.b 1
40.i odd 4 2 2600.1.b.a 2
52.b odd 2 1 104.1.h.b yes 1
52.f even 4 2 1352.1.g.a 2
52.i odd 6 2 1352.1.p.a 2
52.j odd 6 2 1352.1.p.b 2
52.l even 12 4 1352.1.n.a 4
104.e even 2 1 104.1.h.a 1
104.h odd 2 1 CM 416.1.h.b 1
104.j odd 4 2 1352.1.g.a 2
104.r even 6 2 1352.1.p.a 2
104.s even 6 2 1352.1.p.b 2
104.x odd 12 4 1352.1.n.a 4
156.h even 2 1 936.1.o.a 1
208.o odd 4 2 3328.1.c.e 2
208.p even 4 2 3328.1.c.a 2
260.g odd 2 1 2600.1.o.b 1
260.p even 4 2 2600.1.b.a 2
312.b odd 2 1 936.1.o.b 1
312.h even 2 1 3744.1.o.a 1
520.p even 2 1 2600.1.o.d 1
520.bg odd 4 2 2600.1.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.1.h.a 1 4.b odd 2 1
104.1.h.a 1 104.e even 2 1
104.1.h.b yes 1 8.b even 2 1
104.1.h.b yes 1 52.b odd 2 1
416.1.h.a 1 8.d odd 2 1
416.1.h.a 1 13.b even 2 1
416.1.h.b 1 1.a even 1 1 trivial
416.1.h.b 1 104.h odd 2 1 CM
936.1.o.a 1 24.h odd 2 1
936.1.o.a 1 156.h even 2 1
936.1.o.b 1 12.b even 2 1
936.1.o.b 1 312.b odd 2 1
1352.1.g.a 2 52.f even 4 2
1352.1.g.a 2 104.j odd 4 2
1352.1.n.a 4 52.l even 12 4
1352.1.n.a 4 104.x odd 12 4
1352.1.p.a 2 52.i odd 6 2
1352.1.p.a 2 104.r even 6 2
1352.1.p.b 2 52.j odd 6 2
1352.1.p.b 2 104.s even 6 2
2600.1.b.a 2 40.i odd 4 2
2600.1.b.a 2 260.p even 4 2
2600.1.b.b 2 20.e even 4 2
2600.1.b.b 2 520.bg odd 4 2
2600.1.o.b 1 40.f even 2 1
2600.1.o.b 1 260.g odd 2 1
2600.1.o.d 1 20.d odd 2 1
2600.1.o.d 1 520.p even 2 1
3328.1.c.a 2 16.f odd 4 2
3328.1.c.a 2 208.p even 4 2
3328.1.c.e 2 16.e even 4 2
3328.1.c.e 2 208.o odd 4 2
3744.1.o.a 1 3.b odd 2 1
3744.1.o.a 1 312.h even 2 1
3744.1.o.b 1 24.f even 2 1
3744.1.o.b 1 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 1 \) acting on \(S_{1}^{\mathrm{new}}(416, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 2 \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T + 1 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T + 1 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less