Properties

Label 4140.2.n.a.2069.3
Level $4140$
Weight $2$
Character 4140.2069
Analytic conductor $33.058$
Analytic rank $0$
Dimension $16$
CM discriminant -115
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4140,2,Mod(2069,4140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4140.2069");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 60 x^{14} - 280 x^{13} + 1352 x^{12} - 4836 x^{11} + 18782 x^{10} - 55300 x^{9} + \cdots + 11064600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 2069.3
Root \(1.07874 - 1.43199i\) of defining polynomial
Character \(\chi\) \(=\) 4140.2069
Dual form 4140.2.n.a.2069.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607i q^{5} -3.40113 q^{7} +O(q^{10})\) \(q-2.23607i q^{5} -3.40113 q^{7} +8.20739i q^{17} +4.79583i q^{23} -5.00000 q^{25} -10.0996i q^{29} +7.95998 q^{31} +7.60515i q^{35} +1.73873 q^{37} -3.98596i q^{41} +13.1069 q^{43} +4.56767 q^{49} +11.3419i q^{53} -13.2054i q^{59} +8.68358 q^{67} -6.99375i q^{71} -6.86977i q^{83} +18.3523 q^{85} -16.7269 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 80 q^{25} + 112 q^{49}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4140\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(1657\) \(2071\) \(3961\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.23607i − 1.00000i
\(6\) 0 0
\(7\) −3.40113 −1.28551 −0.642753 0.766074i \(-0.722208\pi\)
−0.642753 + 0.766074i \(0.722208\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 8.20739i 1.99058i 0.0969184 + 0.995292i \(0.469101\pi\)
−0.0969184 + 0.995292i \(0.530899\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.79583i 1.00000i
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 10.0996i − 1.87545i −0.347385 0.937723i \(-0.612930\pi\)
0.347385 0.937723i \(-0.387070\pi\)
\(30\) 0 0
\(31\) 7.95998 1.42965 0.714827 0.699301i \(-0.246505\pi\)
0.714827 + 0.699301i \(0.246505\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.60515i 1.28551i
\(36\) 0 0
\(37\) 1.73873 0.285846 0.142923 0.989734i \(-0.454350\pi\)
0.142923 + 0.989734i \(0.454350\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 3.98596i − 0.622502i −0.950328 0.311251i \(-0.899252\pi\)
0.950328 0.311251i \(-0.100748\pi\)
\(42\) 0 0
\(43\) 13.1069 1.99878 0.999391 0.0349050i \(-0.0111129\pi\)
0.999391 + 0.0349050i \(0.0111129\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 4.56767 0.652525
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.3419i 1.55793i 0.627067 + 0.778965i \(0.284255\pi\)
−0.627067 + 0.778965i \(0.715745\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 13.2054i − 1.71920i −0.510969 0.859599i \(-0.670713\pi\)
0.510969 0.859599i \(-0.329287\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.68358 1.06087 0.530434 0.847726i \(-0.322029\pi\)
0.530434 + 0.847726i \(0.322029\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 6.99375i − 0.830006i −0.909820 0.415003i \(-0.863781\pi\)
0.909820 0.415003i \(-0.136219\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 6.86977i − 0.754055i −0.926202 0.377027i \(-0.876946\pi\)
0.926202 0.377027i \(-0.123054\pi\)
\(84\) 0 0
\(85\) 18.3523 1.99058
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −16.7269 −1.69836 −0.849182 0.528101i \(-0.822904\pi\)
−0.849182 + 0.528101i \(0.822904\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 19.1963i 1.91010i 0.296445 + 0.955050i \(0.404199\pi\)
−0.296445 + 0.955050i \(0.595801\pi\)
\(102\) 0 0
\(103\) −5.86678 −0.578071 −0.289036 0.957318i \(-0.593335\pi\)
−0.289036 + 0.957318i \(0.593335\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 15.0305i − 1.45305i −0.687138 0.726527i \(-0.741133\pi\)
0.687138 0.726527i \(-0.258867\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 20.2862i − 1.90836i −0.299229 0.954181i \(-0.596729\pi\)
0.299229 0.954181i \(-0.403271\pi\)
\(114\) 0 0
\(115\) 10.7238 1.00000
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 27.9144i − 2.55891i
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 20.8226i − 1.81928i −0.415398 0.909640i \(-0.636358\pi\)
0.415398 0.909640i \(-0.363642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 19.1833i − 1.63894i −0.573121 0.819471i \(-0.694267\pi\)
0.573121 0.819471i \(-0.305733\pi\)
\(138\) 0 0
\(139\) −12.8246 −1.08777 −0.543885 0.839159i \(-0.683047\pi\)
−0.543885 + 0.839159i \(0.683047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −22.5834 −1.87545
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 21.4476 1.74538 0.872691 0.488273i \(-0.162373\pi\)
0.872691 + 0.488273i \(0.162373\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 17.7991i − 1.42965i
\(156\) 0 0
\(157\) 22.5174 1.79708 0.898541 0.438889i \(-0.144628\pi\)
0.898541 + 0.438889i \(0.144628\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 16.3112i − 1.28551i
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 17.0056 1.28551
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 3.85204i − 0.287915i −0.989584 0.143958i \(-0.954017\pi\)
0.989584 0.143958i \(-0.0459829\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 3.88792i − 0.285846i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 34.3500i 2.41090i
\(204\) 0 0
\(205\) −8.91287 −0.622502
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 28.7446 1.97886 0.989430 0.145014i \(-0.0463229\pi\)
0.989430 + 0.145014i \(0.0463229\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 29.3079i − 1.99878i
\(216\) 0 0
\(217\) −27.0729 −1.83783
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.94427i 0.593652i 0.954932 + 0.296826i \(0.0959282\pi\)
−0.954932 + 0.296826i \(0.904072\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 30.7874i 1.99147i 0.0922612 + 0.995735i \(0.470591\pi\)
−0.0922612 + 0.995735i \(0.529409\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 10.2136i − 0.652525i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −5.91365 −0.367457
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 2.07451i − 0.127920i −0.997952 0.0639598i \(-0.979627\pi\)
0.997952 0.0639598i \(-0.0203729\pi\)
\(264\) 0 0
\(265\) 25.3613 1.55793
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 27.1682i − 1.65647i −0.560379 0.828236i \(-0.689344\pi\)
0.560379 0.828236i \(-0.310656\pi\)
\(270\) 0 0
\(271\) 31.3613 1.90506 0.952531 0.304443i \(-0.0984703\pi\)
0.952531 + 0.304443i \(0.0984703\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 33.0057 1.96198 0.980991 0.194051i \(-0.0621628\pi\)
0.980991 + 0.194051i \(0.0621628\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.5567i 0.800229i
\(288\) 0 0
\(289\) −50.3613 −2.96243
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.9759i 0.641221i 0.947211 + 0.320610i \(0.103888\pi\)
−0.947211 + 0.320610i \(0.896112\pi\)
\(294\) 0 0
\(295\) −29.5282 −1.71920
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −44.5782 −2.56944
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.63324i 0.262727i 0.991334 + 0.131363i \(0.0419355\pi\)
−0.991334 + 0.131363i \(0.958065\pi\)
\(312\) 0 0
\(313\) 2.11061 0.119299 0.0596494 0.998219i \(-0.481002\pi\)
0.0596494 + 0.998219i \(0.481002\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.3613 1.06419 0.532096 0.846684i \(-0.321405\pi\)
0.532096 + 0.846684i \(0.321405\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 19.4171i − 1.06087i
\(336\) 0 0
\(337\) −35.7006 −1.94474 −0.972368 0.233454i \(-0.924997\pi\)
−0.972368 + 0.233454i \(0.924997\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.27265 0.446681
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 37.3613 1.99990 0.999951 0.00987003i \(-0.00314178\pi\)
0.999951 + 0.00987003i \(0.00314178\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) −15.6385 −0.830006
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.20611 −0.271757 −0.135878 0.990726i \(-0.543386\pi\)
−0.135878 + 0.990726i \(0.543386\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 38.5753i − 2.00273i
\(372\) 0 0
\(373\) 23.9670 1.24097 0.620483 0.784220i \(-0.286937\pi\)
0.620483 + 0.784220i \(0.286937\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.2138i 1.74825i 0.485705 + 0.874123i \(0.338563\pi\)
−0.485705 + 0.874123i \(0.661437\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −39.3613 −1.99058
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 39.1369 1.93519 0.967597 0.252498i \(-0.0812521\pi\)
0.967597 + 0.252498i \(0.0812521\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 44.9133i 2.21004i
\(414\) 0 0
\(415\) −15.3613 −0.754055
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 41.0370i − 1.99058i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 26.0608 1.25240 0.626201 0.779661i \(-0.284609\pi\)
0.626201 + 0.779661i \(0.284609\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 21.4476 1.02364 0.511819 0.859093i \(-0.328972\pi\)
0.511819 + 0.859093i \(0.328972\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 42.3785i 1.99996i 0.00597416 + 0.999982i \(0.498098\pi\)
−0.00597416 + 0.999982i \(0.501902\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15.6284 0.731067 0.365533 0.930798i \(-0.380887\pi\)
0.365533 + 0.930798i \(0.380887\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 28.9173i 1.34681i 0.739273 + 0.673406i \(0.235169\pi\)
−0.739273 + 0.673406i \(0.764831\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 38.4978i − 1.78147i −0.454525 0.890734i \(-0.650191\pi\)
0.454525 0.890734i \(-0.349809\pi\)
\(468\) 0 0
\(469\) −29.5340 −1.36375
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 37.4026i 1.69836i
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 38.7593i − 1.74918i −0.484861 0.874591i \(-0.661130\pi\)
0.484861 0.874591i \(-0.338870\pi\)
\(492\) 0 0
\(493\) 82.8912 3.73323
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.7867i 1.06698i
\(498\) 0 0
\(499\) 43.3613 1.94112 0.970558 0.240866i \(-0.0774314\pi\)
0.970558 + 0.240866i \(0.0774314\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 33.7026i − 1.50272i −0.659890 0.751362i \(-0.729397\pi\)
0.659890 0.751362i \(-0.270603\pi\)
\(504\) 0 0
\(505\) 42.9242 1.91010
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.4320i 0.905633i 0.891604 + 0.452816i \(0.149581\pi\)
−0.891604 + 0.452816i \(0.850419\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.1185i 0.578071i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −24.8404 −1.08620 −0.543098 0.839669i \(-0.682749\pi\)
−0.543098 + 0.839669i \(0.682749\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 65.3307i 2.84585i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −33.6092 −1.45305
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −42.8952 −1.84421 −0.922105 0.386940i \(-0.873532\pi\)
−0.922105 + 0.386940i \(0.873532\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 38.2684i − 1.62148i −0.585403 0.810742i \(-0.699064\pi\)
0.585403 0.810742i \(-0.300936\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 12.2620i − 0.516780i −0.966041 0.258390i \(-0.916808\pi\)
0.966041 0.258390i \(-0.0831920\pi\)
\(564\) 0 0
\(565\) −45.3613 −1.90836
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 23.9792i − 1.00000i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 23.3650i 0.969342i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) −62.4185 −2.55891
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 46.2784i − 1.89089i −0.325787 0.945443i \(-0.605629\pi\)
0.325787 0.945443i \(-0.394371\pi\)
\(600\) 0 0
\(601\) −9.36126 −0.381854 −0.190927 0.981604i \(-0.561149\pi\)
−0.190927 + 0.981604i \(0.561149\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.5967i 1.00000i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 4.99338 0.201681 0.100840 0.994903i \(-0.467847\pi\)
0.100840 + 0.994903i \(0.467847\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 25.0814i − 1.00974i −0.863195 0.504870i \(-0.831540\pi\)
0.863195 0.504870i \(-0.168460\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.2705i 0.569000i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 28.0291 1.10536 0.552680 0.833393i \(-0.313605\pi\)
0.552680 + 0.833393i \(0.313605\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) −46.5608 −1.81928
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 48.4359 1.87545
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 51.9142i − 1.99523i −0.0690480 0.997613i \(-0.521996\pi\)
0.0690480 0.997613i \(-0.478004\pi\)
\(678\) 0 0
\(679\) 56.8905 2.18326
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) −42.8952 −1.63894
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 21.4476 0.815906 0.407953 0.913003i \(-0.366243\pi\)
0.407953 + 0.913003i \(0.366243\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 28.6767i 1.08777i
\(696\) 0 0
\(697\) 32.7143 1.23914
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 65.2890i − 2.45544i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 38.1747i 1.42965i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 14.8436i − 0.553571i −0.960932 0.276786i \(-0.910731\pi\)
0.960932 0.276786i \(-0.0892692\pi\)
\(720\) 0 0
\(721\) 19.9537 0.743114
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 50.4979i 1.87545i
\(726\) 0 0
\(727\) −53.8503 −1.99720 −0.998598 0.0529319i \(-0.983143\pi\)
−0.998598 + 0.0529319i \(0.983143\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 107.573i 3.97874i
\(732\) 0 0
\(733\) −49.7264 −1.83669 −0.918343 0.395785i \(-0.870473\pi\)
−0.918343 + 0.395785i \(0.870473\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −19.0153 −0.699489 −0.349744 0.936845i \(-0.613732\pi\)
−0.349744 + 0.936845i \(0.613732\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.59166i 0.351884i 0.984401 + 0.175942i \(0.0562971\pi\)
−0.984401 + 0.175942i \(0.943703\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 51.1207i 1.86791i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 47.9583i − 1.74538i
\(756\) 0 0
\(757\) −46.9054 −1.70481 −0.852403 0.522885i \(-0.824856\pi\)
−0.852403 + 0.522885i \(0.824856\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 26.4347i − 0.958256i −0.877745 0.479128i \(-0.840953\pi\)
0.877745 0.479128i \(-0.159047\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.3667i 1.37995i 0.723832 + 0.689976i \(0.242379\pi\)
−0.723832 + 0.689976i \(0.757621\pi\)
\(774\) 0 0
\(775\) −39.7999 −1.42965
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 50.3504i − 1.79708i
\(786\) 0 0
\(787\) −55.2381 −1.96903 −0.984514 0.175308i \(-0.943908\pi\)
−0.984514 + 0.175308i \(0.943908\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 68.9959i 2.45321i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 43.8055i − 1.55167i −0.630936 0.775835i \(-0.717329\pi\)
0.630936 0.775835i \(-0.282671\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −36.4730 −1.28551
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 56.7096i 1.99380i 0.0786657 + 0.996901i \(0.474934\pi\)
−0.0786657 + 0.996901i \(0.525066\pi\)
\(810\) 0 0
\(811\) −51.3613 −1.80354 −0.901769 0.432218i \(-0.857731\pi\)
−0.901769 + 0.432218i \(0.857731\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.46144i 0.120805i 0.998174 + 0.0604026i \(0.0192385\pi\)
−0.998174 + 0.0604026i \(0.980762\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.3864i 1.96075i 0.197150 + 0.980373i \(0.436831\pi\)
−0.197150 + 0.980373i \(0.563169\pi\)
\(828\) 0 0
\(829\) −8.62298 −0.299488 −0.149744 0.988725i \(-0.547845\pi\)
−0.149744 + 0.988725i \(0.547845\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 37.4887i 1.29891i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −73.0015 −2.51729
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 29.0689i − 1.00000i
\(846\) 0 0
\(847\) 37.4124 1.28551
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.33867i 0.285846i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −3.36126 −0.114685 −0.0573424 0.998355i \(-0.518263\pi\)
−0.0573424 + 0.998355i \(0.518263\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 38.0258i − 1.28551i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −8.61343 −0.287915
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 80.3925i − 2.68124i
\(900\) 0 0
\(901\) −93.0874 −3.10119
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −14.4246 −0.478961 −0.239481 0.970901i \(-0.576977\pi\)
−0.239481 + 0.970901i \(0.576977\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 70.8204i 2.33869i
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −8.69366 −0.285846
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 44.2863i 1.45298i 0.687175 + 0.726492i \(0.258851\pi\)
−0.687175 + 0.726492i \(0.741149\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −54.6743 −1.78613 −0.893065 0.449927i \(-0.851450\pi\)
−0.893065 + 0.449927i \(0.851450\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 19.1160 0.622502
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22.3607i 0.724333i 0.932113 + 0.362167i \(0.117963\pi\)
−0.932113 + 0.362167i \(0.882037\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 65.2450i 2.10687i
\(960\) 0 0
\(961\) 32.3613 1.04391
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 43.6182 1.39834
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.67030i 0.0854305i 0.999087 + 0.0427153i \(0.0136008\pi\)
−0.999087 + 0.0427153i \(0.986399\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.9824i 1.17955i 0.807566 + 0.589777i \(0.200785\pi\)
−0.807566 + 0.589777i \(0.799215\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 62.8584i 1.99878i
\(990\) 0 0
\(991\) 1.76933 0.0562045 0.0281022 0.999605i \(-0.491054\pi\)
0.0281022 + 0.999605i \(0.491054\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4140.2.n.a.2069.3 16
3.2 odd 2 inner 4140.2.n.a.2069.11 yes 16
5.4 even 2 inner 4140.2.n.a.2069.14 yes 16
15.14 odd 2 inner 4140.2.n.a.2069.6 yes 16
23.22 odd 2 inner 4140.2.n.a.2069.14 yes 16
69.68 even 2 inner 4140.2.n.a.2069.6 yes 16
115.114 odd 2 CM 4140.2.n.a.2069.3 16
345.344 even 2 inner 4140.2.n.a.2069.11 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4140.2.n.a.2069.3 16 1.1 even 1 trivial
4140.2.n.a.2069.3 16 115.114 odd 2 CM
4140.2.n.a.2069.6 yes 16 15.14 odd 2 inner
4140.2.n.a.2069.6 yes 16 69.68 even 2 inner
4140.2.n.a.2069.11 yes 16 3.2 odd 2 inner
4140.2.n.a.2069.11 yes 16 345.344 even 2 inner
4140.2.n.a.2069.14 yes 16 5.4 even 2 inner
4140.2.n.a.2069.14 yes 16 23.22 odd 2 inner