Properties

Label 4140.2.f.d
Level $4140$
Weight $2$
Character orbit 4140.f
Analytic conductor $33.058$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 24 q + 8 q^{19} - 8 q^{25} - 12 q^{31} - 28 q^{49} - 16 q^{55} - 16 q^{61} + 8 q^{79} + 12 q^{85} - 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
829.1 0 0 0 −2.23083 0.152950i 0 4.09652i 0 0 0
829.2 0 0 0 −2.23083 + 0.152950i 0 4.09652i 0 0 0
829.3 0 0 0 −2.09906 0.770673i 0 2.34084i 0 0 0
829.4 0 0 0 −2.09906 + 0.770673i 0 2.34084i 0 0 0
829.5 0 0 0 −1.79970 1.32706i 0 0.476731i 0 0 0
829.6 0 0 0 −1.79970 + 1.32706i 0 0.476731i 0 0 0
829.7 0 0 0 −1.06710 1.96502i 0 3.96013i 0 0 0
829.8 0 0 0 −1.06710 + 1.96502i 0 3.96013i 0 0 0
829.9 0 0 0 −0.405664 2.19896i 0 3.23277i 0 0 0
829.10 0 0 0 −0.405664 + 2.19896i 0 3.23277i 0 0 0
829.11 0 0 0 −0.274117 2.21920i 0 0.615120i 0 0 0
829.12 0 0 0 −0.274117 + 2.21920i 0 0.615120i 0 0 0
829.13 0 0 0 0.274117 2.21920i 0 0.615120i 0 0 0
829.14 0 0 0 0.274117 + 2.21920i 0 0.615120i 0 0 0
829.15 0 0 0 0.405664 2.19896i 0 3.23277i 0 0 0
829.16 0 0 0 0.405664 + 2.19896i 0 3.23277i 0 0 0
829.17 0 0 0 1.06710 1.96502i 0 3.96013i 0 0 0
829.18 0 0 0 1.06710 + 1.96502i 0 3.96013i 0 0 0
829.19 0 0 0 1.79970 1.32706i 0 0.476731i 0 0 0
829.20 0 0 0 1.79970 + 1.32706i 0 0.476731i 0 0 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 829.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4140.2.f.d 24
3.b odd 2 1 inner 4140.2.f.d 24
5.b even 2 1 inner 4140.2.f.d 24
15.d odd 2 1 inner 4140.2.f.d 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4140.2.f.d 24 1.a even 1 1 trivial
4140.2.f.d 24 3.b odd 2 1 inner
4140.2.f.d 24 5.b even 2 1 inner
4140.2.f.d 24 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{12} + 49T_{7}^{10} + 867T_{7}^{8} + 6563T_{7}^{6} + 18808T_{7}^{4} + 9648T_{7}^{2} + 1296 \) acting on \(S_{2}^{\mathrm{new}}(4140, [\chi])\). Copy content Toggle raw display