Properties

Label 4140.2.a.u.1.2
Level $4140$
Weight $2$
Character 4140.1
Self dual yes
Analytic conductor $33.058$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4140,2,Mod(1,4140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4140.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.14345904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 13x^{3} + 34x^{2} - 11x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.18817\) of defining polynomial
Character \(\chi\) \(=\) 4140.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -0.334658 q^{7} +O(q^{10})\) \(q+1.00000 q^{5} -0.334658 q^{7} -2.12122 q^{11} -2.25511 q^{13} -6.93838 q^{17} +4.12122 q^{19} +1.00000 q^{23} +1.00000 q^{25} +1.92046 q^{29} +0.440822 q^{31} -0.334658 q^{35} +6.04168 q^{37} +10.2493 q^{41} -5.50042 q^{43} +4.65664 q^{47} -6.88800 q^{49} +4.40296 q^{53} -2.12122 q^{55} +10.8322 q^{59} +13.7555 q^{61} -2.25511 q^{65} +6.87008 q^{67} -5.57997 q^{71} +6.25511 q^{73} +0.709884 q^{77} +16.7052 q^{79} -10.2770 q^{83} -6.93838 q^{85} -1.33068 q^{89} +0.754693 q^{91} +4.12122 q^{95} +18.4122 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 5 q^{5} + 4 q^{7} + 4 q^{11} + 2 q^{13} + 2 q^{17} + 6 q^{19} + 5 q^{23} + 5 q^{25} + 2 q^{29} + 8 q^{31} + 4 q^{35} + 8 q^{37} + 2 q^{41} + 18 q^{43} - 4 q^{47} + 13 q^{49} - 2 q^{53} + 4 q^{55} + 6 q^{59} + 10 q^{61} + 2 q^{65} + 16 q^{67} + 10 q^{71} + 18 q^{73} - 16 q^{77} + 14 q^{79} + 8 q^{83} + 2 q^{85} - 18 q^{89} + 36 q^{91} + 6 q^{95} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.334658 −0.126489 −0.0632445 0.997998i \(-0.520145\pi\)
−0.0632445 + 0.997998i \(0.520145\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.12122 −0.639572 −0.319786 0.947490i \(-0.603611\pi\)
−0.319786 + 0.947490i \(0.603611\pi\)
\(12\) 0 0
\(13\) −2.25511 −0.625456 −0.312728 0.949843i \(-0.601243\pi\)
−0.312728 + 0.949843i \(0.601243\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.93838 −1.68280 −0.841402 0.540410i \(-0.818269\pi\)
−0.841402 + 0.540410i \(0.818269\pi\)
\(18\) 0 0
\(19\) 4.12122 0.945473 0.472736 0.881204i \(-0.343266\pi\)
0.472736 + 0.881204i \(0.343266\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.92046 0.356620 0.178310 0.983974i \(-0.442937\pi\)
0.178310 + 0.983974i \(0.442937\pi\)
\(30\) 0 0
\(31\) 0.440822 0.0791740 0.0395870 0.999216i \(-0.487396\pi\)
0.0395870 + 0.999216i \(0.487396\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.334658 −0.0565676
\(36\) 0 0
\(37\) 6.04168 0.993246 0.496623 0.867966i \(-0.334573\pi\)
0.496623 + 0.867966i \(0.334573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.2493 1.60067 0.800334 0.599554i \(-0.204655\pi\)
0.800334 + 0.599554i \(0.204655\pi\)
\(42\) 0 0
\(43\) −5.50042 −0.838806 −0.419403 0.907800i \(-0.637761\pi\)
−0.419403 + 0.907800i \(0.637761\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.65664 0.679241 0.339621 0.940562i \(-0.389701\pi\)
0.339621 + 0.940562i \(0.389701\pi\)
\(48\) 0 0
\(49\) −6.88800 −0.984001
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.40296 0.604792 0.302396 0.953182i \(-0.402213\pi\)
0.302396 + 0.953182i \(0.402213\pi\)
\(54\) 0 0
\(55\) −2.12122 −0.286025
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.8322 1.41023 0.705117 0.709091i \(-0.250894\pi\)
0.705117 + 0.709091i \(0.250894\pi\)
\(60\) 0 0
\(61\) 13.7555 1.76122 0.880608 0.473846i \(-0.157135\pi\)
0.880608 + 0.473846i \(0.157135\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.25511 −0.279713
\(66\) 0 0
\(67\) 6.87008 0.839314 0.419657 0.907683i \(-0.362150\pi\)
0.419657 + 0.907683i \(0.362150\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.57997 −0.662220 −0.331110 0.943592i \(-0.607423\pi\)
−0.331110 + 0.943592i \(0.607423\pi\)
\(72\) 0 0
\(73\) 6.25511 0.732106 0.366053 0.930594i \(-0.380709\pi\)
0.366053 + 0.930594i \(0.380709\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.709884 0.0808988
\(78\) 0 0
\(79\) 16.7052 1.87948 0.939739 0.341893i \(-0.111068\pi\)
0.939739 + 0.341893i \(0.111068\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.2770 −1.12805 −0.564024 0.825758i \(-0.690748\pi\)
−0.564024 + 0.825758i \(0.690748\pi\)
\(84\) 0 0
\(85\) −6.93838 −0.752573
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.33068 −0.141052 −0.0705261 0.997510i \(-0.522468\pi\)
−0.0705261 + 0.997510i \(0.522468\pi\)
\(90\) 0 0
\(91\) 0.754693 0.0791133
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.12122 0.422828
\(96\) 0 0
\(97\) 18.4122 1.86947 0.934737 0.355341i \(-0.115635\pi\)
0.934737 + 0.355341i \(0.115635\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.33179 0.331526 0.165763 0.986166i \(-0.446991\pi\)
0.165763 + 0.986166i \(0.446991\pi\)
\(102\) 0 0
\(103\) 5.25798 0.518084 0.259042 0.965866i \(-0.416593\pi\)
0.259042 + 0.965866i \(0.416593\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.768640 −0.0743073 −0.0371536 0.999310i \(-0.511829\pi\)
−0.0371536 + 0.999310i \(0.511829\pi\)
\(108\) 0 0
\(109\) 4.12122 0.394741 0.197371 0.980329i \(-0.436760\pi\)
0.197371 + 0.980329i \(0.436760\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.5979 −0.996965 −0.498483 0.866900i \(-0.666109\pi\)
−0.498483 + 0.866900i \(0.666109\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.32199 0.212856
\(120\) 0 0
\(121\) −6.50042 −0.590947
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.29096 −0.558232 −0.279116 0.960257i \(-0.590041\pi\)
−0.279116 + 0.960257i \(0.590041\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.66932 0.407960 0.203980 0.978975i \(-0.434612\pi\)
0.203980 + 0.978975i \(0.434612\pi\)
\(132\) 0 0
\(133\) −1.37920 −0.119592
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.2172 −1.38553 −0.692766 0.721162i \(-0.743608\pi\)
−0.692766 + 0.721162i \(0.743608\pi\)
\(138\) 0 0
\(139\) 11.8880 1.00833 0.504164 0.863608i \(-0.331801\pi\)
0.504164 + 0.863608i \(0.331801\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.78360 0.400024
\(144\) 0 0
\(145\) 1.92046 0.159485
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.3637 −1.01287 −0.506435 0.862278i \(-0.669037\pi\)
−0.506435 + 0.862278i \(0.669037\pi\)
\(150\) 0 0
\(151\) 0.499578 0.0406551 0.0203276 0.999793i \(-0.493529\pi\)
0.0203276 + 0.999793i \(0.493529\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.440822 0.0354077
\(156\) 0 0
\(157\) 0.0668715 0.00533692 0.00266846 0.999996i \(-0.499151\pi\)
0.00266846 + 0.999996i \(0.499151\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.334658 −0.0263748
\(162\) 0 0
\(163\) 21.8768 1.71352 0.856760 0.515715i \(-0.172474\pi\)
0.856760 + 0.515715i \(0.172474\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.4500 −0.808649 −0.404324 0.914616i \(-0.632493\pi\)
−0.404324 + 0.914616i \(0.632493\pi\)
\(168\) 0 0
\(169\) −7.91446 −0.608805
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.722557 −0.0549350 −0.0274675 0.999623i \(-0.508744\pi\)
−0.0274675 + 0.999623i \(0.508744\pi\)
\(174\) 0 0
\(175\) −0.334658 −0.0252978
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.6546 −1.54380 −0.771899 0.635745i \(-0.780693\pi\)
−0.771899 + 0.635745i \(0.780693\pi\)
\(180\) 0 0
\(181\) −9.62858 −0.715687 −0.357844 0.933782i \(-0.616488\pi\)
−0.357844 + 0.933782i \(0.616488\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.04168 0.444193
\(186\) 0 0
\(187\) 14.7178 1.07627
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.2658 1.46638 0.733190 0.680024i \(-0.238031\pi\)
0.733190 + 0.680024i \(0.238031\pi\)
\(192\) 0 0
\(193\) 7.36653 0.530254 0.265127 0.964213i \(-0.414586\pi\)
0.265127 + 0.964213i \(0.414586\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.17955 0.0840391 0.0420196 0.999117i \(-0.486621\pi\)
0.0420196 + 0.999117i \(0.486621\pi\)
\(198\) 0 0
\(199\) 17.4140 1.23445 0.617224 0.786787i \(-0.288257\pi\)
0.617224 + 0.786787i \(0.288257\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.642697 −0.0451085
\(204\) 0 0
\(205\) 10.2493 0.715841
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.74202 −0.604698
\(210\) 0 0
\(211\) 16.4515 1.13257 0.566283 0.824211i \(-0.308381\pi\)
0.566283 + 0.824211i \(0.308381\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.50042 −0.375126
\(216\) 0 0
\(217\) −0.147525 −0.0100146
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15.6468 1.05252
\(222\) 0 0
\(223\) −5.87676 −0.393537 −0.196768 0.980450i \(-0.563045\pi\)
−0.196768 + 0.980450i \(0.563045\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.0913 0.669783 0.334892 0.942257i \(-0.391300\pi\)
0.334892 + 0.942257i \(0.391300\pi\)
\(228\) 0 0
\(229\) −25.4578 −1.68230 −0.841150 0.540801i \(-0.818121\pi\)
−0.841150 + 0.540801i \(0.818121\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.828404 −0.0542706 −0.0271353 0.999632i \(-0.508638\pi\)
−0.0271353 + 0.999632i \(0.508638\pi\)
\(234\) 0 0
\(235\) 4.65664 0.303766
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.59247 0.555801 0.277900 0.960610i \(-0.410361\pi\)
0.277900 + 0.960610i \(0.410361\pi\)
\(240\) 0 0
\(241\) −15.1221 −0.974098 −0.487049 0.873375i \(-0.661927\pi\)
−0.487049 + 0.873375i \(0.661927\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.88800 −0.440058
\(246\) 0 0
\(247\) −9.29382 −0.591352
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.8014 1.24985 0.624925 0.780685i \(-0.285129\pi\)
0.624925 + 0.780685i \(0.285129\pi\)
\(252\) 0 0
\(253\) −2.12122 −0.133360
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −27.4705 −1.71356 −0.856781 0.515680i \(-0.827539\pi\)
−0.856781 + 0.515680i \(0.827539\pi\)
\(258\) 0 0
\(259\) −2.02190 −0.125635
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.9587 1.47736 0.738678 0.674059i \(-0.235450\pi\)
0.738678 + 0.674059i \(0.235450\pi\)
\(264\) 0 0
\(265\) 4.40296 0.270471
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −15.1000 −0.920663 −0.460332 0.887747i \(-0.652270\pi\)
−0.460332 + 0.887747i \(0.652270\pi\)
\(270\) 0 0
\(271\) 24.1837 1.46905 0.734527 0.678579i \(-0.237404\pi\)
0.734527 + 0.678579i \(0.237404\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.12122 −0.127914
\(276\) 0 0
\(277\) −18.9001 −1.13560 −0.567798 0.823168i \(-0.692205\pi\)
−0.567798 + 0.823168i \(0.692205\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.7914 −0.942035 −0.471017 0.882124i \(-0.656113\pi\)
−0.471017 + 0.882124i \(0.656113\pi\)
\(282\) 0 0
\(283\) 30.2415 1.79767 0.898836 0.438285i \(-0.144414\pi\)
0.898836 + 0.438285i \(0.144414\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.43001 −0.202467
\(288\) 0 0
\(289\) 31.1411 1.83183
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 32.1063 1.87567 0.937834 0.347085i \(-0.112828\pi\)
0.937834 + 0.347085i \(0.112828\pi\)
\(294\) 0 0
\(295\) 10.8322 0.630676
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.25511 −0.130417
\(300\) 0 0
\(301\) 1.84076 0.106100
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 13.7555 0.787640
\(306\) 0 0
\(307\) −24.4102 −1.39316 −0.696581 0.717478i \(-0.745296\pi\)
−0.696581 + 0.717478i \(0.745296\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.351141 −0.0199114 −0.00995569 0.999950i \(-0.503169\pi\)
−0.00995569 + 0.999950i \(0.503169\pi\)
\(312\) 0 0
\(313\) 34.6236 1.95704 0.978521 0.206149i \(-0.0660931\pi\)
0.978521 + 0.206149i \(0.0660931\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.3385 0.692997 0.346499 0.938050i \(-0.387371\pi\)
0.346499 + 0.938050i \(0.387371\pi\)
\(318\) 0 0
\(319\) −4.07371 −0.228084
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −28.5946 −1.59105
\(324\) 0 0
\(325\) −2.25511 −0.125091
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.55838 −0.0859165
\(330\) 0 0
\(331\) 16.3118 0.896580 0.448290 0.893888i \(-0.352033\pi\)
0.448290 + 0.893888i \(0.352033\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.87008 0.375353
\(336\) 0 0
\(337\) 20.9476 1.14109 0.570544 0.821267i \(-0.306732\pi\)
0.570544 + 0.821267i \(0.306732\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.935081 −0.0506375
\(342\) 0 0
\(343\) 4.64774 0.250954
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.752671 0.0404055 0.0202027 0.999796i \(-0.493569\pi\)
0.0202027 + 0.999796i \(0.493569\pi\)
\(348\) 0 0
\(349\) −20.4204 −1.09308 −0.546539 0.837433i \(-0.684055\pi\)
−0.546539 + 0.837433i \(0.684055\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.24261 −0.0661373 −0.0330686 0.999453i \(-0.510528\pi\)
−0.0330686 + 0.999453i \(0.510528\pi\)
\(354\) 0 0
\(355\) −5.57997 −0.296154
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.6394 −0.667082 −0.333541 0.942736i \(-0.608244\pi\)
−0.333541 + 0.942736i \(0.608244\pi\)
\(360\) 0 0
\(361\) −2.01554 −0.106081
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.25511 0.327408
\(366\) 0 0
\(367\) 25.7622 1.34478 0.672389 0.740198i \(-0.265268\pi\)
0.672389 + 0.740198i \(0.265268\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.47349 −0.0764996
\(372\) 0 0
\(373\) −18.7557 −0.971133 −0.485567 0.874200i \(-0.661387\pi\)
−0.485567 + 0.874200i \(0.661387\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.33085 −0.223050
\(378\) 0 0
\(379\) 6.56347 0.337143 0.168571 0.985689i \(-0.446085\pi\)
0.168571 + 0.985689i \(0.446085\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −33.0101 −1.68674 −0.843368 0.537337i \(-0.819430\pi\)
−0.843368 + 0.537337i \(0.819430\pi\)
\(384\) 0 0
\(385\) 0.709884 0.0361790
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 22.5819 1.14495 0.572474 0.819923i \(-0.305984\pi\)
0.572474 + 0.819923i \(0.305984\pi\)
\(390\) 0 0
\(391\) −6.93838 −0.350889
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.7052 0.840528
\(396\) 0 0
\(397\) −17.2549 −0.866001 −0.433001 0.901394i \(-0.642545\pi\)
−0.433001 + 0.901394i \(0.642545\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.96416 0.397711 0.198855 0.980029i \(-0.436278\pi\)
0.198855 + 0.980029i \(0.436278\pi\)
\(402\) 0 0
\(403\) −0.994105 −0.0495199
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.8157 −0.635252
\(408\) 0 0
\(409\) −3.42528 −0.169369 −0.0846847 0.996408i \(-0.526988\pi\)
−0.0846847 + 0.996408i \(0.526988\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.62509 −0.178379
\(414\) 0 0
\(415\) −10.2770 −0.504479
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −33.3141 −1.62750 −0.813751 0.581214i \(-0.802578\pi\)
−0.813751 + 0.581214i \(0.802578\pi\)
\(420\) 0 0
\(421\) 6.42485 0.313128 0.156564 0.987668i \(-0.449958\pi\)
0.156564 + 0.987668i \(0.449958\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.93838 −0.336561
\(426\) 0 0
\(427\) −4.60340 −0.222774
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 22.3733 1.07768 0.538842 0.842407i \(-0.318862\pi\)
0.538842 + 0.842407i \(0.318862\pi\)
\(432\) 0 0
\(433\) −28.5150 −1.37035 −0.685173 0.728381i \(-0.740273\pi\)
−0.685173 + 0.728381i \(0.740273\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.12122 0.197145
\(438\) 0 0
\(439\) 17.4947 0.834976 0.417488 0.908682i \(-0.362911\pi\)
0.417488 + 0.908682i \(0.362911\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.90397 0.185483 0.0927417 0.995690i \(-0.470437\pi\)
0.0927417 + 0.995690i \(0.470437\pi\)
\(444\) 0 0
\(445\) −1.33068 −0.0630804
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.6615 0.691917 0.345959 0.938250i \(-0.387554\pi\)
0.345959 + 0.938250i \(0.387554\pi\)
\(450\) 0 0
\(451\) −21.7410 −1.02374
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.754693 0.0353805
\(456\) 0 0
\(457\) −0.435257 −0.0203605 −0.0101802 0.999948i \(-0.503241\pi\)
−0.0101802 + 0.999948i \(0.503241\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 32.0970 1.49491 0.747454 0.664314i \(-0.231276\pi\)
0.747454 + 0.664314i \(0.231276\pi\)
\(462\) 0 0
\(463\) −17.0357 −0.791715 −0.395858 0.918312i \(-0.629553\pi\)
−0.395858 + 0.918312i \(0.629553\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.1352 −0.839196 −0.419598 0.907710i \(-0.637829\pi\)
−0.419598 + 0.907710i \(0.637829\pi\)
\(468\) 0 0
\(469\) −2.29913 −0.106164
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.6676 0.536477
\(474\) 0 0
\(475\) 4.12122 0.189095
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.2046 1.01455 0.507276 0.861783i \(-0.330652\pi\)
0.507276 + 0.861783i \(0.330652\pi\)
\(480\) 0 0
\(481\) −13.6247 −0.621232
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.4122 0.836054
\(486\) 0 0
\(487\) 7.98733 0.361940 0.180970 0.983489i \(-0.442076\pi\)
0.180970 + 0.983489i \(0.442076\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.3122 0.600770 0.300385 0.953818i \(-0.402885\pi\)
0.300385 + 0.953818i \(0.402885\pi\)
\(492\) 0 0
\(493\) −13.3249 −0.600121
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.86738 0.0837635
\(498\) 0 0
\(499\) −14.9732 −0.670293 −0.335147 0.942166i \(-0.608786\pi\)
−0.335147 + 0.942166i \(0.608786\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −42.2038 −1.88178 −0.940888 0.338718i \(-0.890007\pi\)
−0.940888 + 0.338718i \(0.890007\pi\)
\(504\) 0 0
\(505\) 3.33179 0.148263
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.5966 −0.558335 −0.279168 0.960242i \(-0.590058\pi\)
−0.279168 + 0.960242i \(0.590058\pi\)
\(510\) 0 0
\(511\) −2.09333 −0.0926033
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.25798 0.231694
\(516\) 0 0
\(517\) −9.87777 −0.434424
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 39.6602 1.73754 0.868772 0.495212i \(-0.164910\pi\)
0.868772 + 0.495212i \(0.164910\pi\)
\(522\) 0 0
\(523\) −7.62063 −0.333227 −0.166614 0.986022i \(-0.553283\pi\)
−0.166614 + 0.986022i \(0.553283\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.05859 −0.133234
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.1133 −1.00115
\(534\) 0 0
\(535\) −0.768640 −0.0332312
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.6110 0.629339
\(540\) 0 0
\(541\) 16.1020 0.692277 0.346139 0.938183i \(-0.387493\pi\)
0.346139 + 0.938183i \(0.387493\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.12122 0.176534
\(546\) 0 0
\(547\) 30.8139 1.31751 0.658753 0.752359i \(-0.271084\pi\)
0.658753 + 0.752359i \(0.271084\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.91462 0.337174
\(552\) 0 0
\(553\) −5.59052 −0.237733
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.54954 −0.404627 −0.202313 0.979321i \(-0.564846\pi\)
−0.202313 + 0.979321i \(0.564846\pi\)
\(558\) 0 0
\(559\) 12.4041 0.524637
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 31.6843 1.33533 0.667667 0.744460i \(-0.267293\pi\)
0.667667 + 0.744460i \(0.267293\pi\)
\(564\) 0 0
\(565\) −10.5979 −0.445856
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −40.3500 −1.69156 −0.845780 0.533533i \(-0.820864\pi\)
−0.845780 + 0.533533i \(0.820864\pi\)
\(570\) 0 0
\(571\) 19.4732 0.814928 0.407464 0.913221i \(-0.366413\pi\)
0.407464 + 0.913221i \(0.366413\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 5.17381 0.215389 0.107694 0.994184i \(-0.465653\pi\)
0.107694 + 0.994184i \(0.465653\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.43929 0.142686
\(582\) 0 0
\(583\) −9.33964 −0.386808
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.1892 −0.833298 −0.416649 0.909068i \(-0.636796\pi\)
−0.416649 + 0.909068i \(0.636796\pi\)
\(588\) 0 0
\(589\) 1.81673 0.0748569
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 40.1978 1.65073 0.825364 0.564602i \(-0.190970\pi\)
0.825364 + 0.564602i \(0.190970\pi\)
\(594\) 0 0
\(595\) 2.32199 0.0951921
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.1599 0.455982 0.227991 0.973663i \(-0.426784\pi\)
0.227991 + 0.973663i \(0.426784\pi\)
\(600\) 0 0
\(601\) −3.60669 −0.147120 −0.0735599 0.997291i \(-0.523436\pi\)
−0.0735599 + 0.997291i \(0.523436\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.50042 −0.264280
\(606\) 0 0
\(607\) −30.3968 −1.23377 −0.616884 0.787054i \(-0.711605\pi\)
−0.616884 + 0.787054i \(0.711605\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.5013 −0.424836
\(612\) 0 0
\(613\) −27.2908 −1.10226 −0.551132 0.834418i \(-0.685804\pi\)
−0.551132 + 0.834418i \(0.685804\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.7815 −0.595081 −0.297541 0.954709i \(-0.596166\pi\)
−0.297541 + 0.954709i \(0.596166\pi\)
\(618\) 0 0
\(619\) −25.3266 −1.01796 −0.508982 0.860777i \(-0.669978\pi\)
−0.508982 + 0.860777i \(0.669978\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.445324 0.0178415
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −41.9194 −1.67144
\(630\) 0 0
\(631\) −4.76519 −0.189699 −0.0948497 0.995492i \(-0.530237\pi\)
−0.0948497 + 0.995492i \(0.530237\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.29096 −0.249649
\(636\) 0 0
\(637\) 15.5332 0.615449
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.8964 0.509377 0.254688 0.967023i \(-0.418027\pi\)
0.254688 + 0.967023i \(0.418027\pi\)
\(642\) 0 0
\(643\) −12.0474 −0.475103 −0.237552 0.971375i \(-0.576345\pi\)
−0.237552 + 0.971375i \(0.576345\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −33.9728 −1.33561 −0.667804 0.744337i \(-0.732766\pi\)
−0.667804 + 0.744337i \(0.732766\pi\)
\(648\) 0 0
\(649\) −22.9775 −0.901947
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20.4722 −0.801140 −0.400570 0.916266i \(-0.631188\pi\)
−0.400570 + 0.916266i \(0.631188\pi\)
\(654\) 0 0
\(655\) 4.66932 0.182445
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.08538 −0.159144 −0.0795718 0.996829i \(-0.525355\pi\)
−0.0795718 + 0.996829i \(0.525355\pi\)
\(660\) 0 0
\(661\) 23.5770 0.917040 0.458520 0.888684i \(-0.348380\pi\)
0.458520 + 0.888684i \(0.348380\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.37920 −0.0534831
\(666\) 0 0
\(667\) 1.92046 0.0743604
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −29.1785 −1.12642
\(672\) 0 0
\(673\) 14.3385 0.552707 0.276354 0.961056i \(-0.410874\pi\)
0.276354 + 0.961056i \(0.410874\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.2265 −0.854233 −0.427116 0.904197i \(-0.640471\pi\)
−0.427116 + 0.904197i \(0.640471\pi\)
\(678\) 0 0
\(679\) −6.16179 −0.236468
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.17176 −0.312684 −0.156342 0.987703i \(-0.549970\pi\)
−0.156342 + 0.987703i \(0.549970\pi\)
\(684\) 0 0
\(685\) −16.2172 −0.619629
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.92917 −0.378271
\(690\) 0 0
\(691\) 3.55081 0.135079 0.0675396 0.997717i \(-0.478485\pi\)
0.0675396 + 0.997717i \(0.478485\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.8880 0.450938
\(696\) 0 0
\(697\) −71.1134 −2.69361
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 40.2484 1.52016 0.760080 0.649830i \(-0.225160\pi\)
0.760080 + 0.649830i \(0.225160\pi\)
\(702\) 0 0
\(703\) 24.8991 0.939087
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.11501 −0.0419343
\(708\) 0 0
\(709\) 1.81099 0.0680133 0.0340067 0.999422i \(-0.489173\pi\)
0.0340067 + 0.999422i \(0.489173\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.440822 0.0165089
\(714\) 0 0
\(715\) 4.78360 0.178896
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 51.6544 1.92638 0.963191 0.268817i \(-0.0866328\pi\)
0.963191 + 0.268817i \(0.0866328\pi\)
\(720\) 0 0
\(721\) −1.75963 −0.0655319
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.92046 0.0713239
\(726\) 0 0
\(727\) 40.1715 1.48988 0.744940 0.667132i \(-0.232478\pi\)
0.744940 + 0.667132i \(0.232478\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 38.1640 1.41155
\(732\) 0 0
\(733\) −25.2890 −0.934071 −0.467035 0.884239i \(-0.654678\pi\)
−0.467035 + 0.884239i \(0.654678\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.5730 −0.536802
\(738\) 0 0
\(739\) 8.09730 0.297864 0.148932 0.988847i \(-0.452416\pi\)
0.148932 + 0.988847i \(0.452416\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.97954 −0.256055 −0.128027 0.991771i \(-0.540865\pi\)
−0.128027 + 0.991771i \(0.540865\pi\)
\(744\) 0 0
\(745\) −12.3637 −0.452970
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.257232 0.00939905
\(750\) 0 0
\(751\) −5.03076 −0.183575 −0.0917875 0.995779i \(-0.529258\pi\)
−0.0917875 + 0.995779i \(0.529258\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.499578 0.0181815
\(756\) 0 0
\(757\) −3.84977 −0.139922 −0.0699612 0.997550i \(-0.522288\pi\)
−0.0699612 + 0.997550i \(0.522288\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −41.4084 −1.50105 −0.750527 0.660840i \(-0.770200\pi\)
−0.750527 + 0.660840i \(0.770200\pi\)
\(762\) 0 0
\(763\) −1.37920 −0.0499304
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.4279 −0.882040
\(768\) 0 0
\(769\) −20.2299 −0.729510 −0.364755 0.931104i \(-0.618847\pi\)
−0.364755 + 0.931104i \(0.618847\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −27.6528 −0.994601 −0.497300 0.867578i \(-0.665675\pi\)
−0.497300 + 0.867578i \(0.665675\pi\)
\(774\) 0 0
\(775\) 0.440822 0.0158348
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 42.2396 1.51339
\(780\) 0 0
\(781\) 11.8363 0.423538
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.0668715 0.00238674
\(786\) 0 0
\(787\) −3.56252 −0.126990 −0.0634951 0.997982i \(-0.520225\pi\)
−0.0634951 + 0.997982i \(0.520225\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.54667 0.126105
\(792\) 0 0
\(793\) −31.0203 −1.10156
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.20920 −0.255363 −0.127681 0.991815i \(-0.540753\pi\)
−0.127681 + 0.991815i \(0.540753\pi\)
\(798\) 0 0
\(799\) −32.3096 −1.14303
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13.2685 −0.468234
\(804\) 0 0
\(805\) −0.334658 −0.0117952
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.2452 1.06337 0.531683 0.846943i \(-0.321560\pi\)
0.531683 + 0.846943i \(0.321560\pi\)
\(810\) 0 0
\(811\) 3.32739 0.116840 0.0584202 0.998292i \(-0.481394\pi\)
0.0584202 + 0.998292i \(0.481394\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 21.8768 0.766309
\(816\) 0 0
\(817\) −22.6685 −0.793069
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.50531 0.0874359 0.0437179 0.999044i \(-0.486080\pi\)
0.0437179 + 0.999044i \(0.486080\pi\)
\(822\) 0 0
\(823\) 12.8639 0.448408 0.224204 0.974542i \(-0.428022\pi\)
0.224204 + 0.974542i \(0.428022\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −52.5222 −1.82637 −0.913187 0.407541i \(-0.866387\pi\)
−0.913187 + 0.407541i \(0.866387\pi\)
\(828\) 0 0
\(829\) −29.6030 −1.02815 −0.514077 0.857744i \(-0.671865\pi\)
−0.514077 + 0.857744i \(0.671865\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 47.7916 1.65588
\(834\) 0 0
\(835\) −10.4500 −0.361639
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −51.6360 −1.78267 −0.891336 0.453343i \(-0.850231\pi\)
−0.891336 + 0.453343i \(0.850231\pi\)
\(840\) 0 0
\(841\) −25.3118 −0.872822
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.91446 −0.272266
\(846\) 0 0
\(847\) 2.17542 0.0747483
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.04168 0.207106
\(852\) 0 0
\(853\) −19.3687 −0.663173 −0.331587 0.943425i \(-0.607584\pi\)
−0.331587 + 0.943425i \(0.607584\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.9929 0.853741 0.426870 0.904313i \(-0.359616\pi\)
0.426870 + 0.904313i \(0.359616\pi\)
\(858\) 0 0
\(859\) 33.4904 1.14268 0.571339 0.820715i \(-0.306424\pi\)
0.571339 + 0.820715i \(0.306424\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.4269 −0.423016 −0.211508 0.977376i \(-0.567837\pi\)
−0.211508 + 0.977376i \(0.567837\pi\)
\(864\) 0 0
\(865\) −0.722557 −0.0245677
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −35.4353 −1.20206
\(870\) 0 0
\(871\) −15.4928 −0.524954
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.334658 −0.0113135
\(876\) 0 0
\(877\) −49.8039 −1.68176 −0.840879 0.541223i \(-0.817962\pi\)
−0.840879 + 0.541223i \(0.817962\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.6372 0.493139 0.246570 0.969125i \(-0.420697\pi\)
0.246570 + 0.969125i \(0.420697\pi\)
\(882\) 0 0
\(883\) −19.1495 −0.644431 −0.322216 0.946666i \(-0.604428\pi\)
−0.322216 + 0.946666i \(0.604428\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.38614 −0.248002 −0.124001 0.992282i \(-0.539573\pi\)
−0.124001 + 0.992282i \(0.539573\pi\)
\(888\) 0 0
\(889\) 2.10532 0.0706102
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19.1911 0.642204
\(894\) 0 0
\(895\) −20.6546 −0.690408
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.846580 0.0282350
\(900\) 0 0
\(901\) −30.5494 −1.01775
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.62858 −0.320065
\(906\) 0 0
\(907\) −34.0630 −1.13104 −0.565521 0.824734i \(-0.691325\pi\)
−0.565521 + 0.824734i \(0.691325\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13.8330 0.458306 0.229153 0.973390i \(-0.426404\pi\)
0.229153 + 0.973390i \(0.426404\pi\)
\(912\) 0 0
\(913\) 21.7998 0.721468
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.56263 −0.0516024
\(918\) 0 0
\(919\) 26.5797 0.876783 0.438392 0.898784i \(-0.355548\pi\)
0.438392 + 0.898784i \(0.355548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.5835 0.414190
\(924\) 0 0
\(925\) 6.04168 0.198649
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −33.2511 −1.09093 −0.545467 0.838132i \(-0.683648\pi\)
−0.545467 + 0.838132i \(0.683648\pi\)
\(930\) 0 0
\(931\) −28.3870 −0.930346
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.7178 0.481325
\(936\) 0 0
\(937\) −1.26964 −0.0414775 −0.0207387 0.999785i \(-0.506602\pi\)
−0.0207387 + 0.999785i \(0.506602\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 39.8534 1.29918 0.649592 0.760283i \(-0.274940\pi\)
0.649592 + 0.760283i \(0.274940\pi\)
\(942\) 0 0
\(943\) 10.2493 0.333763
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.8798 0.678503 0.339251 0.940696i \(-0.389826\pi\)
0.339251 + 0.940696i \(0.389826\pi\)
\(948\) 0 0
\(949\) −14.1060 −0.457900
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.38902 0.109781 0.0548906 0.998492i \(-0.482519\pi\)
0.0548906 + 0.998492i \(0.482519\pi\)
\(954\) 0 0
\(955\) 20.2658 0.655785
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.42724 0.175255
\(960\) 0 0
\(961\) −30.8057 −0.993731
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.36653 0.237137
\(966\) 0 0
\(967\) 61.7169 1.98468 0.992340 0.123536i \(-0.0394235\pi\)
0.992340 + 0.123536i \(0.0394235\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.2441 1.48404 0.742022 0.670375i \(-0.233867\pi\)
0.742022 + 0.670375i \(0.233867\pi\)
\(972\) 0 0
\(973\) −3.97842 −0.127542
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.9871 −0.447486 −0.223743 0.974648i \(-0.571828\pi\)
−0.223743 + 0.974648i \(0.571828\pi\)
\(978\) 0 0
\(979\) 2.82267 0.0902130
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.2324 1.02805 0.514026 0.857774i \(-0.328153\pi\)
0.514026 + 0.857774i \(0.328153\pi\)
\(984\) 0 0
\(985\) 1.17955 0.0375834
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.50042 −0.174903
\(990\) 0 0
\(991\) −34.1460 −1.08468 −0.542342 0.840158i \(-0.682462\pi\)
−0.542342 + 0.840158i \(0.682462\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 17.4140 0.552062
\(996\) 0 0
\(997\) 32.4286 1.02702 0.513511 0.858083i \(-0.328344\pi\)
0.513511 + 0.858083i \(0.328344\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4140.2.a.u.1.2 yes 5
3.2 odd 2 4140.2.a.t.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4140.2.a.t.1.2 5 3.2 odd 2
4140.2.a.u.1.2 yes 5 1.1 even 1 trivial