Properties

Label 4140.2.a.t.1.4
Level $4140$
Weight $2$
Character 4140.1
Self dual yes
Analytic conductor $33.058$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4140,2,Mod(1,4140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4140.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.14345904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 13x^{3} + 34x^{2} - 11x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.23445\) of defining polynomial
Character \(\chi\) \(=\) 4140.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +2.81459 q^{7} +O(q^{10})\) \(q-1.00000 q^{5} +2.81459 q^{7} +4.70892 q^{11} +4.24002 q^{13} -3.85252 q^{17} +6.70892 q^{19} -1.00000 q^{23} +1.00000 q^{25} +1.42543 q^{29} -9.03035 q^{31} -2.81459 q^{35} +5.28349 q^{37} +10.3777 q^{41} +12.1739 q^{43} -10.0287 q^{47} +0.921920 q^{49} +9.17229 q^{53} -4.70892 q^{55} -6.36323 q^{59} -10.4140 q^{61} -4.24002 q^{65} +6.50517 q^{67} -8.74852 q^{71} -0.240022 q^{73} +13.2537 q^{77} -4.48337 q^{79} -13.1109 q^{83} +3.85252 q^{85} +7.62918 q^{89} +11.9339 q^{91} -6.70892 q^{95} -0.385284 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 5 q^{5} + 4 q^{7} - 4 q^{11} + 2 q^{13} - 2 q^{17} + 6 q^{19} - 5 q^{23} + 5 q^{25} - 2 q^{29} + 8 q^{31} - 4 q^{35} + 8 q^{37} - 2 q^{41} + 18 q^{43} + 4 q^{47} + 13 q^{49} + 2 q^{53} + 4 q^{55} - 6 q^{59} + 10 q^{61} - 2 q^{65} + 16 q^{67} - 10 q^{71} + 18 q^{73} + 16 q^{77} + 14 q^{79} - 8 q^{83} + 2 q^{85} + 18 q^{89} + 36 q^{91} - 6 q^{95} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.81459 1.06382 0.531908 0.846802i \(-0.321475\pi\)
0.531908 + 0.846802i \(0.321475\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.70892 1.41979 0.709897 0.704306i \(-0.248742\pi\)
0.709897 + 0.704306i \(0.248742\pi\)
\(12\) 0 0
\(13\) 4.24002 1.17597 0.587985 0.808872i \(-0.299921\pi\)
0.587985 + 0.808872i \(0.299921\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.85252 −0.934374 −0.467187 0.884159i \(-0.654733\pi\)
−0.467187 + 0.884159i \(0.654733\pi\)
\(18\) 0 0
\(19\) 6.70892 1.53913 0.769566 0.638567i \(-0.220473\pi\)
0.769566 + 0.638567i \(0.220473\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.42543 0.264696 0.132348 0.991203i \(-0.457748\pi\)
0.132348 + 0.991203i \(0.457748\pi\)
\(30\) 0 0
\(31\) −9.03035 −1.62190 −0.810949 0.585117i \(-0.801049\pi\)
−0.810949 + 0.585117i \(0.801049\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.81459 −0.475753
\(36\) 0 0
\(37\) 5.28349 0.868601 0.434300 0.900768i \(-0.356996\pi\)
0.434300 + 0.900768i \(0.356996\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.3777 1.62072 0.810362 0.585930i \(-0.199270\pi\)
0.810362 + 0.585930i \(0.199270\pi\)
\(42\) 0 0
\(43\) 12.1739 1.85651 0.928255 0.371945i \(-0.121309\pi\)
0.928255 + 0.371945i \(0.121309\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.0287 −1.46283 −0.731417 0.681930i \(-0.761141\pi\)
−0.731417 + 0.681930i \(0.761141\pi\)
\(48\) 0 0
\(49\) 0.921920 0.131703
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.17229 1.25991 0.629955 0.776632i \(-0.283073\pi\)
0.629955 + 0.776632i \(0.283073\pi\)
\(54\) 0 0
\(55\) −4.70892 −0.634951
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.36323 −0.828422 −0.414211 0.910181i \(-0.635942\pi\)
−0.414211 + 0.910181i \(0.635942\pi\)
\(60\) 0 0
\(61\) −10.4140 −1.33337 −0.666686 0.745339i \(-0.732288\pi\)
−0.666686 + 0.745339i \(0.732288\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.24002 −0.525910
\(66\) 0 0
\(67\) 6.50517 0.794733 0.397367 0.917660i \(-0.369924\pi\)
0.397367 + 0.917660i \(0.369924\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.74852 −1.03826 −0.519129 0.854696i \(-0.673744\pi\)
−0.519129 + 0.854696i \(0.673744\pi\)
\(72\) 0 0
\(73\) −0.240022 −0.0280924 −0.0140462 0.999901i \(-0.504471\pi\)
−0.0140462 + 0.999901i \(0.504471\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.2537 1.51040
\(78\) 0 0
\(79\) −4.48337 −0.504418 −0.252209 0.967673i \(-0.581157\pi\)
−0.252209 + 0.967673i \(0.581157\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −13.1109 −1.43911 −0.719553 0.694437i \(-0.755653\pi\)
−0.719553 + 0.694437i \(0.755653\pi\)
\(84\) 0 0
\(85\) 3.85252 0.417865
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.62918 0.808692 0.404346 0.914606i \(-0.367499\pi\)
0.404346 + 0.914606i \(0.367499\pi\)
\(90\) 0 0
\(91\) 11.9339 1.25102
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.70892 −0.688321
\(96\) 0 0
\(97\) −0.385284 −0.0391196 −0.0195598 0.999809i \(-0.506226\pi\)
−0.0195598 + 0.999809i \(0.506226\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −16.5372 −1.64551 −0.822755 0.568396i \(-0.807564\pi\)
−0.822755 + 0.568396i \(0.807564\pi\)
\(102\) 0 0
\(103\) −17.5918 −1.73337 −0.866685 0.498855i \(-0.833754\pi\)
−0.866685 + 0.498855i \(0.833754\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.9506 1.34866 0.674328 0.738432i \(-0.264433\pi\)
0.674328 + 0.738432i \(0.264433\pi\)
\(108\) 0 0
\(109\) 6.70892 0.642598 0.321299 0.946978i \(-0.395881\pi\)
0.321299 + 0.946978i \(0.395881\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.1756 −1.05131 −0.525656 0.850697i \(-0.676180\pi\)
−0.525656 + 0.850697i \(0.676180\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.8433 −0.994001
\(120\) 0 0
\(121\) 11.1739 1.01581
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 15.0942 1.33939 0.669697 0.742634i \(-0.266424\pi\)
0.669697 + 0.742634i \(0.266424\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.62918 0.142342 0.0711711 0.997464i \(-0.477326\pi\)
0.0711711 + 0.997464i \(0.477326\pi\)
\(132\) 0 0
\(133\) 18.8829 1.63735
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.61804 0.479981 0.239991 0.970775i \(-0.422856\pi\)
0.239991 + 0.970775i \(0.422856\pi\)
\(138\) 0 0
\(139\) 4.07808 0.345898 0.172949 0.984931i \(-0.444670\pi\)
0.172949 + 0.984931i \(0.444670\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 19.9659 1.66964
\(144\) 0 0
\(145\) −1.42543 −0.118376
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 20.1268 1.64885 0.824424 0.565972i \(-0.191499\pi\)
0.824424 + 0.565972i \(0.191499\pi\)
\(150\) 0 0
\(151\) 18.1739 1.47897 0.739487 0.673170i \(-0.235068\pi\)
0.739487 + 0.673170i \(0.235068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.03035 0.725335
\(156\) 0 0
\(157\) 15.0833 1.20378 0.601889 0.798580i \(-0.294415\pi\)
0.601889 + 0.798580i \(0.294415\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.81459 −0.221821
\(162\) 0 0
\(163\) 0.294954 0.0231026 0.0115513 0.999933i \(-0.496323\pi\)
0.0115513 + 0.999933i \(0.496323\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.24334 −0.328360 −0.164180 0.986430i \(-0.552498\pi\)
−0.164180 + 0.986430i \(0.552498\pi\)
\(168\) 0 0
\(169\) 4.97778 0.382906
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −24.9116 −1.89399 −0.946995 0.321248i \(-0.895898\pi\)
−0.946995 + 0.321248i \(0.895898\pi\)
\(174\) 0 0
\(175\) 2.81459 0.212763
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.03256 0.525638 0.262819 0.964845i \(-0.415348\pi\)
0.262819 + 0.964845i \(0.415348\pi\)
\(180\) 0 0
\(181\) −15.5806 −1.15810 −0.579050 0.815292i \(-0.696576\pi\)
−0.579050 + 0.815292i \(0.696576\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.28349 −0.388450
\(186\) 0 0
\(187\) −18.1412 −1.32662
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.8940 1.22241 0.611204 0.791473i \(-0.290686\pi\)
0.611204 + 0.791473i \(0.290686\pi\)
\(192\) 0 0
\(193\) −1.22500 −0.0881776 −0.0440888 0.999028i \(-0.514038\pi\)
−0.0440888 + 0.999028i \(0.514038\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.1092 1.29023 0.645114 0.764086i \(-0.276810\pi\)
0.645114 + 0.764086i \(0.276810\pi\)
\(198\) 0 0
\(199\) 22.1962 1.57344 0.786722 0.617307i \(-0.211776\pi\)
0.786722 + 0.617307i \(0.211776\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.01200 0.281588
\(204\) 0 0
\(205\) −10.3777 −0.724810
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 31.5918 2.18525
\(210\) 0 0
\(211\) −23.6843 −1.63050 −0.815248 0.579111i \(-0.803400\pi\)
−0.815248 + 0.579111i \(0.803400\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −12.1739 −0.830256
\(216\) 0 0
\(217\) −25.4167 −1.72540
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −16.3348 −1.09880
\(222\) 0 0
\(223\) 15.7050 1.05169 0.525844 0.850581i \(-0.323750\pi\)
0.525844 + 0.850581i \(0.323750\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3206 0.685000 0.342500 0.939518i \(-0.388726\pi\)
0.342500 + 0.939518i \(0.388726\pi\)
\(228\) 0 0
\(229\) 3.54556 0.234297 0.117149 0.993114i \(-0.462625\pi\)
0.117149 + 0.993114i \(0.462625\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.22168 0.0800350 0.0400175 0.999199i \(-0.487259\pi\)
0.0400175 + 0.999199i \(0.487259\pi\)
\(234\) 0 0
\(235\) 10.0287 0.654199
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.8211 0.829325 0.414663 0.909975i \(-0.363900\pi\)
0.414663 + 0.909975i \(0.363900\pi\)
\(240\) 0 0
\(241\) 17.6390 1.13623 0.568113 0.822951i \(-0.307674\pi\)
0.568113 + 0.822951i \(0.307674\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.921920 −0.0588993
\(246\) 0 0
\(247\) 28.4460 1.80997
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.1596 1.20934 0.604671 0.796476i \(-0.293305\pi\)
0.604671 + 0.796476i \(0.293305\pi\)
\(252\) 0 0
\(253\) −4.70892 −0.296047
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.2034 −0.823607 −0.411804 0.911273i \(-0.635101\pi\)
−0.411804 + 0.911273i \(0.635101\pi\)
\(258\) 0 0
\(259\) 14.8709 0.924031
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −26.3029 −1.62191 −0.810954 0.585110i \(-0.801051\pi\)
−0.810954 + 0.585110i \(0.801051\pi\)
\(264\) 0 0
\(265\) −9.17229 −0.563449
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.53466 −0.459396 −0.229698 0.973262i \(-0.573774\pi\)
−0.229698 + 0.973262i \(0.573774\pi\)
\(270\) 0 0
\(271\) 2.21355 0.134464 0.0672319 0.997737i \(-0.478583\pi\)
0.0672319 + 0.997737i \(0.478583\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.70892 0.283959
\(276\) 0 0
\(277\) 10.4867 0.630084 0.315042 0.949078i \(-0.397981\pi\)
0.315042 + 0.949078i \(0.397981\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −23.2682 −1.38806 −0.694031 0.719945i \(-0.744167\pi\)
−0.694031 + 0.719945i \(0.744167\pi\)
\(282\) 0 0
\(283\) 23.3297 1.38681 0.693404 0.720549i \(-0.256110\pi\)
0.693404 + 0.720549i \(0.256110\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29.2090 1.72415
\(288\) 0 0
\(289\) −2.15807 −0.126945
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 26.2371 1.53279 0.766394 0.642371i \(-0.222049\pi\)
0.766394 + 0.642371i \(0.222049\pi\)
\(294\) 0 0
\(295\) 6.36323 0.370482
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.24002 −0.245207
\(300\) 0 0
\(301\) 34.2647 1.97498
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.4140 0.596302
\(306\) 0 0
\(307\) 13.3814 0.763717 0.381859 0.924221i \(-0.375284\pi\)
0.381859 + 0.924221i \(0.375284\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −19.3309 −1.09616 −0.548078 0.836428i \(-0.684640\pi\)
−0.548078 + 0.836428i \(0.684640\pi\)
\(312\) 0 0
\(313\) −8.90492 −0.503336 −0.251668 0.967814i \(-0.580979\pi\)
−0.251668 + 0.967814i \(0.580979\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.32696 −0.243026 −0.121513 0.992590i \(-0.538775\pi\)
−0.121513 + 0.992590i \(0.538775\pi\)
\(318\) 0 0
\(319\) 6.71224 0.375814
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −25.8463 −1.43813
\(324\) 0 0
\(325\) 4.24002 0.235194
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −28.2266 −1.55619
\(330\) 0 0
\(331\) 17.9681 0.987619 0.493809 0.869570i \(-0.335604\pi\)
0.493809 + 0.869570i \(0.335604\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.50517 −0.355416
\(336\) 0 0
\(337\) 4.93448 0.268798 0.134399 0.990927i \(-0.457090\pi\)
0.134399 + 0.990927i \(0.457090\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −42.5232 −2.30276
\(342\) 0 0
\(343\) −17.1073 −0.923708
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.06220 0.379119 0.189559 0.981869i \(-0.439294\pi\)
0.189559 + 0.981869i \(0.439294\pi\)
\(348\) 0 0
\(349\) −36.3349 −1.94496 −0.972482 0.232977i \(-0.925153\pi\)
−0.972482 + 0.232977i \(0.925153\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.83252 0.0975353 0.0487676 0.998810i \(-0.484471\pi\)
0.0487676 + 0.998810i \(0.484471\pi\)
\(354\) 0 0
\(355\) 8.74852 0.464323
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.6587 −0.879211 −0.439605 0.898191i \(-0.644882\pi\)
−0.439605 + 0.898191i \(0.644882\pi\)
\(360\) 0 0
\(361\) 26.0096 1.36893
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.240022 0.0125633
\(366\) 0 0
\(367\) 14.9060 0.778088 0.389044 0.921219i \(-0.372805\pi\)
0.389044 + 0.921219i \(0.372805\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 25.8162 1.34031
\(372\) 0 0
\(373\) 9.99929 0.517744 0.258872 0.965912i \(-0.416649\pi\)
0.258872 + 0.965912i \(0.416649\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.04386 0.311275
\(378\) 0 0
\(379\) −25.7624 −1.32333 −0.661663 0.749801i \(-0.730149\pi\)
−0.661663 + 0.749801i \(0.730149\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.56089 −0.386343 −0.193172 0.981165i \(-0.561877\pi\)
−0.193172 + 0.981165i \(0.561877\pi\)
\(384\) 0 0
\(385\) −13.2537 −0.675470
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.1884 1.02359 0.511797 0.859107i \(-0.328980\pi\)
0.511797 + 0.859107i \(0.328980\pi\)
\(390\) 0 0
\(391\) 3.85252 0.194830
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.48337 0.225583
\(396\) 0 0
\(397\) −15.3453 −0.770159 −0.385079 0.922883i \(-0.625826\pi\)
−0.385079 + 0.922883i \(0.625826\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −22.8542 −1.14128 −0.570642 0.821199i \(-0.693305\pi\)
−0.570642 + 0.821199i \(0.693305\pi\)
\(402\) 0 0
\(403\) −38.2889 −1.90730
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.8795 1.23323
\(408\) 0 0
\(409\) −21.9793 −1.08681 −0.543403 0.839472i \(-0.682864\pi\)
−0.543403 + 0.839472i \(0.682864\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −17.9099 −0.881288
\(414\) 0 0
\(415\) 13.1109 0.643588
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −25.8207 −1.26143 −0.630713 0.776016i \(-0.717237\pi\)
−0.630713 + 0.776016i \(0.717237\pi\)
\(420\) 0 0
\(421\) −24.0431 −1.17179 −0.585896 0.810386i \(-0.699257\pi\)
−0.585896 + 0.810386i \(0.699257\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.85252 −0.186875
\(426\) 0 0
\(427\) −29.3111 −1.41846
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −39.4060 −1.89812 −0.949060 0.315096i \(-0.897963\pi\)
−0.949060 + 0.315096i \(0.897963\pi\)
\(432\) 0 0
\(433\) 29.2717 1.40671 0.703354 0.710839i \(-0.251685\pi\)
0.703354 + 0.710839i \(0.251685\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.70892 −0.320931
\(438\) 0 0
\(439\) 32.5296 1.55255 0.776276 0.630393i \(-0.217106\pi\)
0.776276 + 0.630393i \(0.217106\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.0909 −0.812012 −0.406006 0.913870i \(-0.633079\pi\)
−0.406006 + 0.913870i \(0.633079\pi\)
\(444\) 0 0
\(445\) −7.62918 −0.361658
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.7630 1.16864 0.584319 0.811524i \(-0.301362\pi\)
0.584319 + 0.811524i \(0.301362\pi\)
\(450\) 0 0
\(451\) 48.8678 2.30109
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.9339 −0.559471
\(456\) 0 0
\(457\) −30.4397 −1.42391 −0.711956 0.702225i \(-0.752190\pi\)
−0.711956 + 0.702225i \(0.752190\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.0241 0.979190 0.489595 0.871950i \(-0.337145\pi\)
0.489595 + 0.871950i \(0.337145\pi\)
\(462\) 0 0
\(463\) −6.73114 −0.312823 −0.156411 0.987692i \(-0.549993\pi\)
−0.156411 + 0.987692i \(0.549993\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.7256 1.05162 0.525808 0.850603i \(-0.323763\pi\)
0.525808 + 0.850603i \(0.323763\pi\)
\(468\) 0 0
\(469\) 18.3094 0.845449
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 57.3262 2.63586
\(474\) 0 0
\(475\) 6.70892 0.307826
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −23.2759 −1.06350 −0.531752 0.846900i \(-0.678466\pi\)
−0.531752 + 0.846900i \(0.678466\pi\)
\(480\) 0 0
\(481\) 22.4021 1.02145
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.385284 0.0174948
\(486\) 0 0
\(487\) 19.6579 0.890783 0.445391 0.895336i \(-0.353065\pi\)
0.445391 + 0.895336i \(0.353065\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17.1494 −0.773940 −0.386970 0.922092i \(-0.626478\pi\)
−0.386970 + 0.922092i \(0.626478\pi\)
\(492\) 0 0
\(493\) −5.49151 −0.247325
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.6235 −1.10451
\(498\) 0 0
\(499\) −29.2265 −1.30836 −0.654179 0.756340i \(-0.726986\pi\)
−0.654179 + 0.756340i \(0.726986\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 37.9543 1.69230 0.846150 0.532945i \(-0.178915\pi\)
0.846150 + 0.532945i \(0.178915\pi\)
\(504\) 0 0
\(505\) 16.5372 0.735895
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22.8502 −1.01282 −0.506408 0.862294i \(-0.669027\pi\)
−0.506408 + 0.862294i \(0.669027\pi\)
\(510\) 0 0
\(511\) −0.675563 −0.0298851
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.5918 0.775187
\(516\) 0 0
\(517\) −47.2243 −2.07692
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.08566 0.0913742 0.0456871 0.998956i \(-0.485452\pi\)
0.0456871 + 0.998956i \(0.485452\pi\)
\(522\) 0 0
\(523\) −32.4682 −1.41973 −0.709867 0.704335i \(-0.751245\pi\)
−0.709867 + 0.704335i \(0.751245\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 34.7896 1.51546
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 44.0017 1.90592
\(534\) 0 0
\(535\) −13.9506 −0.603137
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.34125 0.186991
\(540\) 0 0
\(541\) −34.9746 −1.50367 −0.751837 0.659349i \(-0.770832\pi\)
−0.751837 + 0.659349i \(0.770832\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.70892 −0.287379
\(546\) 0 0
\(547\) −15.2321 −0.651278 −0.325639 0.945494i \(-0.605579\pi\)
−0.325639 + 0.945494i \(0.605579\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.56311 0.407402
\(552\) 0 0
\(553\) −12.6188 −0.536608
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.75112 0.413168 0.206584 0.978429i \(-0.433765\pi\)
0.206584 + 0.978429i \(0.433765\pi\)
\(558\) 0 0
\(559\) 51.6178 2.18320
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.1405 0.553807 0.276904 0.960898i \(-0.410692\pi\)
0.276904 + 0.960898i \(0.410692\pi\)
\(564\) 0 0
\(565\) 11.1756 0.470161
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.855292 0.0358557 0.0179279 0.999839i \(-0.494293\pi\)
0.0179279 + 0.999839i \(0.494293\pi\)
\(570\) 0 0
\(571\) −32.9699 −1.37975 −0.689873 0.723930i \(-0.742334\pi\)
−0.689873 + 0.723930i \(0.742334\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) 18.5943 0.774091 0.387046 0.922061i \(-0.373496\pi\)
0.387046 + 0.922061i \(0.373496\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −36.9018 −1.53094
\(582\) 0 0
\(583\) 43.1916 1.78881
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 44.7002 1.84498 0.922488 0.386027i \(-0.126153\pi\)
0.922488 + 0.386027i \(0.126153\pi\)
\(588\) 0 0
\(589\) −60.5839 −2.49632
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.0501 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(594\) 0 0
\(595\) 10.8433 0.444531
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 17.4970 0.714909 0.357455 0.933930i \(-0.383645\pi\)
0.357455 + 0.933930i \(0.383645\pi\)
\(600\) 0 0
\(601\) −26.4515 −1.07898 −0.539490 0.841992i \(-0.681383\pi\)
−0.539490 + 0.841992i \(0.681383\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −11.1739 −0.454286
\(606\) 0 0
\(607\) −35.0390 −1.42219 −0.711095 0.703096i \(-0.751800\pi\)
−0.711095 + 0.703096i \(0.751800\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −42.5218 −1.72025
\(612\) 0 0
\(613\) −10.4911 −0.423732 −0.211866 0.977299i \(-0.567954\pi\)
−0.211866 + 0.977299i \(0.567954\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.1126 0.447377 0.223688 0.974661i \(-0.428190\pi\)
0.223688 + 0.974661i \(0.428190\pi\)
\(618\) 0 0
\(619\) 6.36307 0.255753 0.127877 0.991790i \(-0.459184\pi\)
0.127877 + 0.991790i \(0.459184\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 21.4730 0.860298
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −20.3548 −0.811598
\(630\) 0 0
\(631\) −24.3955 −0.971168 −0.485584 0.874190i \(-0.661393\pi\)
−0.485584 + 0.874190i \(0.661393\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15.0942 −0.598995
\(636\) 0 0
\(637\) 3.90896 0.154879
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −35.2130 −1.39083 −0.695414 0.718609i \(-0.744779\pi\)
−0.695414 + 0.718609i \(0.744779\pi\)
\(642\) 0 0
\(643\) 21.4200 0.844724 0.422362 0.906427i \(-0.361201\pi\)
0.422362 + 0.906427i \(0.361201\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.795930 −0.0312912 −0.0156456 0.999878i \(-0.504980\pi\)
−0.0156456 + 0.999878i \(0.504980\pi\)
\(648\) 0 0
\(649\) −29.9640 −1.17619
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 42.4936 1.66290 0.831451 0.555599i \(-0.187511\pi\)
0.831451 + 0.555599i \(0.187511\pi\)
\(654\) 0 0
\(655\) −1.62918 −0.0636574
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.5631 0.839979 0.419990 0.907529i \(-0.362034\pi\)
0.419990 + 0.907529i \(0.362034\pi\)
\(660\) 0 0
\(661\) −21.8328 −0.849196 −0.424598 0.905382i \(-0.639585\pi\)
−0.424598 + 0.905382i \(0.639585\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18.8829 −0.732246
\(666\) 0 0
\(667\) −1.42543 −0.0551929
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −49.0386 −1.89311
\(672\) 0 0
\(673\) 6.32696 0.243886 0.121943 0.992537i \(-0.461087\pi\)
0.121943 + 0.992537i \(0.461087\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.40504 0.246166 0.123083 0.992396i \(-0.460722\pi\)
0.123083 + 0.992396i \(0.460722\pi\)
\(678\) 0 0
\(679\) −1.08442 −0.0416161
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.19300 0.122177 0.0610883 0.998132i \(-0.480543\pi\)
0.0610883 + 0.998132i \(0.480543\pi\)
\(684\) 0 0
\(685\) −5.61804 −0.214654
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 38.8907 1.48162
\(690\) 0 0
\(691\) 17.4257 0.662904 0.331452 0.943472i \(-0.392462\pi\)
0.331452 + 0.943472i \(0.392462\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.07808 −0.154690
\(696\) 0 0
\(697\) −39.9803 −1.51436
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7.53418 −0.284562 −0.142281 0.989826i \(-0.545444\pi\)
−0.142281 + 0.989826i \(0.545444\pi\)
\(702\) 0 0
\(703\) 35.4465 1.33689
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −46.5454 −1.75052
\(708\) 0 0
\(709\) −27.8803 −1.04707 −0.523534 0.852005i \(-0.675387\pi\)
−0.523534 + 0.852005i \(0.675387\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.03035 0.338189
\(714\) 0 0
\(715\) −19.9659 −0.746683
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.22333 0.157504 0.0787518 0.996894i \(-0.474907\pi\)
0.0787518 + 0.996894i \(0.474907\pi\)
\(720\) 0 0
\(721\) −49.5137 −1.84399
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.42543 0.0529392
\(726\) 0 0
\(727\) −7.65770 −0.284008 −0.142004 0.989866i \(-0.545355\pi\)
−0.142004 + 0.989866i \(0.545355\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −46.9004 −1.73467
\(732\) 0 0
\(733\) −32.3457 −1.19472 −0.597358 0.801975i \(-0.703783\pi\)
−0.597358 + 0.801975i \(0.703783\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 30.6323 1.12836
\(738\) 0 0
\(739\) 8.58366 0.315755 0.157878 0.987459i \(-0.449535\pi\)
0.157878 + 0.987459i \(0.449535\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 32.9601 1.20919 0.604594 0.796534i \(-0.293335\pi\)
0.604594 + 0.796534i \(0.293335\pi\)
\(744\) 0 0
\(745\) −20.1268 −0.737388
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 39.2652 1.43472
\(750\) 0 0
\(751\) 7.31841 0.267053 0.133526 0.991045i \(-0.457370\pi\)
0.133526 + 0.991045i \(0.457370\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.1739 −0.661418
\(756\) 0 0
\(757\) 9.65028 0.350745 0.175373 0.984502i \(-0.443887\pi\)
0.175373 + 0.984502i \(0.443887\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26.8784 0.974340 0.487170 0.873307i \(-0.338029\pi\)
0.487170 + 0.873307i \(0.338029\pi\)
\(762\) 0 0
\(763\) 18.8829 0.683606
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −26.9802 −0.974200
\(768\) 0 0
\(769\) 2.03983 0.0735581 0.0367790 0.999323i \(-0.488290\pi\)
0.0367790 + 0.999323i \(0.488290\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.54889 −0.343450 −0.171725 0.985145i \(-0.554934\pi\)
−0.171725 + 0.985145i \(0.554934\pi\)
\(774\) 0 0
\(775\) −9.03035 −0.324380
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 69.6232 2.49451
\(780\) 0 0
\(781\) −41.1961 −1.47411
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.0833 −0.538346
\(786\) 0 0
\(787\) 40.2557 1.43496 0.717481 0.696578i \(-0.245295\pi\)
0.717481 + 0.696578i \(0.245295\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −31.4548 −1.11840
\(792\) 0 0
\(793\) −44.1555 −1.56801
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42.6875 −1.51207 −0.756034 0.654532i \(-0.772866\pi\)
−0.756034 + 0.654532i \(0.772866\pi\)
\(798\) 0 0
\(799\) 38.6357 1.36683
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.13024 −0.0398854
\(804\) 0 0
\(805\) 2.81459 0.0992013
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28.3699 0.997434 0.498717 0.866765i \(-0.333805\pi\)
0.498717 + 0.866765i \(0.333805\pi\)
\(810\) 0 0
\(811\) −23.0415 −0.809096 −0.404548 0.914517i \(-0.632571\pi\)
−0.404548 + 0.914517i \(0.632571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.294954 −0.0103318
\(816\) 0 0
\(817\) 81.6741 2.85741
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.5296 0.437286 0.218643 0.975805i \(-0.429837\pi\)
0.218643 + 0.975805i \(0.429837\pi\)
\(822\) 0 0
\(823\) 7.53814 0.262763 0.131382 0.991332i \(-0.458059\pi\)
0.131382 + 0.991332i \(0.458059\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.5405 0.783810 0.391905 0.920006i \(-0.371816\pi\)
0.391905 + 0.920006i \(0.371816\pi\)
\(828\) 0 0
\(829\) −5.28862 −0.183681 −0.0918406 0.995774i \(-0.529275\pi\)
−0.0918406 + 0.995774i \(0.529275\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.55172 −0.123060
\(834\) 0 0
\(835\) 4.24334 0.146847
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −45.8187 −1.58184 −0.790918 0.611922i \(-0.790397\pi\)
−0.790918 + 0.611922i \(0.790397\pi\)
\(840\) 0 0
\(841\) −26.9681 −0.929936
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −4.97778 −0.171241
\(846\) 0 0
\(847\) 31.4501 1.08064
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5.28349 −0.181116
\(852\) 0 0
\(853\) −24.5910 −0.841980 −0.420990 0.907065i \(-0.638317\pi\)
−0.420990 + 0.907065i \(0.638317\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.53965 −0.291709 −0.145854 0.989306i \(-0.546593\pi\)
−0.145854 + 0.989306i \(0.546593\pi\)
\(858\) 0 0
\(859\) −43.0704 −1.46954 −0.734772 0.678314i \(-0.762711\pi\)
−0.734772 + 0.678314i \(0.762711\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.952975 0.0324396 0.0162198 0.999868i \(-0.494837\pi\)
0.0162198 + 0.999868i \(0.494837\pi\)
\(864\) 0 0
\(865\) 24.9116 0.847018
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21.1118 −0.716169
\(870\) 0 0
\(871\) 27.5821 0.934583
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.81459 −0.0951505
\(876\) 0 0
\(877\) −38.1895 −1.28957 −0.644784 0.764365i \(-0.723053\pi\)
−0.644784 + 0.764365i \(0.723053\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28.4747 0.959336 0.479668 0.877450i \(-0.340757\pi\)
0.479668 + 0.877450i \(0.340757\pi\)
\(882\) 0 0
\(883\) −15.9768 −0.537663 −0.268832 0.963187i \(-0.586637\pi\)
−0.268832 + 0.963187i \(0.586637\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.16280 0.274080 0.137040 0.990566i \(-0.456241\pi\)
0.137040 + 0.990566i \(0.456241\pi\)
\(888\) 0 0
\(889\) 42.4840 1.42487
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −67.2817 −2.25149
\(894\) 0 0
\(895\) −7.03256 −0.235073
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.8721 −0.429310
\(900\) 0 0
\(901\) −35.3364 −1.17723
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15.5806 0.517918
\(906\) 0 0
\(907\) 28.0245 0.930538 0.465269 0.885169i \(-0.345958\pi\)
0.465269 + 0.885169i \(0.345958\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −26.0367 −0.862634 −0.431317 0.902201i \(-0.641951\pi\)
−0.431317 + 0.902201i \(0.641951\pi\)
\(912\) 0 0
\(913\) −61.7381 −2.04323
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.58548 0.151426
\(918\) 0 0
\(919\) −30.0044 −0.989754 −0.494877 0.868963i \(-0.664787\pi\)
−0.494877 + 0.868963i \(0.664787\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −37.0939 −1.22096
\(924\) 0 0
\(925\) 5.28349 0.173720
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 36.2038 1.18781 0.593903 0.804536i \(-0.297586\pi\)
0.593903 + 0.804536i \(0.297586\pi\)
\(930\) 0 0
\(931\) 6.18509 0.202708
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 18.1412 0.593282
\(936\) 0 0
\(937\) −6.68356 −0.218342 −0.109171 0.994023i \(-0.534820\pi\)
−0.109171 + 0.994023i \(0.534820\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −60.6068 −1.97573 −0.987863 0.155329i \(-0.950356\pi\)
−0.987863 + 0.155329i \(0.950356\pi\)
\(942\) 0 0
\(943\) −10.3777 −0.337944
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.2369 0.722604 0.361302 0.932449i \(-0.382332\pi\)
0.361302 + 0.932449i \(0.382332\pi\)
\(948\) 0 0
\(949\) −1.01770 −0.0330358
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.3412 −0.723704 −0.361852 0.932236i \(-0.617855\pi\)
−0.361852 + 0.932236i \(0.617855\pi\)
\(954\) 0 0
\(955\) −16.8940 −0.546677
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 15.8125 0.510612
\(960\) 0 0
\(961\) 50.5471 1.63055
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.22500 0.0394342
\(966\) 0 0
\(967\) −30.6654 −0.986132 −0.493066 0.869992i \(-0.664124\pi\)
−0.493066 + 0.869992i \(0.664124\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.2779 0.618659 0.309329 0.950955i \(-0.399895\pi\)
0.309329 + 0.950955i \(0.399895\pi\)
\(972\) 0 0
\(973\) 11.4781 0.367972
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27.9499 −0.894196 −0.447098 0.894485i \(-0.647543\pi\)
−0.447098 + 0.894485i \(0.647543\pi\)
\(978\) 0 0
\(979\) 35.9252 1.14817
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 55.4140 1.76743 0.883717 0.468022i \(-0.155033\pi\)
0.883717 + 0.468022i \(0.155033\pi\)
\(984\) 0 0
\(985\) −18.1092 −0.577008
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.1739 −0.387109
\(990\) 0 0
\(991\) −2.89148 −0.0918510 −0.0459255 0.998945i \(-0.514624\pi\)
−0.0459255 + 0.998945i \(0.514624\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −22.1962 −0.703666
\(996\) 0 0
\(997\) −49.7428 −1.57537 −0.787685 0.616078i \(-0.788721\pi\)
−0.787685 + 0.616078i \(0.788721\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4140.2.a.t.1.4 5
3.2 odd 2 4140.2.a.u.1.4 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4140.2.a.t.1.4 5 1.1 even 1 trivial
4140.2.a.u.1.4 yes 5 3.2 odd 2