Properties

Label 4140.2.a.t.1.3
Level $4140$
Weight $2$
Character 4140.1
Self dual yes
Analytic conductor $33.058$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4140,2,Mod(1,4140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4140.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.14345904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 13x^{3} + 34x^{2} - 11x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.83694\) of defining polynomial
Character \(\chi\) \(=\) 4140.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -0.113901 q^{7} +O(q^{10})\) \(q-1.00000 q^{5} -0.113901 q^{7} -3.39991 q^{11} +6.27397 q^{13} -3.61662 q^{17} -1.39991 q^{19} -1.00000 q^{23} +1.00000 q^{25} +6.38787 q^{29} +9.45717 q^{31} +0.113901 q^{35} -7.78778 q^{37} -11.0563 q^{41} +1.55936 q^{43} -1.70196 q^{47} -6.98703 q^{49} +8.71849 q^{53} +3.39991 q^{55} +8.95988 q^{59} -1.83333 q^{61} -6.27397 q^{65} +9.21577 q^{67} +6.82852 q^{71} -2.27397 q^{73} +0.387254 q^{77} +11.7703 q^{79} -1.16101 q^{83} +3.61662 q^{85} +1.77220 q^{89} -0.714615 q^{91} +1.39991 q^{95} -0.131365 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 5 q^{5} + 4 q^{7} - 4 q^{11} + 2 q^{13} - 2 q^{17} + 6 q^{19} - 5 q^{23} + 5 q^{25} - 2 q^{29} + 8 q^{31} - 4 q^{35} + 8 q^{37} - 2 q^{41} + 18 q^{43} + 4 q^{47} + 13 q^{49} + 2 q^{53} + 4 q^{55} - 6 q^{59} + 10 q^{61} - 2 q^{65} + 16 q^{67} - 10 q^{71} + 18 q^{73} + 16 q^{77} + 14 q^{79} - 8 q^{83} + 2 q^{85} + 18 q^{89} + 36 q^{91} - 6 q^{95} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.113901 −0.0430507 −0.0215254 0.999768i \(-0.506852\pi\)
−0.0215254 + 0.999768i \(0.506852\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.39991 −1.02511 −0.512555 0.858654i \(-0.671301\pi\)
−0.512555 + 0.858654i \(0.671301\pi\)
\(12\) 0 0
\(13\) 6.27397 1.74009 0.870043 0.492975i \(-0.164091\pi\)
0.870043 + 0.492975i \(0.164091\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.61662 −0.877158 −0.438579 0.898693i \(-0.644518\pi\)
−0.438579 + 0.898693i \(0.644518\pi\)
\(18\) 0 0
\(19\) −1.39991 −0.321160 −0.160580 0.987023i \(-0.551337\pi\)
−0.160580 + 0.987023i \(0.551337\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.38787 1.18620 0.593099 0.805129i \(-0.297904\pi\)
0.593099 + 0.805129i \(0.297904\pi\)
\(30\) 0 0
\(31\) 9.45717 1.69856 0.849279 0.527945i \(-0.177037\pi\)
0.849279 + 0.527945i \(0.177037\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.113901 0.0192529
\(36\) 0 0
\(37\) −7.78778 −1.28030 −0.640151 0.768249i \(-0.721128\pi\)
−0.640151 + 0.768249i \(0.721128\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.0563 −1.72671 −0.863353 0.504600i \(-0.831640\pi\)
−0.863353 + 0.504600i \(0.831640\pi\)
\(42\) 0 0
\(43\) 1.55936 0.237800 0.118900 0.992906i \(-0.462063\pi\)
0.118900 + 0.992906i \(0.462063\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.70196 −0.248257 −0.124128 0.992266i \(-0.539613\pi\)
−0.124128 + 0.992266i \(0.539613\pi\)
\(48\) 0 0
\(49\) −6.98703 −0.998147
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.71849 1.19758 0.598788 0.800908i \(-0.295649\pi\)
0.598788 + 0.800908i \(0.295649\pi\)
\(54\) 0 0
\(55\) 3.39991 0.458443
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.95988 1.16648 0.583239 0.812301i \(-0.301785\pi\)
0.583239 + 0.812301i \(0.301785\pi\)
\(60\) 0 0
\(61\) −1.83333 −0.234734 −0.117367 0.993089i \(-0.537445\pi\)
−0.117367 + 0.993089i \(0.537445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.27397 −0.778190
\(66\) 0 0
\(67\) 9.21577 1.12589 0.562943 0.826496i \(-0.309669\pi\)
0.562943 + 0.826496i \(0.309669\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.82852 0.810396 0.405198 0.914229i \(-0.367203\pi\)
0.405198 + 0.914229i \(0.367203\pi\)
\(72\) 0 0
\(73\) −2.27397 −0.266148 −0.133074 0.991106i \(-0.542485\pi\)
−0.133074 + 0.991106i \(0.542485\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.387254 0.0441317
\(78\) 0 0
\(79\) 11.7703 1.32426 0.662132 0.749387i \(-0.269652\pi\)
0.662132 + 0.749387i \(0.269652\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.16101 −0.127437 −0.0637187 0.997968i \(-0.520296\pi\)
−0.0637187 + 0.997968i \(0.520296\pi\)
\(84\) 0 0
\(85\) 3.61662 0.392277
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.77220 0.187853 0.0939263 0.995579i \(-0.470058\pi\)
0.0939263 + 0.995579i \(0.470058\pi\)
\(90\) 0 0
\(91\) −0.714615 −0.0749120
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.39991 0.143627
\(96\) 0 0
\(97\) −0.131365 −0.0133380 −0.00666902 0.999978i \(-0.502123\pi\)
−0.00666902 + 0.999978i \(0.502123\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.40052 0.935387 0.467694 0.883891i \(-0.345085\pi\)
0.467694 + 0.883891i \(0.345085\pi\)
\(102\) 0 0
\(103\) 9.24045 0.910489 0.455244 0.890366i \(-0.349552\pi\)
0.455244 + 0.890366i \(0.349552\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.28506 −0.220905 −0.110453 0.993881i \(-0.535230\pi\)
−0.110453 + 0.993881i \(0.535230\pi\)
\(108\) 0 0
\(109\) −1.39991 −0.134087 −0.0670433 0.997750i \(-0.521357\pi\)
−0.0670433 + 0.997750i \(0.521357\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.59977 0.903071 0.451535 0.892253i \(-0.350876\pi\)
0.451535 + 0.892253i \(0.350876\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.411938 0.0377623
\(120\) 0 0
\(121\) 0.559357 0.0508506
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.73146 0.597320 0.298660 0.954360i \(-0.403460\pi\)
0.298660 + 0.954360i \(0.403460\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.22780 −0.369385 −0.184692 0.982796i \(-0.559129\pi\)
−0.184692 + 0.982796i \(0.559129\pi\)
\(132\) 0 0
\(133\) 0.159451 0.0138262
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.4496 −1.23451 −0.617257 0.786761i \(-0.711756\pi\)
−0.617257 + 0.786761i \(0.711756\pi\)
\(138\) 0 0
\(139\) 11.9870 1.01673 0.508363 0.861143i \(-0.330251\pi\)
0.508363 + 0.861143i \(0.330251\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −21.3309 −1.78378
\(144\) 0 0
\(145\) −6.38787 −0.530484
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.19972 −0.344054 −0.172027 0.985092i \(-0.555032\pi\)
−0.172027 + 0.985092i \(0.555032\pi\)
\(150\) 0 0
\(151\) 7.55936 0.615172 0.307586 0.951520i \(-0.400479\pi\)
0.307586 + 0.951520i \(0.400479\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.45717 −0.759618
\(156\) 0 0
\(157\) 5.86203 0.467841 0.233921 0.972256i \(-0.424844\pi\)
0.233921 + 0.972256i \(0.424844\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.113901 0.00897669
\(162\) 0 0
\(163\) 0.766767 0.0600578 0.0300289 0.999549i \(-0.490440\pi\)
0.0300289 + 0.999549i \(0.490440\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.0443 1.08678 0.543390 0.839481i \(-0.317141\pi\)
0.543390 + 0.839481i \(0.317141\pi\)
\(168\) 0 0
\(169\) 26.3627 2.02790
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.13859 0.162594 0.0812968 0.996690i \(-0.474094\pi\)
0.0812968 + 0.996690i \(0.474094\pi\)
\(174\) 0 0
\(175\) −0.113901 −0.00861014
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.93118 −0.667547 −0.333774 0.942653i \(-0.608322\pi\)
−0.333774 + 0.942653i \(0.608322\pi\)
\(180\) 0 0
\(181\) 25.4623 1.89260 0.946298 0.323296i \(-0.104791\pi\)
0.946298 + 0.323296i \(0.104791\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.78778 0.572569
\(186\) 0 0
\(187\) 12.2962 0.899184
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.3813 0.895877 0.447939 0.894064i \(-0.352158\pi\)
0.447939 + 0.894064i \(0.352158\pi\)
\(192\) 0 0
\(193\) 3.31471 0.238598 0.119299 0.992858i \(-0.461935\pi\)
0.119299 + 0.992858i \(0.461935\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.3201 1.16276 0.581381 0.813632i \(-0.302513\pi\)
0.581381 + 0.813632i \(0.302513\pi\)
\(198\) 0 0
\(199\) −9.80336 −0.694942 −0.347471 0.937691i \(-0.612959\pi\)
−0.347471 + 0.937691i \(0.612959\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.727588 −0.0510667
\(204\) 0 0
\(205\) 11.0563 0.772207
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.75955 0.329225
\(210\) 0 0
\(211\) 1.34987 0.0929286 0.0464643 0.998920i \(-0.485205\pi\)
0.0464643 + 0.998920i \(0.485205\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.55936 −0.106347
\(216\) 0 0
\(217\) −1.07719 −0.0731241
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −22.6905 −1.52633
\(222\) 0 0
\(223\) 15.2332 1.02009 0.510046 0.860147i \(-0.329628\pi\)
0.510046 + 0.860147i \(0.329628\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.8921 1.25392 0.626958 0.779053i \(-0.284300\pi\)
0.626958 + 0.779053i \(0.284300\pi\)
\(228\) 0 0
\(229\) 7.57744 0.500731 0.250366 0.968151i \(-0.419449\pi\)
0.250366 + 0.968151i \(0.419449\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.0035 1.11394 0.556970 0.830533i \(-0.311964\pi\)
0.556970 + 0.830533i \(0.311964\pi\)
\(234\) 0 0
\(235\) 1.70196 0.111024
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.9508 1.48456 0.742281 0.670089i \(-0.233744\pi\)
0.742281 + 0.670089i \(0.233744\pi\)
\(240\) 0 0
\(241\) 4.51862 0.291070 0.145535 0.989353i \(-0.453510\pi\)
0.145535 + 0.989353i \(0.453510\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.98703 0.446385
\(246\) 0 0
\(247\) −8.78297 −0.558847
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −25.0257 −1.57961 −0.789805 0.613358i \(-0.789818\pi\)
−0.789805 + 0.613358i \(0.789818\pi\)
\(252\) 0 0
\(253\) 3.39991 0.213750
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.05160 −0.190354 −0.0951768 0.995460i \(-0.530342\pi\)
−0.0951768 + 0.995460i \(0.530342\pi\)
\(258\) 0 0
\(259\) 0.887039 0.0551180
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.11437 0.377028 0.188514 0.982070i \(-0.439633\pi\)
0.188514 + 0.982070i \(0.439633\pi\)
\(264\) 0 0
\(265\) −8.71849 −0.535572
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.7080 −0.652879 −0.326440 0.945218i \(-0.605849\pi\)
−0.326440 + 0.945218i \(0.605849\pi\)
\(270\) 0 0
\(271\) 15.0980 0.917138 0.458569 0.888659i \(-0.348362\pi\)
0.458569 + 0.888659i \(0.348362\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.39991 −0.205022
\(276\) 0 0
\(277\) −26.0886 −1.56751 −0.783755 0.621070i \(-0.786698\pi\)
−0.783755 + 0.621070i \(0.786698\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.29082 −0.255969 −0.127984 0.991776i \(-0.540851\pi\)
−0.127984 + 0.991776i \(0.540851\pi\)
\(282\) 0 0
\(283\) −20.6057 −1.22488 −0.612440 0.790517i \(-0.709812\pi\)
−0.612440 + 0.790517i \(0.709812\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.25933 0.0743360
\(288\) 0 0
\(289\) −3.92008 −0.230593
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −22.7238 −1.32754 −0.663770 0.747937i \(-0.731045\pi\)
−0.663770 + 0.747937i \(0.731045\pi\)
\(294\) 0 0
\(295\) −8.95988 −0.521664
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.27397 −0.362833
\(300\) 0 0
\(301\) −0.177613 −0.0102374
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.83333 0.104976
\(306\) 0 0
\(307\) 20.7645 1.18509 0.592546 0.805536i \(-0.298123\pi\)
0.592546 + 0.805536i \(0.298123\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −33.3237 −1.88961 −0.944806 0.327629i \(-0.893750\pi\)
−0.944806 + 0.327629i \(0.893750\pi\)
\(312\) 0 0
\(313\) −5.25070 −0.296787 −0.148393 0.988928i \(-0.547410\pi\)
−0.148393 + 0.988928i \(0.547410\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.8495 1.33952 0.669761 0.742576i \(-0.266396\pi\)
0.669761 + 0.742576i \(0.266396\pi\)
\(318\) 0 0
\(319\) −21.7182 −1.21598
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.06292 0.281708
\(324\) 0 0
\(325\) 6.27397 0.348017
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.193856 0.0106876
\(330\) 0 0
\(331\) −20.8049 −1.14354 −0.571771 0.820413i \(-0.693743\pi\)
−0.571771 + 0.820413i \(0.693743\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.21577 −0.503511
\(336\) 0 0
\(337\) 4.97050 0.270761 0.135380 0.990794i \(-0.456774\pi\)
0.135380 + 0.990794i \(0.456774\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −32.1535 −1.74121
\(342\) 0 0
\(343\) 1.59314 0.0860216
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.3478 1.46810 0.734052 0.679093i \(-0.237627\pi\)
0.734052 + 0.679093i \(0.237627\pi\)
\(348\) 0 0
\(349\) 24.7307 1.32380 0.661901 0.749591i \(-0.269750\pi\)
0.661901 + 0.749591i \(0.269750\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.5053 1.35751 0.678756 0.734364i \(-0.262520\pi\)
0.678756 + 0.734364i \(0.262520\pi\)
\(354\) 0 0
\(355\) −6.82852 −0.362420
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.2644 −0.594514 −0.297257 0.954797i \(-0.596072\pi\)
−0.297257 + 0.954797i \(0.596072\pi\)
\(360\) 0 0
\(361\) −17.0403 −0.896856
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.27397 0.119025
\(366\) 0 0
\(367\) 36.6209 1.91160 0.955799 0.294022i \(-0.0949939\pi\)
0.955799 + 0.294022i \(0.0949939\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.993048 −0.0515565
\(372\) 0 0
\(373\) −38.4718 −1.99199 −0.995997 0.0893834i \(-0.971510\pi\)
−0.995997 + 0.0893834i \(0.971510\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 40.0773 2.06409
\(378\) 0 0
\(379\) −8.63716 −0.443661 −0.221831 0.975085i \(-0.571203\pi\)
−0.221831 + 0.975085i \(0.571203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.4684 0.688203 0.344102 0.938932i \(-0.388183\pi\)
0.344102 + 0.938932i \(0.388183\pi\)
\(384\) 0 0
\(385\) −0.387254 −0.0197363
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.46292 0.175577 0.0877885 0.996139i \(-0.472020\pi\)
0.0877885 + 0.996139i \(0.472020\pi\)
\(390\) 0 0
\(391\) 3.61662 0.182900
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11.7703 −0.592229
\(396\) 0 0
\(397\) 26.5791 1.33397 0.666984 0.745072i \(-0.267585\pi\)
0.666984 + 0.745072i \(0.267585\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.4575 −0.622097 −0.311049 0.950394i \(-0.600680\pi\)
−0.311049 + 0.950394i \(0.600680\pi\)
\(402\) 0 0
\(403\) 59.3340 2.95564
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 26.4777 1.31245
\(408\) 0 0
\(409\) 2.58310 0.127726 0.0638630 0.997959i \(-0.479658\pi\)
0.0638630 + 0.997959i \(0.479658\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.02054 −0.0502177
\(414\) 0 0
\(415\) 1.16101 0.0569918
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −36.6181 −1.78891 −0.894454 0.447159i \(-0.852436\pi\)
−0.894454 + 0.447159i \(0.852436\pi\)
\(420\) 0 0
\(421\) −9.60553 −0.468145 −0.234072 0.972219i \(-0.575205\pi\)
−0.234072 + 0.972219i \(0.575205\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.61662 −0.175432
\(426\) 0 0
\(427\) 0.208819 0.0101054
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 39.4934 1.90233 0.951166 0.308680i \(-0.0998872\pi\)
0.951166 + 0.308680i \(0.0998872\pi\)
\(432\) 0 0
\(433\) 3.32495 0.159787 0.0798935 0.996803i \(-0.474542\pi\)
0.0798935 + 0.996803i \(0.474542\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.39991 0.0669666
\(438\) 0 0
\(439\) −14.5882 −0.696257 −0.348129 0.937447i \(-0.613183\pi\)
−0.348129 + 0.937447i \(0.613183\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −29.0497 −1.38019 −0.690097 0.723717i \(-0.742432\pi\)
−0.690097 + 0.723717i \(0.742432\pi\)
\(444\) 0 0
\(445\) −1.77220 −0.0840102
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.07505 0.145120 0.0725602 0.997364i \(-0.476883\pi\)
0.0725602 + 0.997364i \(0.476883\pi\)
\(450\) 0 0
\(451\) 37.5904 1.77006
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.714615 0.0335017
\(456\) 0 0
\(457\) 6.49525 0.303835 0.151918 0.988393i \(-0.451455\pi\)
0.151918 + 0.988393i \(0.451455\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −28.1367 −1.31046 −0.655228 0.755431i \(-0.727428\pi\)
−0.655228 + 0.755431i \(0.727428\pi\)
\(462\) 0 0
\(463\) 22.7626 1.05787 0.528934 0.848663i \(-0.322592\pi\)
0.528934 + 0.848663i \(0.322592\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.0296 0.510391 0.255196 0.966889i \(-0.417860\pi\)
0.255196 + 0.966889i \(0.417860\pi\)
\(468\) 0 0
\(469\) −1.04969 −0.0484702
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.30167 −0.243771
\(474\) 0 0
\(475\) −1.39991 −0.0642321
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.9755 0.501482 0.250741 0.968054i \(-0.419326\pi\)
0.250741 + 0.968054i \(0.419326\pi\)
\(480\) 0 0
\(481\) −48.8603 −2.22784
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.131365 0.00596496
\(486\) 0 0
\(487\) 5.47416 0.248058 0.124029 0.992279i \(-0.460418\pi\)
0.124029 + 0.992279i \(0.460418\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20.5766 −0.928611 −0.464306 0.885675i \(-0.653696\pi\)
−0.464306 + 0.885675i \(0.653696\pi\)
\(492\) 0 0
\(493\) −23.1025 −1.04048
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.777778 −0.0348881
\(498\) 0 0
\(499\) 21.2605 0.951752 0.475876 0.879512i \(-0.342131\pi\)
0.475876 + 0.879512i \(0.342131\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −21.7049 −0.967773 −0.483887 0.875131i \(-0.660775\pi\)
−0.483887 + 0.875131i \(0.660775\pi\)
\(504\) 0 0
\(505\) −9.40052 −0.418318
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.6961 0.695716 0.347858 0.937547i \(-0.386909\pi\)
0.347858 + 0.937547i \(0.386909\pi\)
\(510\) 0 0
\(511\) 0.259009 0.0114579
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.24045 −0.407183
\(516\) 0 0
\(517\) 5.78651 0.254491
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.207458 0.00908890 0.00454445 0.999990i \(-0.498553\pi\)
0.00454445 + 0.999990i \(0.498553\pi\)
\(522\) 0 0
\(523\) 26.1457 1.14327 0.571635 0.820508i \(-0.306309\pi\)
0.571635 + 0.820508i \(0.306309\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −34.2029 −1.48990
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −69.3670 −3.00462
\(534\) 0 0
\(535\) 2.28506 0.0987919
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.7552 1.02321
\(540\) 0 0
\(541\) −36.9994 −1.59073 −0.795365 0.606130i \(-0.792721\pi\)
−0.795365 + 0.606130i \(0.792721\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.39991 0.0599654
\(546\) 0 0
\(547\) 3.24644 0.138808 0.0694038 0.997589i \(-0.477890\pi\)
0.0694038 + 0.997589i \(0.477890\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.94242 −0.380960
\(552\) 0 0
\(553\) −1.34066 −0.0570105
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.8366 1.94216 0.971079 0.238760i \(-0.0767410\pi\)
0.971079 + 0.238760i \(0.0767410\pi\)
\(558\) 0 0
\(559\) 9.78336 0.413792
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.4399 1.57791 0.788953 0.614454i \(-0.210624\pi\)
0.788953 + 0.614454i \(0.210624\pi\)
\(564\) 0 0
\(565\) −9.59977 −0.403865
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.8277 0.663533 0.331766 0.943362i \(-0.392355\pi\)
0.331766 + 0.943362i \(0.392355\pi\)
\(570\) 0 0
\(571\) −33.8423 −1.41626 −0.708128 0.706084i \(-0.750460\pi\)
−0.708128 + 0.706084i \(0.750460\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) −37.3490 −1.55486 −0.777429 0.628970i \(-0.783477\pi\)
−0.777429 + 0.628970i \(0.783477\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.132241 0.00548627
\(582\) 0 0
\(583\) −29.6420 −1.22765
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.28941 0.300866 0.150433 0.988620i \(-0.451933\pi\)
0.150433 + 0.988620i \(0.451933\pi\)
\(588\) 0 0
\(589\) −13.2391 −0.545509
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.4510 0.963018 0.481509 0.876441i \(-0.340089\pi\)
0.481509 + 0.876441i \(0.340089\pi\)
\(594\) 0 0
\(595\) −0.411938 −0.0168878
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −13.6570 −0.558011 −0.279006 0.960289i \(-0.590005\pi\)
−0.279006 + 0.960289i \(0.590005\pi\)
\(600\) 0 0
\(601\) 28.5752 1.16561 0.582804 0.812613i \(-0.301956\pi\)
0.582804 + 0.812613i \(0.301956\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.559357 −0.0227411
\(606\) 0 0
\(607\) −32.1335 −1.30426 −0.652129 0.758108i \(-0.726124\pi\)
−0.652129 + 0.758108i \(0.726124\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.6781 −0.431988
\(612\) 0 0
\(613\) 21.0366 0.849660 0.424830 0.905273i \(-0.360334\pi\)
0.424830 + 0.905273i \(0.360334\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −38.7378 −1.55953 −0.779763 0.626075i \(-0.784660\pi\)
−0.779763 + 0.626075i \(0.784660\pi\)
\(618\) 0 0
\(619\) 27.4941 1.10508 0.552540 0.833486i \(-0.313659\pi\)
0.552540 + 0.833486i \(0.313659\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.201856 −0.00808718
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 28.1654 1.12303
\(630\) 0 0
\(631\) 6.22378 0.247765 0.123882 0.992297i \(-0.460465\pi\)
0.123882 + 0.992297i \(0.460465\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.73146 −0.267130
\(636\) 0 0
\(637\) −43.8364 −1.73686
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −21.6929 −0.856816 −0.428408 0.903585i \(-0.640925\pi\)
−0.428408 + 0.903585i \(0.640925\pi\)
\(642\) 0 0
\(643\) −23.2411 −0.916538 −0.458269 0.888813i \(-0.651530\pi\)
−0.458269 + 0.888813i \(0.651530\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.2830 −0.482893 −0.241446 0.970414i \(-0.577622\pi\)
−0.241446 + 0.970414i \(0.577622\pi\)
\(648\) 0 0
\(649\) −30.4627 −1.19577
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.12546 −0.161442 −0.0807209 0.996737i \(-0.525722\pi\)
−0.0807209 + 0.996737i \(0.525722\pi\)
\(654\) 0 0
\(655\) 4.22780 0.165194
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.05758 0.119107 0.0595533 0.998225i \(-0.481032\pi\)
0.0595533 + 0.998225i \(0.481032\pi\)
\(660\) 0 0
\(661\) −41.6105 −1.61846 −0.809230 0.587492i \(-0.800115\pi\)
−0.809230 + 0.587492i \(0.800115\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.159451 −0.00618326
\(666\) 0 0
\(667\) −6.38787 −0.247339
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.23314 0.240628
\(672\) 0 0
\(673\) −21.8495 −0.842237 −0.421119 0.907006i \(-0.638362\pi\)
−0.421119 + 0.907006i \(0.638362\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.8625 −0.532779 −0.266390 0.963865i \(-0.585831\pi\)
−0.266390 + 0.963865i \(0.585831\pi\)
\(678\) 0 0
\(679\) 0.0149626 0.000574212 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.3016 1.04467 0.522333 0.852742i \(-0.325062\pi\)
0.522333 + 0.852742i \(0.325062\pi\)
\(684\) 0 0
\(685\) 14.4496 0.552092
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 54.6995 2.08389
\(690\) 0 0
\(691\) 35.7403 1.35962 0.679812 0.733387i \(-0.262061\pi\)
0.679812 + 0.733387i \(0.262061\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.9870 −0.454694
\(696\) 0 0
\(697\) 39.9865 1.51460
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.25046 −0.0472292 −0.0236146 0.999721i \(-0.507517\pi\)
−0.0236146 + 0.999721i \(0.507517\pi\)
\(702\) 0 0
\(703\) 10.9022 0.411182
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.07073 −0.0402691
\(708\) 0 0
\(709\) −38.2680 −1.43718 −0.718592 0.695432i \(-0.755213\pi\)
−0.718592 + 0.695432i \(0.755213\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.45717 −0.354174
\(714\) 0 0
\(715\) 21.3309 0.797731
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.1228 −0.787749 −0.393874 0.919164i \(-0.628865\pi\)
−0.393874 + 0.919164i \(0.628865\pi\)
\(720\) 0 0
\(721\) −1.05250 −0.0391972
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.38787 0.237240
\(726\) 0 0
\(727\) −29.9281 −1.10997 −0.554986 0.831859i \(-0.687277\pi\)
−0.554986 + 0.831859i \(0.687277\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.63960 −0.208588
\(732\) 0 0
\(733\) −39.5600 −1.46118 −0.730591 0.682816i \(-0.760755\pi\)
−0.730591 + 0.682816i \(0.760755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −31.3327 −1.15416
\(738\) 0 0
\(739\) −21.1460 −0.777868 −0.388934 0.921266i \(-0.627157\pi\)
−0.388934 + 0.921266i \(0.627157\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 41.0959 1.50766 0.753831 0.657068i \(-0.228204\pi\)
0.753831 + 0.657068i \(0.228204\pi\)
\(744\) 0 0
\(745\) 4.19972 0.153866
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.260272 0.00951013
\(750\) 0 0
\(751\) −14.3735 −0.524498 −0.262249 0.965000i \(-0.584464\pi\)
−0.262249 + 0.965000i \(0.584464\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.55936 −0.275113
\(756\) 0 0
\(757\) −25.7135 −0.934574 −0.467287 0.884106i \(-0.654768\pi\)
−0.467287 + 0.884106i \(0.654768\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −29.4516 −1.06762 −0.533811 0.845604i \(-0.679241\pi\)
−0.533811 + 0.845604i \(0.679241\pi\)
\(762\) 0 0
\(763\) 0.159451 0.00577252
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 56.2140 2.02977
\(768\) 0 0
\(769\) 7.92378 0.285739 0.142869 0.989742i \(-0.454367\pi\)
0.142869 + 0.989742i \(0.454367\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.74082 0.242450 0.121225 0.992625i \(-0.461318\pi\)
0.121225 + 0.992625i \(0.461318\pi\)
\(774\) 0 0
\(775\) 9.45717 0.339711
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15.4778 0.554550
\(780\) 0 0
\(781\) −23.2163 −0.830745
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5.86203 −0.209225
\(786\) 0 0
\(787\) −36.8407 −1.31323 −0.656614 0.754226i \(-0.728012\pi\)
−0.656614 + 0.754226i \(0.728012\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.09343 −0.0388778
\(792\) 0 0
\(793\) −11.5022 −0.408457
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 38.4548 1.36214 0.681070 0.732219i \(-0.261515\pi\)
0.681070 + 0.732219i \(0.261515\pi\)
\(798\) 0 0
\(799\) 6.15535 0.217761
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.73129 0.272831
\(804\) 0 0
\(805\) −0.113901 −0.00401450
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.2100 0.780861 0.390430 0.920632i \(-0.372326\pi\)
0.390430 + 0.920632i \(0.372326\pi\)
\(810\) 0 0
\(811\) −18.7647 −0.658916 −0.329458 0.944170i \(-0.606866\pi\)
−0.329458 + 0.944170i \(0.606866\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.766767 −0.0268587
\(816\) 0 0
\(817\) −2.18295 −0.0763718
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −34.5882 −1.20714 −0.603568 0.797311i \(-0.706255\pi\)
−0.603568 + 0.797311i \(0.706255\pi\)
\(822\) 0 0
\(823\) −46.0642 −1.60570 −0.802849 0.596183i \(-0.796683\pi\)
−0.802849 + 0.596183i \(0.796683\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.24847 0.252054 0.126027 0.992027i \(-0.459777\pi\)
0.126027 + 0.992027i \(0.459777\pi\)
\(828\) 0 0
\(829\) −14.7688 −0.512940 −0.256470 0.966552i \(-0.582559\pi\)
−0.256470 + 0.966552i \(0.582559\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.2694 0.875533
\(834\) 0 0
\(835\) −14.0443 −0.486023
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.3292 0.460173 0.230087 0.973170i \(-0.426099\pi\)
0.230087 + 0.973170i \(0.426099\pi\)
\(840\) 0 0
\(841\) 11.8049 0.407066
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26.3627 −0.906905
\(846\) 0 0
\(847\) −0.0637116 −0.00218915
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.78778 0.266962
\(852\) 0 0
\(853\) 11.0307 0.377685 0.188843 0.982007i \(-0.439526\pi\)
0.188843 + 0.982007i \(0.439526\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.1979 −0.416672 −0.208336 0.978057i \(-0.566805\pi\)
−0.208336 + 0.978057i \(0.566805\pi\)
\(858\) 0 0
\(859\) −26.5718 −0.906617 −0.453309 0.891354i \(-0.649756\pi\)
−0.453309 + 0.891354i \(0.649756\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.0276 0.783869 0.391935 0.919993i \(-0.371806\pi\)
0.391935 + 0.919993i \(0.371806\pi\)
\(864\) 0 0
\(865\) −2.13859 −0.0727141
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −40.0180 −1.35752
\(870\) 0 0
\(871\) 57.8195 1.95914
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.113901 0.00385057
\(876\) 0 0
\(877\) −46.8332 −1.58144 −0.790722 0.612176i \(-0.790294\pi\)
−0.790722 + 0.612176i \(0.790294\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −17.0810 −0.575474 −0.287737 0.957710i \(-0.592903\pi\)
−0.287737 + 0.957710i \(0.592903\pi\)
\(882\) 0 0
\(883\) 7.21425 0.242779 0.121389 0.992605i \(-0.461265\pi\)
0.121389 + 0.992605i \(0.461265\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.6625 −0.559471 −0.279735 0.960077i \(-0.590247\pi\)
−0.279735 + 0.960077i \(0.590247\pi\)
\(888\) 0 0
\(889\) −0.766723 −0.0257151
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.38259 0.0797303
\(894\) 0 0
\(895\) 8.93118 0.298536
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 60.4112 2.01483
\(900\) 0 0
\(901\) −31.5314 −1.05046
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −25.4623 −0.846395
\(906\) 0 0
\(907\) 28.0024 0.929804 0.464902 0.885362i \(-0.346090\pi\)
0.464902 + 0.885362i \(0.346090\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.45915 0.0483439 0.0241720 0.999708i \(-0.492305\pi\)
0.0241720 + 0.999708i \(0.492305\pi\)
\(912\) 0 0
\(913\) 3.94733 0.130637
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.481553 0.0159023
\(918\) 0 0
\(919\) 26.8825 0.886773 0.443386 0.896331i \(-0.353777\pi\)
0.443386 + 0.896331i \(0.353777\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 42.8419 1.41016
\(924\) 0 0
\(925\) −7.78778 −0.256061
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 25.3843 0.832833 0.416416 0.909174i \(-0.363286\pi\)
0.416416 + 0.909174i \(0.363286\pi\)
\(930\) 0 0
\(931\) 9.78118 0.320565
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.2962 −0.402127
\(936\) 0 0
\(937\) 13.4201 0.438416 0.219208 0.975678i \(-0.429653\pi\)
0.219208 + 0.975678i \(0.429653\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −40.3482 −1.31531 −0.657657 0.753317i \(-0.728452\pi\)
−0.657657 + 0.753317i \(0.728452\pi\)
\(942\) 0 0
\(943\) 11.0563 0.360043
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.6974 1.32249 0.661244 0.750171i \(-0.270029\pi\)
0.661244 + 0.750171i \(0.270029\pi\)
\(948\) 0 0
\(949\) −14.2668 −0.463121
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −41.7552 −1.35258 −0.676292 0.736633i \(-0.736414\pi\)
−0.676292 + 0.736633i \(0.736414\pi\)
\(954\) 0 0
\(955\) −12.3813 −0.400649
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.64583 0.0531467
\(960\) 0 0
\(961\) 58.4380 1.88510
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.31471 −0.106704
\(966\) 0 0
\(967\) −34.4343 −1.10733 −0.553666 0.832739i \(-0.686772\pi\)
−0.553666 + 0.832739i \(0.686772\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −6.96276 −0.223446 −0.111723 0.993739i \(-0.535637\pi\)
−0.111723 + 0.993739i \(0.535637\pi\)
\(972\) 0 0
\(973\) −1.36534 −0.0437708
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.7569 1.17596 0.587978 0.808877i \(-0.299924\pi\)
0.587978 + 0.808877i \(0.299924\pi\)
\(978\) 0 0
\(979\) −6.02530 −0.192569
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −6.56822 −0.209494 −0.104747 0.994499i \(-0.533403\pi\)
−0.104747 + 0.994499i \(0.533403\pi\)
\(984\) 0 0
\(985\) −16.3201 −0.520003
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.55936 −0.0495847
\(990\) 0 0
\(991\) 50.0562 1.59009 0.795044 0.606551i \(-0.207448\pi\)
0.795044 + 0.606551i \(0.207448\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.80336 0.310787
\(996\) 0 0
\(997\) 14.7902 0.468410 0.234205 0.972187i \(-0.424751\pi\)
0.234205 + 0.972187i \(0.424751\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4140.2.a.t.1.3 5
3.2 odd 2 4140.2.a.u.1.3 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4140.2.a.t.1.3 5 1.1 even 1 trivial
4140.2.a.u.1.3 yes 5 3.2 odd 2