Properties

Label 4140.2.a.t.1.2
Level $4140$
Weight $2$
Character 4140.1
Self dual yes
Analytic conductor $33.058$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4140,2,Mod(1,4140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4140.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.14345904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 13x^{3} + 34x^{2} - 11x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.18817\) of defining polynomial
Character \(\chi\) \(=\) 4140.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -0.334658 q^{7} +O(q^{10})\) \(q-1.00000 q^{5} -0.334658 q^{7} +2.12122 q^{11} -2.25511 q^{13} +6.93838 q^{17} +4.12122 q^{19} -1.00000 q^{23} +1.00000 q^{25} -1.92046 q^{29} +0.440822 q^{31} +0.334658 q^{35} +6.04168 q^{37} -10.2493 q^{41} -5.50042 q^{43} -4.65664 q^{47} -6.88800 q^{49} -4.40296 q^{53} -2.12122 q^{55} -10.8322 q^{59} +13.7555 q^{61} +2.25511 q^{65} +6.87008 q^{67} +5.57997 q^{71} +6.25511 q^{73} -0.709884 q^{77} +16.7052 q^{79} +10.2770 q^{83} -6.93838 q^{85} +1.33068 q^{89} +0.754693 q^{91} -4.12122 q^{95} +18.4122 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 5 q^{5} + 4 q^{7} - 4 q^{11} + 2 q^{13} - 2 q^{17} + 6 q^{19} - 5 q^{23} + 5 q^{25} - 2 q^{29} + 8 q^{31} - 4 q^{35} + 8 q^{37} - 2 q^{41} + 18 q^{43} + 4 q^{47} + 13 q^{49} + 2 q^{53} + 4 q^{55} - 6 q^{59} + 10 q^{61} - 2 q^{65} + 16 q^{67} - 10 q^{71} + 18 q^{73} + 16 q^{77} + 14 q^{79} - 8 q^{83} + 2 q^{85} + 18 q^{89} + 36 q^{91} - 6 q^{95} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.334658 −0.126489 −0.0632445 0.997998i \(-0.520145\pi\)
−0.0632445 + 0.997998i \(0.520145\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.12122 0.639572 0.319786 0.947490i \(-0.396389\pi\)
0.319786 + 0.947490i \(0.396389\pi\)
\(12\) 0 0
\(13\) −2.25511 −0.625456 −0.312728 0.949843i \(-0.601243\pi\)
−0.312728 + 0.949843i \(0.601243\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.93838 1.68280 0.841402 0.540410i \(-0.181731\pi\)
0.841402 + 0.540410i \(0.181731\pi\)
\(18\) 0 0
\(19\) 4.12122 0.945473 0.472736 0.881204i \(-0.343266\pi\)
0.472736 + 0.881204i \(0.343266\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.92046 −0.356620 −0.178310 0.983974i \(-0.557063\pi\)
−0.178310 + 0.983974i \(0.557063\pi\)
\(30\) 0 0
\(31\) 0.440822 0.0791740 0.0395870 0.999216i \(-0.487396\pi\)
0.0395870 + 0.999216i \(0.487396\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.334658 0.0565676
\(36\) 0 0
\(37\) 6.04168 0.993246 0.496623 0.867966i \(-0.334573\pi\)
0.496623 + 0.867966i \(0.334573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10.2493 −1.60067 −0.800334 0.599554i \(-0.795345\pi\)
−0.800334 + 0.599554i \(0.795345\pi\)
\(42\) 0 0
\(43\) −5.50042 −0.838806 −0.419403 0.907800i \(-0.637761\pi\)
−0.419403 + 0.907800i \(0.637761\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.65664 −0.679241 −0.339621 0.940562i \(-0.610299\pi\)
−0.339621 + 0.940562i \(0.610299\pi\)
\(48\) 0 0
\(49\) −6.88800 −0.984001
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.40296 −0.604792 −0.302396 0.953182i \(-0.597787\pi\)
−0.302396 + 0.953182i \(0.597787\pi\)
\(54\) 0 0
\(55\) −2.12122 −0.286025
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.8322 −1.41023 −0.705117 0.709091i \(-0.749106\pi\)
−0.705117 + 0.709091i \(0.749106\pi\)
\(60\) 0 0
\(61\) 13.7555 1.76122 0.880608 0.473846i \(-0.157135\pi\)
0.880608 + 0.473846i \(0.157135\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.25511 0.279713
\(66\) 0 0
\(67\) 6.87008 0.839314 0.419657 0.907683i \(-0.362150\pi\)
0.419657 + 0.907683i \(0.362150\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.57997 0.662220 0.331110 0.943592i \(-0.392577\pi\)
0.331110 + 0.943592i \(0.392577\pi\)
\(72\) 0 0
\(73\) 6.25511 0.732106 0.366053 0.930594i \(-0.380709\pi\)
0.366053 + 0.930594i \(0.380709\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.709884 −0.0808988
\(78\) 0 0
\(79\) 16.7052 1.87948 0.939739 0.341893i \(-0.111068\pi\)
0.939739 + 0.341893i \(0.111068\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.2770 1.12805 0.564024 0.825758i \(-0.309252\pi\)
0.564024 + 0.825758i \(0.309252\pi\)
\(84\) 0 0
\(85\) −6.93838 −0.752573
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.33068 0.141052 0.0705261 0.997510i \(-0.477532\pi\)
0.0705261 + 0.997510i \(0.477532\pi\)
\(90\) 0 0
\(91\) 0.754693 0.0791133
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.12122 −0.422828
\(96\) 0 0
\(97\) 18.4122 1.86947 0.934737 0.355341i \(-0.115635\pi\)
0.934737 + 0.355341i \(0.115635\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.33179 −0.331526 −0.165763 0.986166i \(-0.553009\pi\)
−0.165763 + 0.986166i \(0.553009\pi\)
\(102\) 0 0
\(103\) 5.25798 0.518084 0.259042 0.965866i \(-0.416593\pi\)
0.259042 + 0.965866i \(0.416593\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.768640 0.0743073 0.0371536 0.999310i \(-0.488171\pi\)
0.0371536 + 0.999310i \(0.488171\pi\)
\(108\) 0 0
\(109\) 4.12122 0.394741 0.197371 0.980329i \(-0.436760\pi\)
0.197371 + 0.980329i \(0.436760\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.5979 0.996965 0.498483 0.866900i \(-0.333891\pi\)
0.498483 + 0.866900i \(0.333891\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.32199 −0.212856
\(120\) 0 0
\(121\) −6.50042 −0.590947
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −6.29096 −0.558232 −0.279116 0.960257i \(-0.590041\pi\)
−0.279116 + 0.960257i \(0.590041\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.66932 −0.407960 −0.203980 0.978975i \(-0.565388\pi\)
−0.203980 + 0.978975i \(0.565388\pi\)
\(132\) 0 0
\(133\) −1.37920 −0.119592
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.2172 1.38553 0.692766 0.721162i \(-0.256392\pi\)
0.692766 + 0.721162i \(0.256392\pi\)
\(138\) 0 0
\(139\) 11.8880 1.00833 0.504164 0.863608i \(-0.331801\pi\)
0.504164 + 0.863608i \(0.331801\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.78360 −0.400024
\(144\) 0 0
\(145\) 1.92046 0.159485
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.3637 1.01287 0.506435 0.862278i \(-0.330963\pi\)
0.506435 + 0.862278i \(0.330963\pi\)
\(150\) 0 0
\(151\) 0.499578 0.0406551 0.0203276 0.999793i \(-0.493529\pi\)
0.0203276 + 0.999793i \(0.493529\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.440822 −0.0354077
\(156\) 0 0
\(157\) 0.0668715 0.00533692 0.00266846 0.999996i \(-0.499151\pi\)
0.00266846 + 0.999996i \(0.499151\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.334658 0.0263748
\(162\) 0 0
\(163\) 21.8768 1.71352 0.856760 0.515715i \(-0.172474\pi\)
0.856760 + 0.515715i \(0.172474\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.4500 0.808649 0.404324 0.914616i \(-0.367507\pi\)
0.404324 + 0.914616i \(0.367507\pi\)
\(168\) 0 0
\(169\) −7.91446 −0.608805
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.722557 0.0549350 0.0274675 0.999623i \(-0.491256\pi\)
0.0274675 + 0.999623i \(0.491256\pi\)
\(174\) 0 0
\(175\) −0.334658 −0.0252978
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.6546 1.54380 0.771899 0.635745i \(-0.219307\pi\)
0.771899 + 0.635745i \(0.219307\pi\)
\(180\) 0 0
\(181\) −9.62858 −0.715687 −0.357844 0.933782i \(-0.616488\pi\)
−0.357844 + 0.933782i \(0.616488\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.04168 −0.444193
\(186\) 0 0
\(187\) 14.7178 1.07627
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.2658 −1.46638 −0.733190 0.680024i \(-0.761969\pi\)
−0.733190 + 0.680024i \(0.761969\pi\)
\(192\) 0 0
\(193\) 7.36653 0.530254 0.265127 0.964213i \(-0.414586\pi\)
0.265127 + 0.964213i \(0.414586\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.17955 −0.0840391 −0.0420196 0.999117i \(-0.513379\pi\)
−0.0420196 + 0.999117i \(0.513379\pi\)
\(198\) 0 0
\(199\) 17.4140 1.23445 0.617224 0.786787i \(-0.288257\pi\)
0.617224 + 0.786787i \(0.288257\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.642697 0.0451085
\(204\) 0 0
\(205\) 10.2493 0.715841
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.74202 0.604698
\(210\) 0 0
\(211\) 16.4515 1.13257 0.566283 0.824211i \(-0.308381\pi\)
0.566283 + 0.824211i \(0.308381\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.50042 0.375126
\(216\) 0 0
\(217\) −0.147525 −0.0100146
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −15.6468 −1.05252
\(222\) 0 0
\(223\) −5.87676 −0.393537 −0.196768 0.980450i \(-0.563045\pi\)
−0.196768 + 0.980450i \(0.563045\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.0913 −0.669783 −0.334892 0.942257i \(-0.608700\pi\)
−0.334892 + 0.942257i \(0.608700\pi\)
\(228\) 0 0
\(229\) −25.4578 −1.68230 −0.841150 0.540801i \(-0.818121\pi\)
−0.841150 + 0.540801i \(0.818121\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.828404 0.0542706 0.0271353 0.999632i \(-0.491362\pi\)
0.0271353 + 0.999632i \(0.491362\pi\)
\(234\) 0 0
\(235\) 4.65664 0.303766
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.59247 −0.555801 −0.277900 0.960610i \(-0.589639\pi\)
−0.277900 + 0.960610i \(0.589639\pi\)
\(240\) 0 0
\(241\) −15.1221 −0.974098 −0.487049 0.873375i \(-0.661927\pi\)
−0.487049 + 0.873375i \(0.661927\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.88800 0.440058
\(246\) 0 0
\(247\) −9.29382 −0.591352
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.8014 −1.24985 −0.624925 0.780685i \(-0.714871\pi\)
−0.624925 + 0.780685i \(0.714871\pi\)
\(252\) 0 0
\(253\) −2.12122 −0.133360
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.4705 1.71356 0.856781 0.515680i \(-0.172461\pi\)
0.856781 + 0.515680i \(0.172461\pi\)
\(258\) 0 0
\(259\) −2.02190 −0.125635
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.9587 −1.47736 −0.738678 0.674059i \(-0.764550\pi\)
−0.738678 + 0.674059i \(0.764550\pi\)
\(264\) 0 0
\(265\) 4.40296 0.270471
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.1000 0.920663 0.460332 0.887747i \(-0.347730\pi\)
0.460332 + 0.887747i \(0.347730\pi\)
\(270\) 0 0
\(271\) 24.1837 1.46905 0.734527 0.678579i \(-0.237404\pi\)
0.734527 + 0.678579i \(0.237404\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.12122 0.127914
\(276\) 0 0
\(277\) −18.9001 −1.13560 −0.567798 0.823168i \(-0.692205\pi\)
−0.567798 + 0.823168i \(0.692205\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.7914 0.942035 0.471017 0.882124i \(-0.343887\pi\)
0.471017 + 0.882124i \(0.343887\pi\)
\(282\) 0 0
\(283\) 30.2415 1.79767 0.898836 0.438285i \(-0.144414\pi\)
0.898836 + 0.438285i \(0.144414\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.43001 0.202467
\(288\) 0 0
\(289\) 31.1411 1.83183
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −32.1063 −1.87567 −0.937834 0.347085i \(-0.887172\pi\)
−0.937834 + 0.347085i \(0.887172\pi\)
\(294\) 0 0
\(295\) 10.8322 0.630676
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.25511 0.130417
\(300\) 0 0
\(301\) 1.84076 0.106100
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13.7555 −0.787640
\(306\) 0 0
\(307\) −24.4102 −1.39316 −0.696581 0.717478i \(-0.745296\pi\)
−0.696581 + 0.717478i \(0.745296\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.351141 0.0199114 0.00995569 0.999950i \(-0.496831\pi\)
0.00995569 + 0.999950i \(0.496831\pi\)
\(312\) 0 0
\(313\) 34.6236 1.95704 0.978521 0.206149i \(-0.0660931\pi\)
0.978521 + 0.206149i \(0.0660931\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.3385 −0.692997 −0.346499 0.938050i \(-0.612629\pi\)
−0.346499 + 0.938050i \(0.612629\pi\)
\(318\) 0 0
\(319\) −4.07371 −0.228084
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 28.5946 1.59105
\(324\) 0 0
\(325\) −2.25511 −0.125091
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.55838 0.0859165
\(330\) 0 0
\(331\) 16.3118 0.896580 0.448290 0.893888i \(-0.352033\pi\)
0.448290 + 0.893888i \(0.352033\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.87008 −0.375353
\(336\) 0 0
\(337\) 20.9476 1.14109 0.570544 0.821267i \(-0.306732\pi\)
0.570544 + 0.821267i \(0.306732\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.935081 0.0506375
\(342\) 0 0
\(343\) 4.64774 0.250954
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.752671 −0.0404055 −0.0202027 0.999796i \(-0.506431\pi\)
−0.0202027 + 0.999796i \(0.506431\pi\)
\(348\) 0 0
\(349\) −20.4204 −1.09308 −0.546539 0.837433i \(-0.684055\pi\)
−0.546539 + 0.837433i \(0.684055\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.24261 0.0661373 0.0330686 0.999453i \(-0.489472\pi\)
0.0330686 + 0.999453i \(0.489472\pi\)
\(354\) 0 0
\(355\) −5.57997 −0.296154
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.6394 0.667082 0.333541 0.942736i \(-0.391756\pi\)
0.333541 + 0.942736i \(0.391756\pi\)
\(360\) 0 0
\(361\) −2.01554 −0.106081
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.25511 −0.327408
\(366\) 0 0
\(367\) 25.7622 1.34478 0.672389 0.740198i \(-0.265268\pi\)
0.672389 + 0.740198i \(0.265268\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.47349 0.0764996
\(372\) 0 0
\(373\) −18.7557 −0.971133 −0.485567 0.874200i \(-0.661387\pi\)
−0.485567 + 0.874200i \(0.661387\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.33085 0.223050
\(378\) 0 0
\(379\) 6.56347 0.337143 0.168571 0.985689i \(-0.446085\pi\)
0.168571 + 0.985689i \(0.446085\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 33.0101 1.68674 0.843368 0.537337i \(-0.180570\pi\)
0.843368 + 0.537337i \(0.180570\pi\)
\(384\) 0 0
\(385\) 0.709884 0.0361790
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −22.5819 −1.14495 −0.572474 0.819923i \(-0.694016\pi\)
−0.572474 + 0.819923i \(0.694016\pi\)
\(390\) 0 0
\(391\) −6.93838 −0.350889
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.7052 −0.840528
\(396\) 0 0
\(397\) −17.2549 −0.866001 −0.433001 0.901394i \(-0.642545\pi\)
−0.433001 + 0.901394i \(0.642545\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.96416 −0.397711 −0.198855 0.980029i \(-0.563722\pi\)
−0.198855 + 0.980029i \(0.563722\pi\)
\(402\) 0 0
\(403\) −0.994105 −0.0495199
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.8157 0.635252
\(408\) 0 0
\(409\) −3.42528 −0.169369 −0.0846847 0.996408i \(-0.526988\pi\)
−0.0846847 + 0.996408i \(0.526988\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.62509 0.178379
\(414\) 0 0
\(415\) −10.2770 −0.504479
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 33.3141 1.62750 0.813751 0.581214i \(-0.197422\pi\)
0.813751 + 0.581214i \(0.197422\pi\)
\(420\) 0 0
\(421\) 6.42485 0.313128 0.156564 0.987668i \(-0.449958\pi\)
0.156564 + 0.987668i \(0.449958\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.93838 0.336561
\(426\) 0 0
\(427\) −4.60340 −0.222774
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.3733 −1.07768 −0.538842 0.842407i \(-0.681138\pi\)
−0.538842 + 0.842407i \(0.681138\pi\)
\(432\) 0 0
\(433\) −28.5150 −1.37035 −0.685173 0.728381i \(-0.740273\pi\)
−0.685173 + 0.728381i \(0.740273\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.12122 −0.197145
\(438\) 0 0
\(439\) 17.4947 0.834976 0.417488 0.908682i \(-0.362911\pi\)
0.417488 + 0.908682i \(0.362911\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.90397 −0.185483 −0.0927417 0.995690i \(-0.529563\pi\)
−0.0927417 + 0.995690i \(0.529563\pi\)
\(444\) 0 0
\(445\) −1.33068 −0.0630804
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −14.6615 −0.691917 −0.345959 0.938250i \(-0.612446\pi\)
−0.345959 + 0.938250i \(0.612446\pi\)
\(450\) 0 0
\(451\) −21.7410 −1.02374
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.754693 −0.0353805
\(456\) 0 0
\(457\) −0.435257 −0.0203605 −0.0101802 0.999948i \(-0.503241\pi\)
−0.0101802 + 0.999948i \(0.503241\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −32.0970 −1.49491 −0.747454 0.664314i \(-0.768724\pi\)
−0.747454 + 0.664314i \(0.768724\pi\)
\(462\) 0 0
\(463\) −17.0357 −0.791715 −0.395858 0.918312i \(-0.629553\pi\)
−0.395858 + 0.918312i \(0.629553\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.1352 0.839196 0.419598 0.907710i \(-0.362171\pi\)
0.419598 + 0.907710i \(0.362171\pi\)
\(468\) 0 0
\(469\) −2.29913 −0.106164
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.6676 −0.536477
\(474\) 0 0
\(475\) 4.12122 0.189095
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −22.2046 −1.01455 −0.507276 0.861783i \(-0.669348\pi\)
−0.507276 + 0.861783i \(0.669348\pi\)
\(480\) 0 0
\(481\) −13.6247 −0.621232
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −18.4122 −0.836054
\(486\) 0 0
\(487\) 7.98733 0.361940 0.180970 0.983489i \(-0.442076\pi\)
0.180970 + 0.983489i \(0.442076\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13.3122 −0.600770 −0.300385 0.953818i \(-0.597115\pi\)
−0.300385 + 0.953818i \(0.597115\pi\)
\(492\) 0 0
\(493\) −13.3249 −0.600121
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.86738 −0.0837635
\(498\) 0 0
\(499\) −14.9732 −0.670293 −0.335147 0.942166i \(-0.608786\pi\)
−0.335147 + 0.942166i \(0.608786\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 42.2038 1.88178 0.940888 0.338718i \(-0.109993\pi\)
0.940888 + 0.338718i \(0.109993\pi\)
\(504\) 0 0
\(505\) 3.33179 0.148263
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.5966 0.558335 0.279168 0.960242i \(-0.409942\pi\)
0.279168 + 0.960242i \(0.409942\pi\)
\(510\) 0 0
\(511\) −2.09333 −0.0926033
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.25798 −0.231694
\(516\) 0 0
\(517\) −9.87777 −0.434424
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39.6602 −1.73754 −0.868772 0.495212i \(-0.835090\pi\)
−0.868772 + 0.495212i \(0.835090\pi\)
\(522\) 0 0
\(523\) −7.62063 −0.333227 −0.166614 0.986022i \(-0.553283\pi\)
−0.166614 + 0.986022i \(0.553283\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.05859 0.133234
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 23.1133 1.00115
\(534\) 0 0
\(535\) −0.768640 −0.0332312
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14.6110 −0.629339
\(540\) 0 0
\(541\) 16.1020 0.692277 0.346139 0.938183i \(-0.387493\pi\)
0.346139 + 0.938183i \(0.387493\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.12122 −0.176534
\(546\) 0 0
\(547\) 30.8139 1.31751 0.658753 0.752359i \(-0.271084\pi\)
0.658753 + 0.752359i \(0.271084\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.91462 −0.337174
\(552\) 0 0
\(553\) −5.59052 −0.237733
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.54954 0.404627 0.202313 0.979321i \(-0.435154\pi\)
0.202313 + 0.979321i \(0.435154\pi\)
\(558\) 0 0
\(559\) 12.4041 0.524637
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −31.6843 −1.33533 −0.667667 0.744460i \(-0.732707\pi\)
−0.667667 + 0.744460i \(0.732707\pi\)
\(564\) 0 0
\(565\) −10.5979 −0.445856
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.3500 1.69156 0.845780 0.533533i \(-0.179136\pi\)
0.845780 + 0.533533i \(0.179136\pi\)
\(570\) 0 0
\(571\) 19.4732 0.814928 0.407464 0.913221i \(-0.366413\pi\)
0.407464 + 0.913221i \(0.366413\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) 5.17381 0.215389 0.107694 0.994184i \(-0.465653\pi\)
0.107694 + 0.994184i \(0.465653\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.43929 −0.142686
\(582\) 0 0
\(583\) −9.33964 −0.386808
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.1892 0.833298 0.416649 0.909068i \(-0.363204\pi\)
0.416649 + 0.909068i \(0.363204\pi\)
\(588\) 0 0
\(589\) 1.81673 0.0748569
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −40.1978 −1.65073 −0.825364 0.564602i \(-0.809030\pi\)
−0.825364 + 0.564602i \(0.809030\pi\)
\(594\) 0 0
\(595\) 2.32199 0.0951921
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.1599 −0.455982 −0.227991 0.973663i \(-0.573216\pi\)
−0.227991 + 0.973663i \(0.573216\pi\)
\(600\) 0 0
\(601\) −3.60669 −0.147120 −0.0735599 0.997291i \(-0.523436\pi\)
−0.0735599 + 0.997291i \(0.523436\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.50042 0.264280
\(606\) 0 0
\(607\) −30.3968 −1.23377 −0.616884 0.787054i \(-0.711605\pi\)
−0.616884 + 0.787054i \(0.711605\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.5013 0.424836
\(612\) 0 0
\(613\) −27.2908 −1.10226 −0.551132 0.834418i \(-0.685804\pi\)
−0.551132 + 0.834418i \(0.685804\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.7815 0.595081 0.297541 0.954709i \(-0.403834\pi\)
0.297541 + 0.954709i \(0.403834\pi\)
\(618\) 0 0
\(619\) −25.3266 −1.01796 −0.508982 0.860777i \(-0.669978\pi\)
−0.508982 + 0.860777i \(0.669978\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.445324 −0.0178415
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 41.9194 1.67144
\(630\) 0 0
\(631\) −4.76519 −0.189699 −0.0948497 0.995492i \(-0.530237\pi\)
−0.0948497 + 0.995492i \(0.530237\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.29096 0.249649
\(636\) 0 0
\(637\) 15.5332 0.615449
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.8964 −0.509377 −0.254688 0.967023i \(-0.581973\pi\)
−0.254688 + 0.967023i \(0.581973\pi\)
\(642\) 0 0
\(643\) −12.0474 −0.475103 −0.237552 0.971375i \(-0.576345\pi\)
−0.237552 + 0.971375i \(0.576345\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.9728 1.33561 0.667804 0.744337i \(-0.267234\pi\)
0.667804 + 0.744337i \(0.267234\pi\)
\(648\) 0 0
\(649\) −22.9775 −0.901947
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.4722 0.801140 0.400570 0.916266i \(-0.368812\pi\)
0.400570 + 0.916266i \(0.368812\pi\)
\(654\) 0 0
\(655\) 4.66932 0.182445
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.08538 0.159144 0.0795718 0.996829i \(-0.474645\pi\)
0.0795718 + 0.996829i \(0.474645\pi\)
\(660\) 0 0
\(661\) 23.5770 0.917040 0.458520 0.888684i \(-0.348380\pi\)
0.458520 + 0.888684i \(0.348380\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.37920 0.0534831
\(666\) 0 0
\(667\) 1.92046 0.0743604
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 29.1785 1.12642
\(672\) 0 0
\(673\) 14.3385 0.552707 0.276354 0.961056i \(-0.410874\pi\)
0.276354 + 0.961056i \(0.410874\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.2265 0.854233 0.427116 0.904197i \(-0.359529\pi\)
0.427116 + 0.904197i \(0.359529\pi\)
\(678\) 0 0
\(679\) −6.16179 −0.236468
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.17176 0.312684 0.156342 0.987703i \(-0.450030\pi\)
0.156342 + 0.987703i \(0.450030\pi\)
\(684\) 0 0
\(685\) −16.2172 −0.619629
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.92917 0.378271
\(690\) 0 0
\(691\) 3.55081 0.135079 0.0675396 0.997717i \(-0.478485\pi\)
0.0675396 + 0.997717i \(0.478485\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.8880 −0.450938
\(696\) 0 0
\(697\) −71.1134 −2.69361
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −40.2484 −1.52016 −0.760080 0.649830i \(-0.774840\pi\)
−0.760080 + 0.649830i \(0.774840\pi\)
\(702\) 0 0
\(703\) 24.8991 0.939087
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.11501 0.0419343
\(708\) 0 0
\(709\) 1.81099 0.0680133 0.0340067 0.999422i \(-0.489173\pi\)
0.0340067 + 0.999422i \(0.489173\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.440822 −0.0165089
\(714\) 0 0
\(715\) 4.78360 0.178896
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −51.6544 −1.92638 −0.963191 0.268817i \(-0.913367\pi\)
−0.963191 + 0.268817i \(0.913367\pi\)
\(720\) 0 0
\(721\) −1.75963 −0.0655319
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.92046 −0.0713239
\(726\) 0 0
\(727\) 40.1715 1.48988 0.744940 0.667132i \(-0.232478\pi\)
0.744940 + 0.667132i \(0.232478\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −38.1640 −1.41155
\(732\) 0 0
\(733\) −25.2890 −0.934071 −0.467035 0.884239i \(-0.654678\pi\)
−0.467035 + 0.884239i \(0.654678\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.5730 0.536802
\(738\) 0 0
\(739\) 8.09730 0.297864 0.148932 0.988847i \(-0.452416\pi\)
0.148932 + 0.988847i \(0.452416\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.97954 0.256055 0.128027 0.991771i \(-0.459135\pi\)
0.128027 + 0.991771i \(0.459135\pi\)
\(744\) 0 0
\(745\) −12.3637 −0.452970
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.257232 −0.00939905
\(750\) 0 0
\(751\) −5.03076 −0.183575 −0.0917875 0.995779i \(-0.529258\pi\)
−0.0917875 + 0.995779i \(0.529258\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.499578 −0.0181815
\(756\) 0 0
\(757\) −3.84977 −0.139922 −0.0699612 0.997550i \(-0.522288\pi\)
−0.0699612 + 0.997550i \(0.522288\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 41.4084 1.50105 0.750527 0.660840i \(-0.229800\pi\)
0.750527 + 0.660840i \(0.229800\pi\)
\(762\) 0 0
\(763\) −1.37920 −0.0499304
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.4279 0.882040
\(768\) 0 0
\(769\) −20.2299 −0.729510 −0.364755 0.931104i \(-0.618847\pi\)
−0.364755 + 0.931104i \(0.618847\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27.6528 0.994601 0.497300 0.867578i \(-0.334325\pi\)
0.497300 + 0.867578i \(0.334325\pi\)
\(774\) 0 0
\(775\) 0.440822 0.0158348
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −42.2396 −1.51339
\(780\) 0 0
\(781\) 11.8363 0.423538
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.0668715 −0.00238674
\(786\) 0 0
\(787\) −3.56252 −0.126990 −0.0634951 0.997982i \(-0.520225\pi\)
−0.0634951 + 0.997982i \(0.520225\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.54667 −0.126105
\(792\) 0 0
\(793\) −31.0203 −1.10156
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.20920 0.255363 0.127681 0.991815i \(-0.459247\pi\)
0.127681 + 0.991815i \(0.459247\pi\)
\(798\) 0 0
\(799\) −32.3096 −1.14303
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.2685 0.468234
\(804\) 0 0
\(805\) −0.334658 −0.0117952
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −30.2452 −1.06337 −0.531683 0.846943i \(-0.678440\pi\)
−0.531683 + 0.846943i \(0.678440\pi\)
\(810\) 0 0
\(811\) 3.32739 0.116840 0.0584202 0.998292i \(-0.481394\pi\)
0.0584202 + 0.998292i \(0.481394\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −21.8768 −0.766309
\(816\) 0 0
\(817\) −22.6685 −0.793069
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.50531 −0.0874359 −0.0437179 0.999044i \(-0.513920\pi\)
−0.0437179 + 0.999044i \(0.513920\pi\)
\(822\) 0 0
\(823\) 12.8639 0.448408 0.224204 0.974542i \(-0.428022\pi\)
0.224204 + 0.974542i \(0.428022\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 52.5222 1.82637 0.913187 0.407541i \(-0.133613\pi\)
0.913187 + 0.407541i \(0.133613\pi\)
\(828\) 0 0
\(829\) −29.6030 −1.02815 −0.514077 0.857744i \(-0.671865\pi\)
−0.514077 + 0.857744i \(0.671865\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −47.7916 −1.65588
\(834\) 0 0
\(835\) −10.4500 −0.361639
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 51.6360 1.78267 0.891336 0.453343i \(-0.149769\pi\)
0.891336 + 0.453343i \(0.149769\pi\)
\(840\) 0 0
\(841\) −25.3118 −0.872822
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.91446 0.272266
\(846\) 0 0
\(847\) 2.17542 0.0747483
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.04168 −0.207106
\(852\) 0 0
\(853\) −19.3687 −0.663173 −0.331587 0.943425i \(-0.607584\pi\)
−0.331587 + 0.943425i \(0.607584\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.9929 −0.853741 −0.426870 0.904313i \(-0.640384\pi\)
−0.426870 + 0.904313i \(0.640384\pi\)
\(858\) 0 0
\(859\) 33.4904 1.14268 0.571339 0.820715i \(-0.306424\pi\)
0.571339 + 0.820715i \(0.306424\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.4269 0.423016 0.211508 0.977376i \(-0.432163\pi\)
0.211508 + 0.977376i \(0.432163\pi\)
\(864\) 0 0
\(865\) −0.722557 −0.0245677
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 35.4353 1.20206
\(870\) 0 0
\(871\) −15.4928 −0.524954
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.334658 0.0113135
\(876\) 0 0
\(877\) −49.8039 −1.68176 −0.840879 0.541223i \(-0.817962\pi\)
−0.840879 + 0.541223i \(0.817962\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.6372 −0.493139 −0.246570 0.969125i \(-0.579303\pi\)
−0.246570 + 0.969125i \(0.579303\pi\)
\(882\) 0 0
\(883\) −19.1495 −0.644431 −0.322216 0.946666i \(-0.604428\pi\)
−0.322216 + 0.946666i \(0.604428\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.38614 0.248002 0.124001 0.992282i \(-0.460427\pi\)
0.124001 + 0.992282i \(0.460427\pi\)
\(888\) 0 0
\(889\) 2.10532 0.0706102
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −19.1911 −0.642204
\(894\) 0 0
\(895\) −20.6546 −0.690408
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.846580 −0.0282350
\(900\) 0 0
\(901\) −30.5494 −1.01775
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.62858 0.320065
\(906\) 0 0
\(907\) −34.0630 −1.13104 −0.565521 0.824734i \(-0.691325\pi\)
−0.565521 + 0.824734i \(0.691325\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −13.8330 −0.458306 −0.229153 0.973390i \(-0.573596\pi\)
−0.229153 + 0.973390i \(0.573596\pi\)
\(912\) 0 0
\(913\) 21.7998 0.721468
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.56263 0.0516024
\(918\) 0 0
\(919\) 26.5797 0.876783 0.438392 0.898784i \(-0.355548\pi\)
0.438392 + 0.898784i \(0.355548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12.5835 −0.414190
\(924\) 0 0
\(925\) 6.04168 0.198649
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 33.2511 1.09093 0.545467 0.838132i \(-0.316352\pi\)
0.545467 + 0.838132i \(0.316352\pi\)
\(930\) 0 0
\(931\) −28.3870 −0.930346
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −14.7178 −0.481325
\(936\) 0 0
\(937\) −1.26964 −0.0414775 −0.0207387 0.999785i \(-0.506602\pi\)
−0.0207387 + 0.999785i \(0.506602\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −39.8534 −1.29918 −0.649592 0.760283i \(-0.725060\pi\)
−0.649592 + 0.760283i \(0.725060\pi\)
\(942\) 0 0
\(943\) 10.2493 0.333763
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.8798 −0.678503 −0.339251 0.940696i \(-0.610174\pi\)
−0.339251 + 0.940696i \(0.610174\pi\)
\(948\) 0 0
\(949\) −14.1060 −0.457900
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.38902 −0.109781 −0.0548906 0.998492i \(-0.517481\pi\)
−0.0548906 + 0.998492i \(0.517481\pi\)
\(954\) 0 0
\(955\) 20.2658 0.655785
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.42724 −0.175255
\(960\) 0 0
\(961\) −30.8057 −0.993731
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.36653 −0.237137
\(966\) 0 0
\(967\) 61.7169 1.98468 0.992340 0.123536i \(-0.0394235\pi\)
0.992340 + 0.123536i \(0.0394235\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −46.2441 −1.48404 −0.742022 0.670375i \(-0.766133\pi\)
−0.742022 + 0.670375i \(0.766133\pi\)
\(972\) 0 0
\(973\) −3.97842 −0.127542
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13.9871 0.447486 0.223743 0.974648i \(-0.428172\pi\)
0.223743 + 0.974648i \(0.428172\pi\)
\(978\) 0 0
\(979\) 2.82267 0.0902130
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −32.2324 −1.02805 −0.514026 0.857774i \(-0.671847\pi\)
−0.514026 + 0.857774i \(0.671847\pi\)
\(984\) 0 0
\(985\) 1.17955 0.0375834
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.50042 0.174903
\(990\) 0 0
\(991\) −34.1460 −1.08468 −0.542342 0.840158i \(-0.682462\pi\)
−0.542342 + 0.840158i \(0.682462\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.4140 −0.552062
\(996\) 0 0
\(997\) 32.4286 1.02702 0.513511 0.858083i \(-0.328344\pi\)
0.513511 + 0.858083i \(0.328344\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4140.2.a.t.1.2 5
3.2 odd 2 4140.2.a.u.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4140.2.a.t.1.2 5 1.1 even 1 trivial
4140.2.a.u.1.2 yes 5 3.2 odd 2