Defining parameters
Level: | \( N \) | \(=\) | \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4140.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 21 \) | ||
Sturm bound: | \(1728\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4140))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 888 | 38 | 850 |
Cusp forms | 841 | 38 | 803 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(52\) | \(0\) | \(52\) | \(49\) | \(0\) | \(49\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(58\) | \(0\) | \(58\) | \(54\) | \(0\) | \(54\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(60\) | \(0\) | \(60\) | \(56\) | \(0\) | \(56\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(54\) | \(0\) | \(54\) | \(50\) | \(0\) | \(50\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(59\) | \(0\) | \(59\) | \(55\) | \(0\) | \(55\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(53\) | \(0\) | \(53\) | \(49\) | \(0\) | \(49\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(53\) | \(0\) | \(53\) | \(49\) | \(0\) | \(49\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(59\) | \(0\) | \(59\) | \(55\) | \(0\) | \(55\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(56\) | \(5\) | \(51\) | \(54\) | \(5\) | \(49\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(56\) | \(3\) | \(53\) | \(54\) | \(3\) | \(51\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(54\) | \(3\) | \(51\) | \(52\) | \(3\) | \(49\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(54\) | \(5\) | \(49\) | \(52\) | \(5\) | \(47\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(55\) | \(5\) | \(50\) | \(53\) | \(5\) | \(48\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(55\) | \(6\) | \(49\) | \(53\) | \(6\) | \(47\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(55\) | \(6\) | \(49\) | \(53\) | \(6\) | \(47\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(55\) | \(5\) | \(50\) | \(53\) | \(5\) | \(48\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(432\) | \(16\) | \(416\) | \(409\) | \(16\) | \(393\) | \(23\) | \(0\) | \(23\) | ||||||
Minus space | \(-\) | \(456\) | \(22\) | \(434\) | \(432\) | \(22\) | \(410\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4140))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4140))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4140)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(276))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(345))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(414))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(460))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(690))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(828))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1035))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1380))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2070))\)\(^{\oplus 2}\)