Properties

Label 414.4.p
Level $414$
Weight $4$
Character orbit 414.p
Rep. character $\chi_{414}(5,\cdot)$
Character field $\Q(\zeta_{66})$
Dimension $1440$
Sturm bound $288$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.p (of order \(66\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 207 \)
Character field: \(\Q(\zeta_{66})\)
Sturm bound: \(288\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(414, [\chi])\).

Total New Old
Modular forms 4400 1440 2960
Cusp forms 4240 1440 2800
Eisenstein series 160 0 160

Trace form

\( 1440 q + 8 q^{3} - 288 q^{4} - 16 q^{6} + 36 q^{9} - 32 q^{12} - 1496 q^{15} + 1152 q^{16} + 40 q^{18} - 1320 q^{21} - 408 q^{23} - 32 q^{24} + 2088 q^{25} - 436 q^{27} + 636 q^{29} + 1496 q^{30} + 72 q^{31}+ \cdots + 4620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(414, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(414, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)