Properties

Label 414.4.m
Level $414$
Weight $4$
Character orbit 414.m
Rep. character $\chi_{414}(13,\cdot)$
Character field $\Q(\zeta_{33})$
Dimension $1440$
Sturm bound $288$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.m (of order \(33\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 207 \)
Character field: \(\Q(\zeta_{33})\)
Sturm bound: \(288\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(414, [\chi])\).

Total New Old
Modular forms 4400 1440 2960
Cusp forms 4240 1440 2800
Eisenstein series 160 0 160

Trace form

\( 1440 q - 8 q^{3} + 288 q^{4} - 36 q^{5} + 16 q^{6} + 92 q^{9} - 44 q^{11} - 32 q^{12} - 200 q^{14} + 1404 q^{15} + 1152 q^{16} + 272 q^{17} - 40 q^{18} - 144 q^{20} + 1264 q^{21} + 264 q^{23} - 32 q^{24}+ \cdots - 6540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(414, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(414, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)