Properties

Label 414.4.j
Level $414$
Weight $4$
Character orbit 414.j
Rep. character $\chi_{414}(17,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $240$
Sturm bound $288$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.j (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(288\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(414, [\chi])\).

Total New Old
Modular forms 2240 240 2000
Cusp forms 2080 240 1840
Eisenstein series 160 0 160

Trace form

\( 240 q + 96 q^{4} + 192 q^{13} - 384 q^{16} - 360 q^{25} + 432 q^{31} + 2376 q^{37} - 3432 q^{43} + 816 q^{46} - 216 q^{49} - 768 q^{52} - 4536 q^{55} - 2064 q^{58} + 2112 q^{61} + 1536 q^{64} + 5808 q^{67}+ \cdots - 3744 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(414, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(414, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)