Properties

Label 414.4.i
Level $414$
Weight $4$
Character orbit 414.i
Rep. character $\chi_{414}(55,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $300$
Sturm bound $288$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.i (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Sturm bound: \(288\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(414, [\chi])\).

Total New Old
Modular forms 2240 300 1940
Cusp forms 2080 300 1780
Eisenstein series 160 0 160

Trace form

\( 300 q - 120 q^{4} + 22 q^{5} - 8 q^{7} + 20 q^{10} - 10 q^{11} - 80 q^{13} + 24 q^{14} - 480 q^{16} + 12 q^{17} - 162 q^{19} - 264 q^{20} - 584 q^{22} - 800 q^{23} - 1142 q^{25} - 252 q^{26} + 144 q^{28}+ \cdots + 6760 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(414, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(414, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)