Properties

Label 414.4.e
Level $414$
Weight $4$
Character orbit 414.e
Rep. character $\chi_{414}(139,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $132$
Sturm bound $288$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(288\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(414, [\chi])\).

Total New Old
Modular forms 440 132 308
Cusp forms 424 132 292
Eisenstein series 16 0 16

Trace form

\( 132 q - 4 q^{2} + 2 q^{3} - 264 q^{4} + 20 q^{6} - 24 q^{7} + 32 q^{8} + 118 q^{9} - 34 q^{11} - 16 q^{12} + 48 q^{13} - 88 q^{15} - 1056 q^{16} - 116 q^{17} - 184 q^{18} - 420 q^{19} + 128 q^{21} + 36 q^{22}+ \cdots - 384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(414, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(414, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)