Defining parameters
Level: | \( N \) | \(=\) | \( 414 = 2 \cdot 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 414.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Sturm bound: | \(288\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(414, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 440 | 132 | 308 |
Cusp forms | 424 | 132 | 292 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(414, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(414, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)