Properties

Label 414.4.d
Level $414$
Weight $4$
Character orbit 414.d
Rep. character $\chi_{414}(413,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $1$
Sturm bound $288$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(414, [\chi])\).

Total New Old
Modular forms 224 24 200
Cusp forms 208 24 184
Eisenstein series 16 0 16

Trace form

\( 24 q - 96 q^{4} - 192 q^{13} + 384 q^{16} + 360 q^{25} - 432 q^{31} - 816 q^{46} + 216 q^{49} + 768 q^{52} - 1536 q^{55} - 1632 q^{58} - 1536 q^{64} - 2688 q^{70} + 3072 q^{73} - 2688 q^{82} - 5712 q^{85}+ \cdots + 3744 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(414, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
414.4.d.a 414.d 69.c $24$ $24.427$ None 414.4.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(414, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(414, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 2}\)