Properties

Label 414.4.a.n.1.2
Level $414$
Weight $4$
Character 414.1
Self dual yes
Analytic conductor $24.427$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,4,Mod(1,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4267907424\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 219x^{2} - 468x + 3240 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.90028\) of defining polynomial
Character \(\chi\) \(=\) 414.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -7.28088 q^{5} +35.9873 q^{7} +8.00000 q^{8} -14.5618 q^{10} -41.0688 q^{11} +28.7612 q^{13} +71.9747 q^{14} +16.0000 q^{16} -1.14743 q^{17} +118.845 q^{19} -29.1235 q^{20} -82.1376 q^{22} +23.0000 q^{23} -71.9888 q^{25} +57.5224 q^{26} +143.949 q^{28} +274.559 q^{29} -93.9916 q^{31} +32.0000 q^{32} -2.29487 q^{34} -262.020 q^{35} +15.1419 q^{37} +237.691 q^{38} -58.2471 q^{40} +6.22194 q^{41} +188.731 q^{43} -164.275 q^{44} +46.0000 q^{46} +173.480 q^{47} +952.089 q^{49} -143.978 q^{50} +115.045 q^{52} +463.166 q^{53} +299.017 q^{55} +287.899 q^{56} +549.118 q^{58} +196.095 q^{59} -341.380 q^{61} -187.983 q^{62} +64.0000 q^{64} -209.407 q^{65} +463.772 q^{67} -4.58973 q^{68} -524.039 q^{70} -730.020 q^{71} +389.517 q^{73} +30.2838 q^{74} +475.382 q^{76} -1477.96 q^{77} -568.720 q^{79} -116.494 q^{80} +12.4439 q^{82} -1193.32 q^{83} +8.35433 q^{85} +377.461 q^{86} -328.550 q^{88} +780.180 q^{89} +1035.04 q^{91} +92.0000 q^{92} +346.960 q^{94} -865.300 q^{95} -343.593 q^{97} +1904.18 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 16 q^{4} + 18 q^{7} + 32 q^{8} + 42 q^{11} + 108 q^{13} + 36 q^{14} + 64 q^{16} + 26 q^{17} + 132 q^{19} + 84 q^{22} + 92 q^{23} + 260 q^{25} + 216 q^{26} + 72 q^{28} + 252 q^{29} + 428 q^{31}+ \cdots + 2152 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −7.28088 −0.651222 −0.325611 0.945504i \(-0.605570\pi\)
−0.325611 + 0.945504i \(0.605570\pi\)
\(6\) 0 0
\(7\) 35.9873 1.94313 0.971567 0.236764i \(-0.0760870\pi\)
0.971567 + 0.236764i \(0.0760870\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −14.5618 −0.460483
\(11\) −41.0688 −1.12570 −0.562850 0.826559i \(-0.690295\pi\)
−0.562850 + 0.826559i \(0.690295\pi\)
\(12\) 0 0
\(13\) 28.7612 0.613609 0.306805 0.951772i \(-0.400740\pi\)
0.306805 + 0.951772i \(0.400740\pi\)
\(14\) 71.9747 1.37400
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −1.14743 −0.0163702 −0.00818510 0.999967i \(-0.502605\pi\)
−0.00818510 + 0.999967i \(0.502605\pi\)
\(18\) 0 0
\(19\) 118.845 1.43500 0.717500 0.696558i \(-0.245286\pi\)
0.717500 + 0.696558i \(0.245286\pi\)
\(20\) −29.1235 −0.325611
\(21\) 0 0
\(22\) −82.1376 −0.795991
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −71.9888 −0.575910
\(26\) 57.5224 0.433887
\(27\) 0 0
\(28\) 143.949 0.971567
\(29\) 274.559 1.75808 0.879039 0.476749i \(-0.158185\pi\)
0.879039 + 0.476749i \(0.158185\pi\)
\(30\) 0 0
\(31\) −93.9916 −0.544561 −0.272280 0.962218i \(-0.587778\pi\)
−0.272280 + 0.962218i \(0.587778\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) −2.29487 −0.0115755
\(35\) −262.020 −1.26541
\(36\) 0 0
\(37\) 15.1419 0.0672787 0.0336394 0.999434i \(-0.489290\pi\)
0.0336394 + 0.999434i \(0.489290\pi\)
\(38\) 237.691 1.01470
\(39\) 0 0
\(40\) −58.2471 −0.230242
\(41\) 6.22194 0.0237001 0.0118501 0.999930i \(-0.496228\pi\)
0.0118501 + 0.999930i \(0.496228\pi\)
\(42\) 0 0
\(43\) 188.731 0.669329 0.334664 0.942337i \(-0.391377\pi\)
0.334664 + 0.942337i \(0.391377\pi\)
\(44\) −164.275 −0.562850
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 173.480 0.538398 0.269199 0.963085i \(-0.413241\pi\)
0.269199 + 0.963085i \(0.413241\pi\)
\(48\) 0 0
\(49\) 952.089 2.77577
\(50\) −143.978 −0.407230
\(51\) 0 0
\(52\) 115.045 0.306805
\(53\) 463.166 1.20039 0.600195 0.799854i \(-0.295090\pi\)
0.600195 + 0.799854i \(0.295090\pi\)
\(54\) 0 0
\(55\) 299.017 0.733081
\(56\) 287.899 0.687002
\(57\) 0 0
\(58\) 549.118 1.24315
\(59\) 196.095 0.432703 0.216351 0.976316i \(-0.430584\pi\)
0.216351 + 0.976316i \(0.430584\pi\)
\(60\) 0 0
\(61\) −341.380 −0.716545 −0.358273 0.933617i \(-0.616634\pi\)
−0.358273 + 0.933617i \(0.616634\pi\)
\(62\) −187.983 −0.385063
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −209.407 −0.399596
\(66\) 0 0
\(67\) 463.772 0.845654 0.422827 0.906210i \(-0.361038\pi\)
0.422827 + 0.906210i \(0.361038\pi\)
\(68\) −4.58973 −0.00818510
\(69\) 0 0
\(70\) −524.039 −0.894781
\(71\) −730.020 −1.22024 −0.610122 0.792307i \(-0.708880\pi\)
−0.610122 + 0.792307i \(0.708880\pi\)
\(72\) 0 0
\(73\) 389.517 0.624514 0.312257 0.949998i \(-0.398915\pi\)
0.312257 + 0.949998i \(0.398915\pi\)
\(74\) 30.2838 0.0475732
\(75\) 0 0
\(76\) 475.382 0.717500
\(77\) −1477.96 −2.18739
\(78\) 0 0
\(79\) −568.720 −0.809949 −0.404975 0.914328i \(-0.632720\pi\)
−0.404975 + 0.914328i \(0.632720\pi\)
\(80\) −116.494 −0.162805
\(81\) 0 0
\(82\) 12.4439 0.0167585
\(83\) −1193.32 −1.57811 −0.789057 0.614321i \(-0.789430\pi\)
−0.789057 + 0.614321i \(0.789430\pi\)
\(84\) 0 0
\(85\) 8.35433 0.0106606
\(86\) 377.461 0.473287
\(87\) 0 0
\(88\) −328.550 −0.397995
\(89\) 780.180 0.929201 0.464601 0.885520i \(-0.346198\pi\)
0.464601 + 0.885520i \(0.346198\pi\)
\(90\) 0 0
\(91\) 1035.04 1.19233
\(92\) 92.0000 0.104257
\(93\) 0 0
\(94\) 346.960 0.380705
\(95\) −865.300 −0.934504
\(96\) 0 0
\(97\) −343.593 −0.359655 −0.179828 0.983698i \(-0.557554\pi\)
−0.179828 + 0.983698i \(0.557554\pi\)
\(98\) 1904.18 1.96277
\(99\) 0 0
\(100\) −287.955 −0.287955
\(101\) −1806.08 −1.77933 −0.889664 0.456616i \(-0.849061\pi\)
−0.889664 + 0.456616i \(0.849061\pi\)
\(102\) 0 0
\(103\) −1247.98 −1.19386 −0.596928 0.802295i \(-0.703612\pi\)
−0.596928 + 0.802295i \(0.703612\pi\)
\(104\) 230.090 0.216944
\(105\) 0 0
\(106\) 926.331 0.848804
\(107\) −492.642 −0.445099 −0.222549 0.974921i \(-0.571438\pi\)
−0.222549 + 0.974921i \(0.571438\pi\)
\(108\) 0 0
\(109\) 374.270 0.328886 0.164443 0.986387i \(-0.447417\pi\)
0.164443 + 0.986387i \(0.447417\pi\)
\(110\) 598.034 0.518366
\(111\) 0 0
\(112\) 575.798 0.485784
\(113\) 1598.57 1.33081 0.665403 0.746484i \(-0.268260\pi\)
0.665403 + 0.746484i \(0.268260\pi\)
\(114\) 0 0
\(115\) −167.460 −0.135789
\(116\) 1098.24 0.879039
\(117\) 0 0
\(118\) 392.191 0.305967
\(119\) −41.2931 −0.0318095
\(120\) 0 0
\(121\) 355.646 0.267202
\(122\) −682.761 −0.506674
\(123\) 0 0
\(124\) −375.966 −0.272280
\(125\) 1434.25 1.02627
\(126\) 0 0
\(127\) 1320.51 0.922650 0.461325 0.887231i \(-0.347374\pi\)
0.461325 + 0.887231i \(0.347374\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) −418.814 −0.282557
\(131\) −534.502 −0.356486 −0.178243 0.983986i \(-0.557041\pi\)
−0.178243 + 0.983986i \(0.557041\pi\)
\(132\) 0 0
\(133\) 4276.93 2.78840
\(134\) 927.545 0.597968
\(135\) 0 0
\(136\) −9.17947 −0.00578774
\(137\) −2544.76 −1.58696 −0.793481 0.608595i \(-0.791733\pi\)
−0.793481 + 0.608595i \(0.791733\pi\)
\(138\) 0 0
\(139\) −1987.49 −1.21278 −0.606392 0.795166i \(-0.707384\pi\)
−0.606392 + 0.795166i \(0.707384\pi\)
\(140\) −1048.08 −0.632706
\(141\) 0 0
\(142\) −1460.04 −0.862843
\(143\) −1181.19 −0.690741
\(144\) 0 0
\(145\) −1999.03 −1.14490
\(146\) 779.034 0.441598
\(147\) 0 0
\(148\) 60.5676 0.0336394
\(149\) −2755.79 −1.51519 −0.757596 0.652724i \(-0.773626\pi\)
−0.757596 + 0.652724i \(0.773626\pi\)
\(150\) 0 0
\(151\) −2507.96 −1.35162 −0.675812 0.737074i \(-0.736207\pi\)
−0.675812 + 0.737074i \(0.736207\pi\)
\(152\) 950.764 0.507349
\(153\) 0 0
\(154\) −2955.91 −1.54672
\(155\) 684.341 0.354630
\(156\) 0 0
\(157\) −2109.91 −1.07254 −0.536270 0.844046i \(-0.680167\pi\)
−0.536270 + 0.844046i \(0.680167\pi\)
\(158\) −1137.44 −0.572720
\(159\) 0 0
\(160\) −232.988 −0.115121
\(161\) 827.709 0.405171
\(162\) 0 0
\(163\) −2258.04 −1.08505 −0.542526 0.840039i \(-0.682532\pi\)
−0.542526 + 0.840039i \(0.682532\pi\)
\(164\) 24.8878 0.0118501
\(165\) 0 0
\(166\) −2386.63 −1.11589
\(167\) 4056.70 1.87974 0.939872 0.341528i \(-0.110944\pi\)
0.939872 + 0.341528i \(0.110944\pi\)
\(168\) 0 0
\(169\) −1369.79 −0.623483
\(170\) 16.7087 0.00753821
\(171\) 0 0
\(172\) 754.922 0.334664
\(173\) 858.019 0.377075 0.188537 0.982066i \(-0.439625\pi\)
0.188537 + 0.982066i \(0.439625\pi\)
\(174\) 0 0
\(175\) −2590.68 −1.11907
\(176\) −657.101 −0.281425
\(177\) 0 0
\(178\) 1560.36 0.657044
\(179\) 3306.61 1.38071 0.690356 0.723469i \(-0.257454\pi\)
0.690356 + 0.723469i \(0.257454\pi\)
\(180\) 0 0
\(181\) −262.105 −0.107636 −0.0538181 0.998551i \(-0.517139\pi\)
−0.0538181 + 0.998551i \(0.517139\pi\)
\(182\) 2070.08 0.843101
\(183\) 0 0
\(184\) 184.000 0.0737210
\(185\) −110.246 −0.0438134
\(186\) 0 0
\(187\) 47.1237 0.0184279
\(188\) 693.921 0.269199
\(189\) 0 0
\(190\) −1730.60 −0.660794
\(191\) −4917.62 −1.86297 −0.931483 0.363786i \(-0.881484\pi\)
−0.931483 + 0.363786i \(0.881484\pi\)
\(192\) 0 0
\(193\) 462.411 0.172462 0.0862308 0.996275i \(-0.472518\pi\)
0.0862308 + 0.996275i \(0.472518\pi\)
\(194\) −687.186 −0.254315
\(195\) 0 0
\(196\) 3808.36 1.38789
\(197\) −105.944 −0.0383156 −0.0191578 0.999816i \(-0.506098\pi\)
−0.0191578 + 0.999816i \(0.506098\pi\)
\(198\) 0 0
\(199\) −687.512 −0.244907 −0.122453 0.992474i \(-0.539076\pi\)
−0.122453 + 0.992474i \(0.539076\pi\)
\(200\) −575.910 −0.203615
\(201\) 0 0
\(202\) −3612.17 −1.25817
\(203\) 9880.64 3.41618
\(204\) 0 0
\(205\) −45.3012 −0.0154340
\(206\) −2495.96 −0.844184
\(207\) 0 0
\(208\) 460.179 0.153402
\(209\) −4880.84 −1.61538
\(210\) 0 0
\(211\) 4204.41 1.37177 0.685884 0.727711i \(-0.259416\pi\)
0.685884 + 0.727711i \(0.259416\pi\)
\(212\) 1852.66 0.600195
\(213\) 0 0
\(214\) −985.285 −0.314732
\(215\) −1374.12 −0.435882
\(216\) 0 0
\(217\) −3382.51 −1.05815
\(218\) 748.540 0.232557
\(219\) 0 0
\(220\) 1196.07 0.366540
\(221\) −33.0016 −0.0100449
\(222\) 0 0
\(223\) 3439.63 1.03289 0.516445 0.856320i \(-0.327255\pi\)
0.516445 + 0.856320i \(0.327255\pi\)
\(224\) 1151.60 0.343501
\(225\) 0 0
\(226\) 3197.15 0.941022
\(227\) 2906.74 0.849898 0.424949 0.905217i \(-0.360292\pi\)
0.424949 + 0.905217i \(0.360292\pi\)
\(228\) 0 0
\(229\) −6220.56 −1.79505 −0.897524 0.440965i \(-0.854636\pi\)
−0.897524 + 0.440965i \(0.854636\pi\)
\(230\) −334.921 −0.0960174
\(231\) 0 0
\(232\) 2196.47 0.621575
\(233\) −5315.68 −1.49460 −0.747300 0.664487i \(-0.768650\pi\)
−0.747300 + 0.664487i \(0.768650\pi\)
\(234\) 0 0
\(235\) −1263.09 −0.350616
\(236\) 784.382 0.216351
\(237\) 0 0
\(238\) −82.5862 −0.0224927
\(239\) −1633.57 −0.442120 −0.221060 0.975260i \(-0.570952\pi\)
−0.221060 + 0.975260i \(0.570952\pi\)
\(240\) 0 0
\(241\) 30.5253 0.00815896 0.00407948 0.999992i \(-0.498701\pi\)
0.00407948 + 0.999992i \(0.498701\pi\)
\(242\) 711.291 0.188940
\(243\) 0 0
\(244\) −1365.52 −0.358273
\(245\) −6932.05 −1.80764
\(246\) 0 0
\(247\) 3418.14 0.880530
\(248\) −751.932 −0.192531
\(249\) 0 0
\(250\) 2868.50 0.725680
\(251\) 5864.81 1.47483 0.737417 0.675437i \(-0.236045\pi\)
0.737417 + 0.675437i \(0.236045\pi\)
\(252\) 0 0
\(253\) −944.582 −0.234725
\(254\) 2641.02 0.652412
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5350.14 −1.29857 −0.649285 0.760545i \(-0.724932\pi\)
−0.649285 + 0.760545i \(0.724932\pi\)
\(258\) 0 0
\(259\) 544.917 0.130732
\(260\) −837.628 −0.199798
\(261\) 0 0
\(262\) −1069.00 −0.252074
\(263\) 4957.27 1.16228 0.581138 0.813805i \(-0.302608\pi\)
0.581138 + 0.813805i \(0.302608\pi\)
\(264\) 0 0
\(265\) −3372.25 −0.781720
\(266\) 8553.87 1.97170
\(267\) 0 0
\(268\) 1855.09 0.422827
\(269\) −223.436 −0.0506437 −0.0253218 0.999679i \(-0.508061\pi\)
−0.0253218 + 0.999679i \(0.508061\pi\)
\(270\) 0 0
\(271\) −5153.96 −1.15528 −0.577640 0.816292i \(-0.696026\pi\)
−0.577640 + 0.816292i \(0.696026\pi\)
\(272\) −18.3589 −0.00409255
\(273\) 0 0
\(274\) −5089.52 −1.12215
\(275\) 2956.49 0.648302
\(276\) 0 0
\(277\) 6182.51 1.34105 0.670526 0.741886i \(-0.266069\pi\)
0.670526 + 0.741886i \(0.266069\pi\)
\(278\) −3974.99 −0.857568
\(279\) 0 0
\(280\) −2096.16 −0.447391
\(281\) −3704.01 −0.786345 −0.393172 0.919465i \(-0.628622\pi\)
−0.393172 + 0.919465i \(0.628622\pi\)
\(282\) 0 0
\(283\) 1947.10 0.408986 0.204493 0.978868i \(-0.434445\pi\)
0.204493 + 0.978868i \(0.434445\pi\)
\(284\) −2920.08 −0.610122
\(285\) 0 0
\(286\) −2362.38 −0.488427
\(287\) 223.911 0.0460525
\(288\) 0 0
\(289\) −4911.68 −0.999732
\(290\) −3998.06 −0.809566
\(291\) 0 0
\(292\) 1558.07 0.312257
\(293\) −52.2109 −0.0104102 −0.00520510 0.999986i \(-0.501657\pi\)
−0.00520510 + 0.999986i \(0.501657\pi\)
\(294\) 0 0
\(295\) −1427.75 −0.281785
\(296\) 121.135 0.0237866
\(297\) 0 0
\(298\) −5511.59 −1.07140
\(299\) 661.508 0.127946
\(300\) 0 0
\(301\) 6791.91 1.30060
\(302\) −5015.93 −0.955742
\(303\) 0 0
\(304\) 1901.53 0.358750
\(305\) 2485.55 0.466630
\(306\) 0 0
\(307\) 9584.44 1.78180 0.890900 0.454199i \(-0.150074\pi\)
0.890900 + 0.454199i \(0.150074\pi\)
\(308\) −5911.83 −1.09369
\(309\) 0 0
\(310\) 1368.68 0.250761
\(311\) −9148.29 −1.66801 −0.834006 0.551755i \(-0.813958\pi\)
−0.834006 + 0.551755i \(0.813958\pi\)
\(312\) 0 0
\(313\) 443.616 0.0801107 0.0400553 0.999197i \(-0.487247\pi\)
0.0400553 + 0.999197i \(0.487247\pi\)
\(314\) −4219.81 −0.758401
\(315\) 0 0
\(316\) −2274.88 −0.404975
\(317\) 6926.81 1.22728 0.613641 0.789585i \(-0.289704\pi\)
0.613641 + 0.789585i \(0.289704\pi\)
\(318\) 0 0
\(319\) −11275.8 −1.97907
\(320\) −465.976 −0.0814027
\(321\) 0 0
\(322\) 1655.42 0.286500
\(323\) −136.367 −0.0234913
\(324\) 0 0
\(325\) −2070.48 −0.353384
\(326\) −4516.08 −0.767247
\(327\) 0 0
\(328\) 49.7756 0.00837925
\(329\) 6243.09 1.04618
\(330\) 0 0
\(331\) 677.095 0.112437 0.0562183 0.998419i \(-0.482096\pi\)
0.0562183 + 0.998419i \(0.482096\pi\)
\(332\) −4773.26 −0.789057
\(333\) 0 0
\(334\) 8113.41 1.32918
\(335\) −3376.67 −0.550708
\(336\) 0 0
\(337\) −3143.44 −0.508113 −0.254056 0.967189i \(-0.581765\pi\)
−0.254056 + 0.967189i \(0.581765\pi\)
\(338\) −2739.59 −0.440869
\(339\) 0 0
\(340\) 33.4173 0.00533032
\(341\) 3860.12 0.613012
\(342\) 0 0
\(343\) 21919.5 3.45056
\(344\) 1509.84 0.236643
\(345\) 0 0
\(346\) 1716.04 0.266632
\(347\) 1700.89 0.263137 0.131569 0.991307i \(-0.457999\pi\)
0.131569 + 0.991307i \(0.457999\pi\)
\(348\) 0 0
\(349\) 11022.8 1.69065 0.845324 0.534254i \(-0.179407\pi\)
0.845324 + 0.534254i \(0.179407\pi\)
\(350\) −5181.37 −0.791302
\(351\) 0 0
\(352\) −1314.20 −0.198998
\(353\) 3717.19 0.560471 0.280235 0.959931i \(-0.409588\pi\)
0.280235 + 0.959931i \(0.409588\pi\)
\(354\) 0 0
\(355\) 5315.19 0.794650
\(356\) 3120.72 0.464601
\(357\) 0 0
\(358\) 6613.22 0.976311
\(359\) −928.351 −0.136480 −0.0682402 0.997669i \(-0.521738\pi\)
−0.0682402 + 0.997669i \(0.521738\pi\)
\(360\) 0 0
\(361\) 7265.24 1.05923
\(362\) −524.211 −0.0761102
\(363\) 0 0
\(364\) 4140.16 0.596163
\(365\) −2836.03 −0.406697
\(366\) 0 0
\(367\) −2808.73 −0.399494 −0.199747 0.979848i \(-0.564012\pi\)
−0.199747 + 0.979848i \(0.564012\pi\)
\(368\) 368.000 0.0521286
\(369\) 0 0
\(370\) −220.493 −0.0309807
\(371\) 16668.1 2.33252
\(372\) 0 0
\(373\) −4512.14 −0.626353 −0.313177 0.949695i \(-0.601393\pi\)
−0.313177 + 0.949695i \(0.601393\pi\)
\(374\) 94.2474 0.0130305
\(375\) 0 0
\(376\) 1387.84 0.190352
\(377\) 7896.64 1.07877
\(378\) 0 0
\(379\) 18.9605 0.00256975 0.00128487 0.999999i \(-0.499591\pi\)
0.00128487 + 0.999999i \(0.499591\pi\)
\(380\) −3461.20 −0.467252
\(381\) 0 0
\(382\) −9835.24 −1.31732
\(383\) 4582.21 0.611331 0.305665 0.952139i \(-0.401121\pi\)
0.305665 + 0.952139i \(0.401121\pi\)
\(384\) 0 0
\(385\) 10760.8 1.42447
\(386\) 924.822 0.121949
\(387\) 0 0
\(388\) −1374.37 −0.179828
\(389\) −8916.93 −1.16223 −0.581114 0.813822i \(-0.697383\pi\)
−0.581114 + 0.813822i \(0.697383\pi\)
\(390\) 0 0
\(391\) −26.3910 −0.00341342
\(392\) 7616.71 0.981383
\(393\) 0 0
\(394\) −211.887 −0.0270932
\(395\) 4140.78 0.527457
\(396\) 0 0
\(397\) 3271.65 0.413600 0.206800 0.978383i \(-0.433695\pi\)
0.206800 + 0.978383i \(0.433695\pi\)
\(398\) −1375.02 −0.173175
\(399\) 0 0
\(400\) −1151.82 −0.143978
\(401\) −4014.90 −0.499987 −0.249993 0.968248i \(-0.580428\pi\)
−0.249993 + 0.968248i \(0.580428\pi\)
\(402\) 0 0
\(403\) −2703.31 −0.334148
\(404\) −7224.34 −0.889664
\(405\) 0 0
\(406\) 19761.3 2.41561
\(407\) −621.860 −0.0757357
\(408\) 0 0
\(409\) 6139.64 0.742263 0.371131 0.928580i \(-0.378970\pi\)
0.371131 + 0.928580i \(0.378970\pi\)
\(410\) −90.6025 −0.0109135
\(411\) 0 0
\(412\) −4991.92 −0.596928
\(413\) 7056.95 0.840799
\(414\) 0 0
\(415\) 8688.39 1.02770
\(416\) 920.359 0.108472
\(417\) 0 0
\(418\) −9761.68 −1.14225
\(419\) −1194.52 −0.139275 −0.0696376 0.997572i \(-0.522184\pi\)
−0.0696376 + 0.997572i \(0.522184\pi\)
\(420\) 0 0
\(421\) −9138.18 −1.05788 −0.528940 0.848659i \(-0.677410\pi\)
−0.528940 + 0.848659i \(0.677410\pi\)
\(422\) 8408.81 0.969987
\(423\) 0 0
\(424\) 3705.32 0.424402
\(425\) 82.6023 0.00942776
\(426\) 0 0
\(427\) −12285.4 −1.39234
\(428\) −1970.57 −0.222549
\(429\) 0 0
\(430\) −2748.25 −0.308215
\(431\) 4775.85 0.533746 0.266873 0.963732i \(-0.414010\pi\)
0.266873 + 0.963732i \(0.414010\pi\)
\(432\) 0 0
\(433\) −6005.84 −0.666564 −0.333282 0.942827i \(-0.608156\pi\)
−0.333282 + 0.942827i \(0.608156\pi\)
\(434\) −6765.01 −0.748228
\(435\) 0 0
\(436\) 1497.08 0.164443
\(437\) 2733.45 0.299218
\(438\) 0 0
\(439\) 16077.0 1.74786 0.873932 0.486048i \(-0.161562\pi\)
0.873932 + 0.486048i \(0.161562\pi\)
\(440\) 2392.14 0.259183
\(441\) 0 0
\(442\) −66.0031 −0.00710283
\(443\) 1018.10 0.109190 0.0545952 0.998509i \(-0.482613\pi\)
0.0545952 + 0.998509i \(0.482613\pi\)
\(444\) 0 0
\(445\) −5680.40 −0.605116
\(446\) 6879.26 0.730364
\(447\) 0 0
\(448\) 2303.19 0.242892
\(449\) 6465.49 0.679567 0.339783 0.940504i \(-0.389646\pi\)
0.339783 + 0.940504i \(0.389646\pi\)
\(450\) 0 0
\(451\) −255.528 −0.0266792
\(452\) 6394.29 0.665403
\(453\) 0 0
\(454\) 5813.47 0.600969
\(455\) −7536.00 −0.776469
\(456\) 0 0
\(457\) −6983.59 −0.714833 −0.357416 0.933945i \(-0.616342\pi\)
−0.357416 + 0.933945i \(0.616342\pi\)
\(458\) −12441.1 −1.26929
\(459\) 0 0
\(460\) −669.841 −0.0678946
\(461\) 8285.05 0.837035 0.418517 0.908209i \(-0.362550\pi\)
0.418517 + 0.908209i \(0.362550\pi\)
\(462\) 0 0
\(463\) −17934.5 −1.80019 −0.900093 0.435697i \(-0.856502\pi\)
−0.900093 + 0.435697i \(0.856502\pi\)
\(464\) 4392.94 0.439520
\(465\) 0 0
\(466\) −10631.4 −1.05684
\(467\) 10559.7 1.04635 0.523176 0.852225i \(-0.324747\pi\)
0.523176 + 0.852225i \(0.324747\pi\)
\(468\) 0 0
\(469\) 16689.9 1.64322
\(470\) −2526.18 −0.247923
\(471\) 0 0
\(472\) 1568.76 0.152983
\(473\) −7750.93 −0.753464
\(474\) 0 0
\(475\) −8555.54 −0.826431
\(476\) −165.172 −0.0159048
\(477\) 0 0
\(478\) −3267.14 −0.312626
\(479\) −6175.49 −0.589071 −0.294536 0.955641i \(-0.595165\pi\)
−0.294536 + 0.955641i \(0.595165\pi\)
\(480\) 0 0
\(481\) 435.499 0.0412829
\(482\) 61.0506 0.00576925
\(483\) 0 0
\(484\) 1422.58 0.133601
\(485\) 2501.66 0.234215
\(486\) 0 0
\(487\) −16616.4 −1.54612 −0.773062 0.634331i \(-0.781276\pi\)
−0.773062 + 0.634331i \(0.781276\pi\)
\(488\) −2731.04 −0.253337
\(489\) 0 0
\(490\) −13864.1 −1.27820
\(491\) 1923.41 0.176787 0.0883936 0.996086i \(-0.471827\pi\)
0.0883936 + 0.996086i \(0.471827\pi\)
\(492\) 0 0
\(493\) −315.038 −0.0287801
\(494\) 6836.28 0.622629
\(495\) 0 0
\(496\) −1503.86 −0.136140
\(497\) −26271.5 −2.37110
\(498\) 0 0
\(499\) −2001.76 −0.179582 −0.0897908 0.995961i \(-0.528620\pi\)
−0.0897908 + 0.995961i \(0.528620\pi\)
\(500\) 5737.01 0.513134
\(501\) 0 0
\(502\) 11729.6 1.04287
\(503\) 12903.3 1.14380 0.571899 0.820324i \(-0.306207\pi\)
0.571899 + 0.820324i \(0.306207\pi\)
\(504\) 0 0
\(505\) 13149.9 1.15874
\(506\) −1889.16 −0.165975
\(507\) 0 0
\(508\) 5282.05 0.461325
\(509\) −2208.97 −0.192360 −0.0961798 0.995364i \(-0.530662\pi\)
−0.0961798 + 0.995364i \(0.530662\pi\)
\(510\) 0 0
\(511\) 14017.7 1.21351
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −10700.3 −0.918227
\(515\) 9086.40 0.777465
\(516\) 0 0
\(517\) −7124.62 −0.606075
\(518\) 1089.83 0.0924412
\(519\) 0 0
\(520\) −1675.26 −0.141278
\(521\) −7525.04 −0.632779 −0.316390 0.948629i \(-0.602471\pi\)
−0.316390 + 0.948629i \(0.602471\pi\)
\(522\) 0 0
\(523\) −5782.76 −0.483485 −0.241742 0.970340i \(-0.577719\pi\)
−0.241742 + 0.970340i \(0.577719\pi\)
\(524\) −2138.01 −0.178243
\(525\) 0 0
\(526\) 9914.55 0.821853
\(527\) 107.849 0.00891457
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −6744.51 −0.552760
\(531\) 0 0
\(532\) 17107.7 1.39420
\(533\) 178.951 0.0145426
\(534\) 0 0
\(535\) 3586.87 0.289858
\(536\) 3710.18 0.298984
\(537\) 0 0
\(538\) −446.872 −0.0358105
\(539\) −39101.2 −3.12469
\(540\) 0 0
\(541\) 13452.7 1.06909 0.534546 0.845139i \(-0.320483\pi\)
0.534546 + 0.845139i \(0.320483\pi\)
\(542\) −10307.9 −0.816906
\(543\) 0 0
\(544\) −36.7179 −0.00289387
\(545\) −2725.02 −0.214178
\(546\) 0 0
\(547\) −9628.07 −0.752589 −0.376295 0.926500i \(-0.622802\pi\)
−0.376295 + 0.926500i \(0.622802\pi\)
\(548\) −10179.0 −0.793481
\(549\) 0 0
\(550\) 5912.98 0.458419
\(551\) 32630.1 2.52284
\(552\) 0 0
\(553\) −20466.7 −1.57384
\(554\) 12365.0 0.948266
\(555\) 0 0
\(556\) −7949.98 −0.606392
\(557\) 10299.2 0.783466 0.391733 0.920079i \(-0.371876\pi\)
0.391733 + 0.920079i \(0.371876\pi\)
\(558\) 0 0
\(559\) 5428.12 0.410706
\(560\) −4192.31 −0.316353
\(561\) 0 0
\(562\) −7408.02 −0.556030
\(563\) 16390.8 1.22698 0.613492 0.789701i \(-0.289764\pi\)
0.613492 + 0.789701i \(0.289764\pi\)
\(564\) 0 0
\(565\) −11639.0 −0.866650
\(566\) 3894.20 0.289197
\(567\) 0 0
\(568\) −5840.16 −0.431422
\(569\) −18730.9 −1.38003 −0.690017 0.723793i \(-0.742397\pi\)
−0.690017 + 0.723793i \(0.742397\pi\)
\(570\) 0 0
\(571\) −23266.5 −1.70520 −0.852602 0.522561i \(-0.824977\pi\)
−0.852602 + 0.522561i \(0.824977\pi\)
\(572\) −4724.75 −0.345370
\(573\) 0 0
\(574\) 447.823 0.0325640
\(575\) −1655.74 −0.120086
\(576\) 0 0
\(577\) −22221.0 −1.60324 −0.801622 0.597831i \(-0.796029\pi\)
−0.801622 + 0.597831i \(0.796029\pi\)
\(578\) −9823.37 −0.706917
\(579\) 0 0
\(580\) −7996.12 −0.572450
\(581\) −42944.3 −3.06649
\(582\) 0 0
\(583\) −19021.7 −1.35128
\(584\) 3116.13 0.220799
\(585\) 0 0
\(586\) −104.422 −0.00736113
\(587\) 19974.9 1.40452 0.702261 0.711920i \(-0.252174\pi\)
0.702261 + 0.711920i \(0.252174\pi\)
\(588\) 0 0
\(589\) −11170.5 −0.781445
\(590\) −2855.50 −0.199252
\(591\) 0 0
\(592\) 242.270 0.0168197
\(593\) 13138.3 0.909827 0.454913 0.890536i \(-0.349670\pi\)
0.454913 + 0.890536i \(0.349670\pi\)
\(594\) 0 0
\(595\) 300.650 0.0207150
\(596\) −11023.2 −0.757596
\(597\) 0 0
\(598\) 1323.02 0.0904718
\(599\) 4445.05 0.303205 0.151602 0.988442i \(-0.451557\pi\)
0.151602 + 0.988442i \(0.451557\pi\)
\(600\) 0 0
\(601\) 9950.36 0.675347 0.337674 0.941263i \(-0.390360\pi\)
0.337674 + 0.941263i \(0.390360\pi\)
\(602\) 13583.8 0.919660
\(603\) 0 0
\(604\) −10031.9 −0.675812
\(605\) −2589.41 −0.174008
\(606\) 0 0
\(607\) 21986.0 1.47015 0.735076 0.677985i \(-0.237146\pi\)
0.735076 + 0.677985i \(0.237146\pi\)
\(608\) 3803.05 0.253675
\(609\) 0 0
\(610\) 4971.10 0.329957
\(611\) 4989.50 0.330366
\(612\) 0 0
\(613\) −17727.9 −1.16807 −0.584033 0.811730i \(-0.698526\pi\)
−0.584033 + 0.811730i \(0.698526\pi\)
\(614\) 19168.9 1.25992
\(615\) 0 0
\(616\) −11823.7 −0.773358
\(617\) −20217.9 −1.31919 −0.659597 0.751619i \(-0.729273\pi\)
−0.659597 + 0.751619i \(0.729273\pi\)
\(618\) 0 0
\(619\) 26698.5 1.73361 0.866803 0.498651i \(-0.166171\pi\)
0.866803 + 0.498651i \(0.166171\pi\)
\(620\) 2737.37 0.177315
\(621\) 0 0
\(622\) −18296.6 −1.17946
\(623\) 28076.6 1.80556
\(624\) 0 0
\(625\) −1444.03 −0.0924177
\(626\) 887.231 0.0566468
\(627\) 0 0
\(628\) −8439.62 −0.536270
\(629\) −17.3743 −0.00110137
\(630\) 0 0
\(631\) −21906.3 −1.38205 −0.691027 0.722829i \(-0.742842\pi\)
−0.691027 + 0.722829i \(0.742842\pi\)
\(632\) −4549.76 −0.286360
\(633\) 0 0
\(634\) 13853.6 0.867819
\(635\) −9614.49 −0.600850
\(636\) 0 0
\(637\) 27383.2 1.70324
\(638\) −22551.6 −1.39941
\(639\) 0 0
\(640\) −931.953 −0.0575604
\(641\) −26702.8 −1.64540 −0.822698 0.568479i \(-0.807532\pi\)
−0.822698 + 0.568479i \(0.807532\pi\)
\(642\) 0 0
\(643\) −25413.0 −1.55862 −0.779310 0.626639i \(-0.784430\pi\)
−0.779310 + 0.626639i \(0.784430\pi\)
\(644\) 3310.84 0.202586
\(645\) 0 0
\(646\) −272.734 −0.0166108
\(647\) −15981.9 −0.971116 −0.485558 0.874204i \(-0.661384\pi\)
−0.485558 + 0.874204i \(0.661384\pi\)
\(648\) 0 0
\(649\) −8053.40 −0.487094
\(650\) −4140.97 −0.249880
\(651\) 0 0
\(652\) −9032.16 −0.542526
\(653\) 31104.7 1.86404 0.932022 0.362401i \(-0.118043\pi\)
0.932022 + 0.362401i \(0.118043\pi\)
\(654\) 0 0
\(655\) 3891.65 0.232152
\(656\) 99.5511 0.00592503
\(657\) 0 0
\(658\) 12486.2 0.739760
\(659\) −2540.74 −0.150187 −0.0750933 0.997177i \(-0.523925\pi\)
−0.0750933 + 0.997177i \(0.523925\pi\)
\(660\) 0 0
\(661\) 11474.7 0.675211 0.337605 0.941288i \(-0.390383\pi\)
0.337605 + 0.941288i \(0.390383\pi\)
\(662\) 1354.19 0.0795046
\(663\) 0 0
\(664\) −9546.52 −0.557947
\(665\) −31139.8 −1.81587
\(666\) 0 0
\(667\) 6314.85 0.366585
\(668\) 16226.8 0.939872
\(669\) 0 0
\(670\) −6753.34 −0.389410
\(671\) 14020.1 0.806616
\(672\) 0 0
\(673\) −3530.79 −0.202232 −0.101116 0.994875i \(-0.532241\pi\)
−0.101116 + 0.994875i \(0.532241\pi\)
\(674\) −6286.88 −0.359290
\(675\) 0 0
\(676\) −5479.17 −0.311742
\(677\) −22802.8 −1.29451 −0.647254 0.762274i \(-0.724083\pi\)
−0.647254 + 0.762274i \(0.724083\pi\)
\(678\) 0 0
\(679\) −12365.0 −0.698858
\(680\) 66.8346 0.00376910
\(681\) 0 0
\(682\) 7720.24 0.433465
\(683\) −13774.7 −0.771703 −0.385852 0.922561i \(-0.626092\pi\)
−0.385852 + 0.922561i \(0.626092\pi\)
\(684\) 0 0
\(685\) 18528.1 1.03346
\(686\) 43839.0 2.43991
\(687\) 0 0
\(688\) 3019.69 0.167332
\(689\) 13321.2 0.736571
\(690\) 0 0
\(691\) 9020.06 0.496584 0.248292 0.968685i \(-0.420131\pi\)
0.248292 + 0.968685i \(0.420131\pi\)
\(692\) 3432.07 0.188537
\(693\) 0 0
\(694\) 3401.78 0.186066
\(695\) 14470.7 0.789792
\(696\) 0 0
\(697\) −7.13927 −0.000387976 0
\(698\) 22045.6 1.19547
\(699\) 0 0
\(700\) −10362.7 −0.559535
\(701\) 6122.50 0.329877 0.164938 0.986304i \(-0.447257\pi\)
0.164938 + 0.986304i \(0.447257\pi\)
\(702\) 0 0
\(703\) 1799.55 0.0965450
\(704\) −2628.40 −0.140713
\(705\) 0 0
\(706\) 7434.38 0.396313
\(707\) −64996.2 −3.45747
\(708\) 0 0
\(709\) 18858.6 0.998940 0.499470 0.866331i \(-0.333528\pi\)
0.499470 + 0.866331i \(0.333528\pi\)
\(710\) 10630.4 0.561903
\(711\) 0 0
\(712\) 6241.44 0.328522
\(713\) −2161.81 −0.113549
\(714\) 0 0
\(715\) 8600.09 0.449825
\(716\) 13226.4 0.690356
\(717\) 0 0
\(718\) −1856.70 −0.0965063
\(719\) 15517.2 0.804862 0.402431 0.915450i \(-0.368165\pi\)
0.402431 + 0.915450i \(0.368165\pi\)
\(720\) 0 0
\(721\) −44911.5 −2.31982
\(722\) 14530.5 0.748987
\(723\) 0 0
\(724\) −1048.42 −0.0538181
\(725\) −19765.1 −1.01250
\(726\) 0 0
\(727\) 32390.6 1.65241 0.826203 0.563372i \(-0.190496\pi\)
0.826203 + 0.563372i \(0.190496\pi\)
\(728\) 8280.32 0.421551
\(729\) 0 0
\(730\) −5672.05 −0.287578
\(731\) −216.556 −0.0109570
\(732\) 0 0
\(733\) −30356.1 −1.52964 −0.764821 0.644243i \(-0.777173\pi\)
−0.764821 + 0.644243i \(0.777173\pi\)
\(734\) −5617.45 −0.282485
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −19046.6 −0.951953
\(738\) 0 0
\(739\) 20619.4 1.02638 0.513190 0.858275i \(-0.328464\pi\)
0.513190 + 0.858275i \(0.328464\pi\)
\(740\) −440.986 −0.0219067
\(741\) 0 0
\(742\) 33336.2 1.64934
\(743\) −21874.4 −1.08007 −0.540036 0.841642i \(-0.681589\pi\)
−0.540036 + 0.841642i \(0.681589\pi\)
\(744\) 0 0
\(745\) 20064.6 0.986726
\(746\) −9024.28 −0.442898
\(747\) 0 0
\(748\) 188.495 0.00921397
\(749\) −17728.9 −0.864886
\(750\) 0 0
\(751\) −6510.13 −0.316322 −0.158161 0.987413i \(-0.550557\pi\)
−0.158161 + 0.987413i \(0.550557\pi\)
\(752\) 2775.68 0.134599
\(753\) 0 0
\(754\) 15793.3 0.762808
\(755\) 18260.2 0.880207
\(756\) 0 0
\(757\) −9314.75 −0.447226 −0.223613 0.974678i \(-0.571785\pi\)
−0.223613 + 0.974678i \(0.571785\pi\)
\(758\) 37.9209 0.00181709
\(759\) 0 0
\(760\) −6922.40 −0.330397
\(761\) −13223.9 −0.629917 −0.314959 0.949105i \(-0.601991\pi\)
−0.314959 + 0.949105i \(0.601991\pi\)
\(762\) 0 0
\(763\) 13469.0 0.639069
\(764\) −19670.5 −0.931483
\(765\) 0 0
\(766\) 9164.41 0.432276
\(767\) 5639.94 0.265510
\(768\) 0 0
\(769\) −6700.61 −0.314214 −0.157107 0.987582i \(-0.550217\pi\)
−0.157107 + 0.987582i \(0.550217\pi\)
\(770\) 21521.7 1.00726
\(771\) 0 0
\(772\) 1849.64 0.0862308
\(773\) 17607.4 0.819266 0.409633 0.912250i \(-0.365657\pi\)
0.409633 + 0.912250i \(0.365657\pi\)
\(774\) 0 0
\(775\) 6766.33 0.313618
\(776\) −2748.74 −0.127157
\(777\) 0 0
\(778\) −17833.9 −0.821819
\(779\) 739.450 0.0340097
\(780\) 0 0
\(781\) 29981.0 1.37363
\(782\) −52.7819 −0.00241365
\(783\) 0 0
\(784\) 15233.4 0.693943
\(785\) 15362.0 0.698462
\(786\) 0 0
\(787\) −40685.3 −1.84279 −0.921393 0.388631i \(-0.872948\pi\)
−0.921393 + 0.388631i \(0.872948\pi\)
\(788\) −423.774 −0.0191578
\(789\) 0 0
\(790\) 8281.56 0.372968
\(791\) 57528.4 2.58594
\(792\) 0 0
\(793\) −9818.51 −0.439679
\(794\) 6543.29 0.292459
\(795\) 0 0
\(796\) −2750.05 −0.122453
\(797\) 1758.02 0.0781331 0.0390666 0.999237i \(-0.487562\pi\)
0.0390666 + 0.999237i \(0.487562\pi\)
\(798\) 0 0
\(799\) −199.057 −0.00881368
\(800\) −2303.64 −0.101807
\(801\) 0 0
\(802\) −8029.81 −0.353544
\(803\) −15997.0 −0.703015
\(804\) 0 0
\(805\) −6026.45 −0.263857
\(806\) −5406.62 −0.236278
\(807\) 0 0
\(808\) −14448.7 −0.629087
\(809\) 6510.49 0.282938 0.141469 0.989943i \(-0.454818\pi\)
0.141469 + 0.989943i \(0.454818\pi\)
\(810\) 0 0
\(811\) −14997.6 −0.649369 −0.324684 0.945822i \(-0.605258\pi\)
−0.324684 + 0.945822i \(0.605258\pi\)
\(812\) 39522.6 1.70809
\(813\) 0 0
\(814\) −1243.72 −0.0535532
\(815\) 16440.5 0.706609
\(816\) 0 0
\(817\) 22429.8 0.960487
\(818\) 12279.3 0.524859
\(819\) 0 0
\(820\) −181.205 −0.00771702
\(821\) −34974.5 −1.48674 −0.743372 0.668878i \(-0.766775\pi\)
−0.743372 + 0.668878i \(0.766775\pi\)
\(822\) 0 0
\(823\) −14794.5 −0.626616 −0.313308 0.949652i \(-0.601437\pi\)
−0.313308 + 0.949652i \(0.601437\pi\)
\(824\) −9983.85 −0.422092
\(825\) 0 0
\(826\) 14113.9 0.594535
\(827\) −4958.24 −0.208482 −0.104241 0.994552i \(-0.533241\pi\)
−0.104241 + 0.994552i \(0.533241\pi\)
\(828\) 0 0
\(829\) −7537.16 −0.315774 −0.157887 0.987457i \(-0.550468\pi\)
−0.157887 + 0.987457i \(0.550468\pi\)
\(830\) 17376.8 0.726695
\(831\) 0 0
\(832\) 1840.72 0.0767012
\(833\) −1092.46 −0.0454399
\(834\) 0 0
\(835\) −29536.4 −1.22413
\(836\) −19523.4 −0.807691
\(837\) 0 0
\(838\) −2389.05 −0.0984825
\(839\) 2097.47 0.0863082 0.0431541 0.999068i \(-0.486259\pi\)
0.0431541 + 0.999068i \(0.486259\pi\)
\(840\) 0 0
\(841\) 50993.5 2.09084
\(842\) −18276.4 −0.748034
\(843\) 0 0
\(844\) 16817.6 0.685884
\(845\) 9973.30 0.406026
\(846\) 0 0
\(847\) 12798.7 0.519209
\(848\) 7410.65 0.300098
\(849\) 0 0
\(850\) 165.205 0.00666644
\(851\) 348.264 0.0140286
\(852\) 0 0
\(853\) −28566.3 −1.14665 −0.573324 0.819328i \(-0.694347\pi\)
−0.573324 + 0.819328i \(0.694347\pi\)
\(854\) −24570.7 −0.984536
\(855\) 0 0
\(856\) −3941.14 −0.157366
\(857\) 13310.2 0.530535 0.265267 0.964175i \(-0.414540\pi\)
0.265267 + 0.964175i \(0.414540\pi\)
\(858\) 0 0
\(859\) 4372.20 0.173664 0.0868322 0.996223i \(-0.472326\pi\)
0.0868322 + 0.996223i \(0.472326\pi\)
\(860\) −5496.50 −0.217941
\(861\) 0 0
\(862\) 9551.70 0.377416
\(863\) 24600.4 0.970346 0.485173 0.874418i \(-0.338757\pi\)
0.485173 + 0.874418i \(0.338757\pi\)
\(864\) 0 0
\(865\) −6247.13 −0.245559
\(866\) −12011.7 −0.471332
\(867\) 0 0
\(868\) −13530.0 −0.529077
\(869\) 23356.6 0.911760
\(870\) 0 0
\(871\) 13338.7 0.518901
\(872\) 2994.16 0.116279
\(873\) 0 0
\(874\) 5466.89 0.211579
\(875\) 51614.9 1.99417
\(876\) 0 0
\(877\) 24776.6 0.953988 0.476994 0.878907i \(-0.341726\pi\)
0.476994 + 0.878907i \(0.341726\pi\)
\(878\) 32154.0 1.23593
\(879\) 0 0
\(880\) 4784.27 0.183270
\(881\) 14728.1 0.563225 0.281612 0.959528i \(-0.409131\pi\)
0.281612 + 0.959528i \(0.409131\pi\)
\(882\) 0 0
\(883\) 15491.8 0.590420 0.295210 0.955432i \(-0.404610\pi\)
0.295210 + 0.955432i \(0.404610\pi\)
\(884\) −132.006 −0.00502246
\(885\) 0 0
\(886\) 2036.20 0.0772093
\(887\) 946.347 0.0358233 0.0179116 0.999840i \(-0.494298\pi\)
0.0179116 + 0.999840i \(0.494298\pi\)
\(888\) 0 0
\(889\) 47521.7 1.79283
\(890\) −11360.8 −0.427882
\(891\) 0 0
\(892\) 13758.5 0.516445
\(893\) 20617.3 0.772601
\(894\) 0 0
\(895\) −24075.0 −0.899151
\(896\) 4606.38 0.171750
\(897\) 0 0
\(898\) 12931.0 0.480526
\(899\) −25806.2 −0.957381
\(900\) 0 0
\(901\) −531.452 −0.0196506
\(902\) −511.055 −0.0188651
\(903\) 0 0
\(904\) 12788.6 0.470511
\(905\) 1908.36 0.0700950
\(906\) 0 0
\(907\) 36233.2 1.32647 0.663233 0.748413i \(-0.269184\pi\)
0.663233 + 0.748413i \(0.269184\pi\)
\(908\) 11626.9 0.424949
\(909\) 0 0
\(910\) −15072.0 −0.549046
\(911\) −51440.1 −1.87079 −0.935394 0.353607i \(-0.884955\pi\)
−0.935394 + 0.353607i \(0.884955\pi\)
\(912\) 0 0
\(913\) 49008.0 1.77648
\(914\) −13967.2 −0.505463
\(915\) 0 0
\(916\) −24882.2 −0.897524
\(917\) −19235.3 −0.692701
\(918\) 0 0
\(919\) −2379.26 −0.0854020 −0.0427010 0.999088i \(-0.513596\pi\)
−0.0427010 + 0.999088i \(0.513596\pi\)
\(920\) −1339.68 −0.0480087
\(921\) 0 0
\(922\) 16570.1 0.591873
\(923\) −20996.2 −0.748754
\(924\) 0 0
\(925\) −1090.05 −0.0387465
\(926\) −35869.0 −1.27292
\(927\) 0 0
\(928\) 8785.88 0.310787
\(929\) −8555.16 −0.302137 −0.151069 0.988523i \(-0.548271\pi\)
−0.151069 + 0.988523i \(0.548271\pi\)
\(930\) 0 0
\(931\) 113151. 3.98323
\(932\) −21262.7 −0.747300
\(933\) 0 0
\(934\) 21119.5 0.739882
\(935\) −343.102 −0.0120007
\(936\) 0 0
\(937\) 33864.3 1.18068 0.590340 0.807155i \(-0.298994\pi\)
0.590340 + 0.807155i \(0.298994\pi\)
\(938\) 33379.9 1.16193
\(939\) 0 0
\(940\) −5052.36 −0.175308
\(941\) 48573.1 1.68272 0.841360 0.540475i \(-0.181756\pi\)
0.841360 + 0.540475i \(0.181756\pi\)
\(942\) 0 0
\(943\) 143.105 0.00494181
\(944\) 3137.53 0.108176
\(945\) 0 0
\(946\) −15501.9 −0.532779
\(947\) 13683.6 0.469542 0.234771 0.972051i \(-0.424566\pi\)
0.234771 + 0.972051i \(0.424566\pi\)
\(948\) 0 0
\(949\) 11203.0 0.383207
\(950\) −17111.1 −0.584375
\(951\) 0 0
\(952\) −330.345 −0.0112464
\(953\) −38125.9 −1.29593 −0.647964 0.761671i \(-0.724379\pi\)
−0.647964 + 0.761671i \(0.724379\pi\)
\(954\) 0 0
\(955\) 35804.6 1.21320
\(956\) −6534.27 −0.221060
\(957\) 0 0
\(958\) −12351.0 −0.416536
\(959\) −91579.2 −3.08368
\(960\) 0 0
\(961\) −20956.6 −0.703454
\(962\) 870.999 0.0291914
\(963\) 0 0
\(964\) 122.101 0.00407948
\(965\) −3366.76 −0.112311
\(966\) 0 0
\(967\) 24301.7 0.808159 0.404079 0.914724i \(-0.367592\pi\)
0.404079 + 0.914724i \(0.367592\pi\)
\(968\) 2845.17 0.0944701
\(969\) 0 0
\(970\) 5003.32 0.165615
\(971\) −52900.8 −1.74837 −0.874186 0.485592i \(-0.838604\pi\)
−0.874186 + 0.485592i \(0.838604\pi\)
\(972\) 0 0
\(973\) −71524.6 −2.35660
\(974\) −33232.9 −1.09327
\(975\) 0 0
\(976\) −5462.09 −0.179136
\(977\) 37262.3 1.22019 0.610095 0.792329i \(-0.291131\pi\)
0.610095 + 0.792329i \(0.291131\pi\)
\(978\) 0 0
\(979\) −32041.0 −1.04600
\(980\) −27728.2 −0.903821
\(981\) 0 0
\(982\) 3846.83 0.125007
\(983\) −11137.2 −0.361366 −0.180683 0.983541i \(-0.557831\pi\)
−0.180683 + 0.983541i \(0.557831\pi\)
\(984\) 0 0
\(985\) 771.363 0.0249519
\(986\) −630.076 −0.0203506
\(987\) 0 0
\(988\) 13672.6 0.440265
\(989\) 4340.80 0.139565
\(990\) 0 0
\(991\) 24618.4 0.789130 0.394565 0.918868i \(-0.370895\pi\)
0.394565 + 0.918868i \(0.370895\pi\)
\(992\) −3007.73 −0.0962656
\(993\) 0 0
\(994\) −52542.9 −1.67662
\(995\) 5005.69 0.159489
\(996\) 0 0
\(997\) −29265.4 −0.929635 −0.464817 0.885407i \(-0.653880\pi\)
−0.464817 + 0.885407i \(0.653880\pi\)
\(998\) −4003.53 −0.126983
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 414.4.a.n.1.2 yes 4
3.2 odd 2 414.4.a.m.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
414.4.a.m.1.3 4 3.2 odd 2
414.4.a.n.1.2 yes 4 1.1 even 1 trivial