Properties

Label 414.4.a.n
Level $414$
Weight $4$
Character orbit 414.a
Self dual yes
Analytic conductor $24.427$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,4,Mod(1,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4267907424\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 219x^{2} - 468x + 3240 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + \beta_{3} q^{5} + (\beta_{2} + 5) q^{7} + 8 q^{8} + 2 \beta_{3} q^{10} + (\beta_{3} - \beta_{2} + \beta_1 + 10) q^{11} + ( - 2 \beta_{3} + \beta_1 + 27) q^{13} + (2 \beta_{2} + 10) q^{14}+ \cdots + ( - 56 \beta_{3} + 28 \beta_{2} + \cdots + 552) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 16 q^{4} + 18 q^{7} + 32 q^{8} + 42 q^{11} + 108 q^{13} + 36 q^{14} + 64 q^{16} + 26 q^{17} + 132 q^{19} + 84 q^{22} + 92 q^{23} + 260 q^{25} + 216 q^{26} + 72 q^{28} + 252 q^{29} + 428 q^{31}+ \cdots + 2152 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 219x^{2} - 468x + 3240 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 5\nu^{2} - 168\nu - 54 ) / 18 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{2} - 5\nu - 108 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 12\beta_{3} + 5\beta _1 + 221 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 60\beta_{3} + 36\beta_{2} + 193\beta _1 + 1381 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.93708
−5.90028
16.3784
−11.4152
2.00000 0 4.00000 −19.0098 0 −26.4014 8.00000 0 −38.0197
1.2 2.00000 0 4.00000 −7.28088 0 35.9873 8.00000 0 −14.5618
1.3 2.00000 0 4.00000 13.0601 0 18.7067 8.00000 0 26.1202
1.4 2.00000 0 4.00000 13.2306 0 −10.2926 8.00000 0 26.4612
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 414.4.a.n yes 4
3.b odd 2 1 414.4.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
414.4.a.m 4 3.b odd 2 1
414.4.a.n yes 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(414))\):

\( T_{5}^{4} - 380T_{5}^{2} + 904T_{5} + 23916 \) Copy content Toggle raw display
\( T_{7}^{4} - 18T_{7}^{3} - 1062T_{7}^{2} + 9840T_{7} + 182936 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 380 T^{2} + \cdots + 23916 \) Copy content Toggle raw display
$7$ \( T^{4} - 18 T^{3} + \cdots + 182936 \) Copy content Toggle raw display
$11$ \( T^{4} - 42 T^{3} + \cdots - 676368 \) Copy content Toggle raw display
$13$ \( T^{4} - 108 T^{3} + \cdots - 1528096 \) Copy content Toggle raw display
$17$ \( T^{4} - 26 T^{3} + \cdots - 160272 \) Copy content Toggle raw display
$19$ \( T^{4} - 132 T^{3} + \cdots - 144765684 \) Copy content Toggle raw display
$23$ \( (T - 23)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 252 T^{3} + \cdots + 152282592 \) Copy content Toggle raw display
$31$ \( T^{4} - 428 T^{3} + \cdots + 189998432 \) Copy content Toggle raw display
$37$ \( T^{4} - 278 T^{3} + \cdots - 627096 \) Copy content Toggle raw display
$41$ \( T^{4} + 4 T^{3} + \cdots + 59580480 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 4885011324 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 3721395696 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 28977105756 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 18288334080 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 33871710232 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 5950476756 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 47749357440 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 13734027872 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 102430136424 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 16894365072 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 815730086592 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 411321121872 \) Copy content Toggle raw display
show more
show less