Properties

Label 414.4.a.m.1.3
Level $414$
Weight $4$
Character 414.1
Self dual yes
Analytic conductor $24.427$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,4,Mod(1,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4267907424\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 219x^{2} - 468x + 3240 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.90028\) of defining polynomial
Character \(\chi\) \(=\) 414.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +7.28088 q^{5} +35.9873 q^{7} -8.00000 q^{8} -14.5618 q^{10} +41.0688 q^{11} +28.7612 q^{13} -71.9747 q^{14} +16.0000 q^{16} +1.14743 q^{17} +118.845 q^{19} +29.1235 q^{20} -82.1376 q^{22} -23.0000 q^{23} -71.9888 q^{25} -57.5224 q^{26} +143.949 q^{28} -274.559 q^{29} -93.9916 q^{31} -32.0000 q^{32} -2.29487 q^{34} +262.020 q^{35} +15.1419 q^{37} -237.691 q^{38} -58.2471 q^{40} -6.22194 q^{41} +188.731 q^{43} +164.275 q^{44} +46.0000 q^{46} -173.480 q^{47} +952.089 q^{49} +143.978 q^{50} +115.045 q^{52} -463.166 q^{53} +299.017 q^{55} -287.899 q^{56} +549.118 q^{58} -196.095 q^{59} -341.380 q^{61} +187.983 q^{62} +64.0000 q^{64} +209.407 q^{65} +463.772 q^{67} +4.58973 q^{68} -524.039 q^{70} +730.020 q^{71} +389.517 q^{73} -30.2838 q^{74} +475.382 q^{76} +1477.96 q^{77} -568.720 q^{79} +116.494 q^{80} +12.4439 q^{82} +1193.32 q^{83} +8.35433 q^{85} -377.461 q^{86} -328.550 q^{88} -780.180 q^{89} +1035.04 q^{91} -92.0000 q^{92} +346.960 q^{94} +865.300 q^{95} -343.593 q^{97} -1904.18 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} + 18 q^{7} - 32 q^{8} - 42 q^{11} + 108 q^{13} - 36 q^{14} + 64 q^{16} - 26 q^{17} + 132 q^{19} + 84 q^{22} - 92 q^{23} + 260 q^{25} - 216 q^{26} + 72 q^{28} - 252 q^{29} + 428 q^{31}+ \cdots - 2152 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 7.28088 0.651222 0.325611 0.945504i \(-0.394430\pi\)
0.325611 + 0.945504i \(0.394430\pi\)
\(6\) 0 0
\(7\) 35.9873 1.94313 0.971567 0.236764i \(-0.0760870\pi\)
0.971567 + 0.236764i \(0.0760870\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −14.5618 −0.460483
\(11\) 41.0688 1.12570 0.562850 0.826559i \(-0.309705\pi\)
0.562850 + 0.826559i \(0.309705\pi\)
\(12\) 0 0
\(13\) 28.7612 0.613609 0.306805 0.951772i \(-0.400740\pi\)
0.306805 + 0.951772i \(0.400740\pi\)
\(14\) −71.9747 −1.37400
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 1.14743 0.0163702 0.00818510 0.999967i \(-0.497395\pi\)
0.00818510 + 0.999967i \(0.497395\pi\)
\(18\) 0 0
\(19\) 118.845 1.43500 0.717500 0.696558i \(-0.245286\pi\)
0.717500 + 0.696558i \(0.245286\pi\)
\(20\) 29.1235 0.325611
\(21\) 0 0
\(22\) −82.1376 −0.795991
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −71.9888 −0.575910
\(26\) −57.5224 −0.433887
\(27\) 0 0
\(28\) 143.949 0.971567
\(29\) −274.559 −1.75808 −0.879039 0.476749i \(-0.841815\pi\)
−0.879039 + 0.476749i \(0.841815\pi\)
\(30\) 0 0
\(31\) −93.9916 −0.544561 −0.272280 0.962218i \(-0.587778\pi\)
−0.272280 + 0.962218i \(0.587778\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −2.29487 −0.0115755
\(35\) 262.020 1.26541
\(36\) 0 0
\(37\) 15.1419 0.0672787 0.0336394 0.999434i \(-0.489290\pi\)
0.0336394 + 0.999434i \(0.489290\pi\)
\(38\) −237.691 −1.01470
\(39\) 0 0
\(40\) −58.2471 −0.230242
\(41\) −6.22194 −0.0237001 −0.0118501 0.999930i \(-0.503772\pi\)
−0.0118501 + 0.999930i \(0.503772\pi\)
\(42\) 0 0
\(43\) 188.731 0.669329 0.334664 0.942337i \(-0.391377\pi\)
0.334664 + 0.942337i \(0.391377\pi\)
\(44\) 164.275 0.562850
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) −173.480 −0.538398 −0.269199 0.963085i \(-0.586759\pi\)
−0.269199 + 0.963085i \(0.586759\pi\)
\(48\) 0 0
\(49\) 952.089 2.77577
\(50\) 143.978 0.407230
\(51\) 0 0
\(52\) 115.045 0.306805
\(53\) −463.166 −1.20039 −0.600195 0.799854i \(-0.704910\pi\)
−0.600195 + 0.799854i \(0.704910\pi\)
\(54\) 0 0
\(55\) 299.017 0.733081
\(56\) −287.899 −0.687002
\(57\) 0 0
\(58\) 549.118 1.24315
\(59\) −196.095 −0.432703 −0.216351 0.976316i \(-0.569416\pi\)
−0.216351 + 0.976316i \(0.569416\pi\)
\(60\) 0 0
\(61\) −341.380 −0.716545 −0.358273 0.933617i \(-0.616634\pi\)
−0.358273 + 0.933617i \(0.616634\pi\)
\(62\) 187.983 0.385063
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 209.407 0.399596
\(66\) 0 0
\(67\) 463.772 0.845654 0.422827 0.906210i \(-0.361038\pi\)
0.422827 + 0.906210i \(0.361038\pi\)
\(68\) 4.58973 0.00818510
\(69\) 0 0
\(70\) −524.039 −0.894781
\(71\) 730.020 1.22024 0.610122 0.792307i \(-0.291120\pi\)
0.610122 + 0.792307i \(0.291120\pi\)
\(72\) 0 0
\(73\) 389.517 0.624514 0.312257 0.949998i \(-0.398915\pi\)
0.312257 + 0.949998i \(0.398915\pi\)
\(74\) −30.2838 −0.0475732
\(75\) 0 0
\(76\) 475.382 0.717500
\(77\) 1477.96 2.18739
\(78\) 0 0
\(79\) −568.720 −0.809949 −0.404975 0.914328i \(-0.632720\pi\)
−0.404975 + 0.914328i \(0.632720\pi\)
\(80\) 116.494 0.162805
\(81\) 0 0
\(82\) 12.4439 0.0167585
\(83\) 1193.32 1.57811 0.789057 0.614321i \(-0.210570\pi\)
0.789057 + 0.614321i \(0.210570\pi\)
\(84\) 0 0
\(85\) 8.35433 0.0106606
\(86\) −377.461 −0.473287
\(87\) 0 0
\(88\) −328.550 −0.397995
\(89\) −780.180 −0.929201 −0.464601 0.885520i \(-0.653802\pi\)
−0.464601 + 0.885520i \(0.653802\pi\)
\(90\) 0 0
\(91\) 1035.04 1.19233
\(92\) −92.0000 −0.104257
\(93\) 0 0
\(94\) 346.960 0.380705
\(95\) 865.300 0.934504
\(96\) 0 0
\(97\) −343.593 −0.359655 −0.179828 0.983698i \(-0.557554\pi\)
−0.179828 + 0.983698i \(0.557554\pi\)
\(98\) −1904.18 −1.96277
\(99\) 0 0
\(100\) −287.955 −0.287955
\(101\) 1806.08 1.77933 0.889664 0.456616i \(-0.150939\pi\)
0.889664 + 0.456616i \(0.150939\pi\)
\(102\) 0 0
\(103\) −1247.98 −1.19386 −0.596928 0.802295i \(-0.703612\pi\)
−0.596928 + 0.802295i \(0.703612\pi\)
\(104\) −230.090 −0.216944
\(105\) 0 0
\(106\) 926.331 0.848804
\(107\) 492.642 0.445099 0.222549 0.974921i \(-0.428562\pi\)
0.222549 + 0.974921i \(0.428562\pi\)
\(108\) 0 0
\(109\) 374.270 0.328886 0.164443 0.986387i \(-0.447417\pi\)
0.164443 + 0.986387i \(0.447417\pi\)
\(110\) −598.034 −0.518366
\(111\) 0 0
\(112\) 575.798 0.485784
\(113\) −1598.57 −1.33081 −0.665403 0.746484i \(-0.731740\pi\)
−0.665403 + 0.746484i \(0.731740\pi\)
\(114\) 0 0
\(115\) −167.460 −0.135789
\(116\) −1098.24 −0.879039
\(117\) 0 0
\(118\) 392.191 0.305967
\(119\) 41.2931 0.0318095
\(120\) 0 0
\(121\) 355.646 0.267202
\(122\) 682.761 0.506674
\(123\) 0 0
\(124\) −375.966 −0.272280
\(125\) −1434.25 −1.02627
\(126\) 0 0
\(127\) 1320.51 0.922650 0.461325 0.887231i \(-0.347374\pi\)
0.461325 + 0.887231i \(0.347374\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −418.814 −0.282557
\(131\) 534.502 0.356486 0.178243 0.983986i \(-0.442959\pi\)
0.178243 + 0.983986i \(0.442959\pi\)
\(132\) 0 0
\(133\) 4276.93 2.78840
\(134\) −927.545 −0.597968
\(135\) 0 0
\(136\) −9.17947 −0.00578774
\(137\) 2544.76 1.58696 0.793481 0.608595i \(-0.208267\pi\)
0.793481 + 0.608595i \(0.208267\pi\)
\(138\) 0 0
\(139\) −1987.49 −1.21278 −0.606392 0.795166i \(-0.707384\pi\)
−0.606392 + 0.795166i \(0.707384\pi\)
\(140\) 1048.08 0.632706
\(141\) 0 0
\(142\) −1460.04 −0.862843
\(143\) 1181.19 0.690741
\(144\) 0 0
\(145\) −1999.03 −1.14490
\(146\) −779.034 −0.441598
\(147\) 0 0
\(148\) 60.5676 0.0336394
\(149\) 2755.79 1.51519 0.757596 0.652724i \(-0.226374\pi\)
0.757596 + 0.652724i \(0.226374\pi\)
\(150\) 0 0
\(151\) −2507.96 −1.35162 −0.675812 0.737074i \(-0.736207\pi\)
−0.675812 + 0.737074i \(0.736207\pi\)
\(152\) −950.764 −0.507349
\(153\) 0 0
\(154\) −2955.91 −1.54672
\(155\) −684.341 −0.354630
\(156\) 0 0
\(157\) −2109.91 −1.07254 −0.536270 0.844046i \(-0.680167\pi\)
−0.536270 + 0.844046i \(0.680167\pi\)
\(158\) 1137.44 0.572720
\(159\) 0 0
\(160\) −232.988 −0.115121
\(161\) −827.709 −0.405171
\(162\) 0 0
\(163\) −2258.04 −1.08505 −0.542526 0.840039i \(-0.682532\pi\)
−0.542526 + 0.840039i \(0.682532\pi\)
\(164\) −24.8878 −0.0118501
\(165\) 0 0
\(166\) −2386.63 −1.11589
\(167\) −4056.70 −1.87974 −0.939872 0.341528i \(-0.889056\pi\)
−0.939872 + 0.341528i \(0.889056\pi\)
\(168\) 0 0
\(169\) −1369.79 −0.623483
\(170\) −16.7087 −0.00753821
\(171\) 0 0
\(172\) 754.922 0.334664
\(173\) −858.019 −0.377075 −0.188537 0.982066i \(-0.560375\pi\)
−0.188537 + 0.982066i \(0.560375\pi\)
\(174\) 0 0
\(175\) −2590.68 −1.11907
\(176\) 657.101 0.281425
\(177\) 0 0
\(178\) 1560.36 0.657044
\(179\) −3306.61 −1.38071 −0.690356 0.723469i \(-0.742546\pi\)
−0.690356 + 0.723469i \(0.742546\pi\)
\(180\) 0 0
\(181\) −262.105 −0.107636 −0.0538181 0.998551i \(-0.517139\pi\)
−0.0538181 + 0.998551i \(0.517139\pi\)
\(182\) −2070.08 −0.843101
\(183\) 0 0
\(184\) 184.000 0.0737210
\(185\) 110.246 0.0438134
\(186\) 0 0
\(187\) 47.1237 0.0184279
\(188\) −693.921 −0.269199
\(189\) 0 0
\(190\) −1730.60 −0.660794
\(191\) 4917.62 1.86297 0.931483 0.363786i \(-0.118516\pi\)
0.931483 + 0.363786i \(0.118516\pi\)
\(192\) 0 0
\(193\) 462.411 0.172462 0.0862308 0.996275i \(-0.472518\pi\)
0.0862308 + 0.996275i \(0.472518\pi\)
\(194\) 687.186 0.254315
\(195\) 0 0
\(196\) 3808.36 1.38789
\(197\) 105.944 0.0383156 0.0191578 0.999816i \(-0.493902\pi\)
0.0191578 + 0.999816i \(0.493902\pi\)
\(198\) 0 0
\(199\) −687.512 −0.244907 −0.122453 0.992474i \(-0.539076\pi\)
−0.122453 + 0.992474i \(0.539076\pi\)
\(200\) 575.910 0.203615
\(201\) 0 0
\(202\) −3612.17 −1.25817
\(203\) −9880.64 −3.41618
\(204\) 0 0
\(205\) −45.3012 −0.0154340
\(206\) 2495.96 0.844184
\(207\) 0 0
\(208\) 460.179 0.153402
\(209\) 4880.84 1.61538
\(210\) 0 0
\(211\) 4204.41 1.37177 0.685884 0.727711i \(-0.259416\pi\)
0.685884 + 0.727711i \(0.259416\pi\)
\(212\) −1852.66 −0.600195
\(213\) 0 0
\(214\) −985.285 −0.314732
\(215\) 1374.12 0.435882
\(216\) 0 0
\(217\) −3382.51 −1.05815
\(218\) −748.540 −0.232557
\(219\) 0 0
\(220\) 1196.07 0.366540
\(221\) 33.0016 0.0100449
\(222\) 0 0
\(223\) 3439.63 1.03289 0.516445 0.856320i \(-0.327255\pi\)
0.516445 + 0.856320i \(0.327255\pi\)
\(224\) −1151.60 −0.343501
\(225\) 0 0
\(226\) 3197.15 0.941022
\(227\) −2906.74 −0.849898 −0.424949 0.905217i \(-0.639708\pi\)
−0.424949 + 0.905217i \(0.639708\pi\)
\(228\) 0 0
\(229\) −6220.56 −1.79505 −0.897524 0.440965i \(-0.854636\pi\)
−0.897524 + 0.440965i \(0.854636\pi\)
\(230\) 334.921 0.0960174
\(231\) 0 0
\(232\) 2196.47 0.621575
\(233\) 5315.68 1.49460 0.747300 0.664487i \(-0.231350\pi\)
0.747300 + 0.664487i \(0.231350\pi\)
\(234\) 0 0
\(235\) −1263.09 −0.350616
\(236\) −784.382 −0.216351
\(237\) 0 0
\(238\) −82.5862 −0.0224927
\(239\) 1633.57 0.442120 0.221060 0.975260i \(-0.429048\pi\)
0.221060 + 0.975260i \(0.429048\pi\)
\(240\) 0 0
\(241\) 30.5253 0.00815896 0.00407948 0.999992i \(-0.498701\pi\)
0.00407948 + 0.999992i \(0.498701\pi\)
\(242\) −711.291 −0.188940
\(243\) 0 0
\(244\) −1365.52 −0.358273
\(245\) 6932.05 1.80764
\(246\) 0 0
\(247\) 3418.14 0.880530
\(248\) 751.932 0.192531
\(249\) 0 0
\(250\) 2868.50 0.725680
\(251\) −5864.81 −1.47483 −0.737417 0.675437i \(-0.763955\pi\)
−0.737417 + 0.675437i \(0.763955\pi\)
\(252\) 0 0
\(253\) −944.582 −0.234725
\(254\) −2641.02 −0.652412
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5350.14 1.29857 0.649285 0.760545i \(-0.275068\pi\)
0.649285 + 0.760545i \(0.275068\pi\)
\(258\) 0 0
\(259\) 544.917 0.130732
\(260\) 837.628 0.199798
\(261\) 0 0
\(262\) −1069.00 −0.252074
\(263\) −4957.27 −1.16228 −0.581138 0.813805i \(-0.697392\pi\)
−0.581138 + 0.813805i \(0.697392\pi\)
\(264\) 0 0
\(265\) −3372.25 −0.781720
\(266\) −8553.87 −1.97170
\(267\) 0 0
\(268\) 1855.09 0.422827
\(269\) 223.436 0.0506437 0.0253218 0.999679i \(-0.491939\pi\)
0.0253218 + 0.999679i \(0.491939\pi\)
\(270\) 0 0
\(271\) −5153.96 −1.15528 −0.577640 0.816292i \(-0.696026\pi\)
−0.577640 + 0.816292i \(0.696026\pi\)
\(272\) 18.3589 0.00409255
\(273\) 0 0
\(274\) −5089.52 −1.12215
\(275\) −2956.49 −0.648302
\(276\) 0 0
\(277\) 6182.51 1.34105 0.670526 0.741886i \(-0.266069\pi\)
0.670526 + 0.741886i \(0.266069\pi\)
\(278\) 3974.99 0.857568
\(279\) 0 0
\(280\) −2096.16 −0.447391
\(281\) 3704.01 0.786345 0.393172 0.919465i \(-0.371378\pi\)
0.393172 + 0.919465i \(0.371378\pi\)
\(282\) 0 0
\(283\) 1947.10 0.408986 0.204493 0.978868i \(-0.434445\pi\)
0.204493 + 0.978868i \(0.434445\pi\)
\(284\) 2920.08 0.610122
\(285\) 0 0
\(286\) −2362.38 −0.488427
\(287\) −223.911 −0.0460525
\(288\) 0 0
\(289\) −4911.68 −0.999732
\(290\) 3998.06 0.809566
\(291\) 0 0
\(292\) 1558.07 0.312257
\(293\) 52.2109 0.0104102 0.00520510 0.999986i \(-0.498343\pi\)
0.00520510 + 0.999986i \(0.498343\pi\)
\(294\) 0 0
\(295\) −1427.75 −0.281785
\(296\) −121.135 −0.0237866
\(297\) 0 0
\(298\) −5511.59 −1.07140
\(299\) −661.508 −0.127946
\(300\) 0 0
\(301\) 6791.91 1.30060
\(302\) 5015.93 0.955742
\(303\) 0 0
\(304\) 1901.53 0.358750
\(305\) −2485.55 −0.466630
\(306\) 0 0
\(307\) 9584.44 1.78180 0.890900 0.454199i \(-0.150074\pi\)
0.890900 + 0.454199i \(0.150074\pi\)
\(308\) 5911.83 1.09369
\(309\) 0 0
\(310\) 1368.68 0.250761
\(311\) 9148.29 1.66801 0.834006 0.551755i \(-0.186042\pi\)
0.834006 + 0.551755i \(0.186042\pi\)
\(312\) 0 0
\(313\) 443.616 0.0801107 0.0400553 0.999197i \(-0.487247\pi\)
0.0400553 + 0.999197i \(0.487247\pi\)
\(314\) 4219.81 0.758401
\(315\) 0 0
\(316\) −2274.88 −0.404975
\(317\) −6926.81 −1.22728 −0.613641 0.789585i \(-0.710296\pi\)
−0.613641 + 0.789585i \(0.710296\pi\)
\(318\) 0 0
\(319\) −11275.8 −1.97907
\(320\) 465.976 0.0814027
\(321\) 0 0
\(322\) 1655.42 0.286500
\(323\) 136.367 0.0234913
\(324\) 0 0
\(325\) −2070.48 −0.353384
\(326\) 4516.08 0.767247
\(327\) 0 0
\(328\) 49.7756 0.00837925
\(329\) −6243.09 −1.04618
\(330\) 0 0
\(331\) 677.095 0.112437 0.0562183 0.998419i \(-0.482096\pi\)
0.0562183 + 0.998419i \(0.482096\pi\)
\(332\) 4773.26 0.789057
\(333\) 0 0
\(334\) 8113.41 1.32918
\(335\) 3376.67 0.550708
\(336\) 0 0
\(337\) −3143.44 −0.508113 −0.254056 0.967189i \(-0.581765\pi\)
−0.254056 + 0.967189i \(0.581765\pi\)
\(338\) 2739.59 0.440869
\(339\) 0 0
\(340\) 33.4173 0.00533032
\(341\) −3860.12 −0.613012
\(342\) 0 0
\(343\) 21919.5 3.45056
\(344\) −1509.84 −0.236643
\(345\) 0 0
\(346\) 1716.04 0.266632
\(347\) −1700.89 −0.263137 −0.131569 0.991307i \(-0.542001\pi\)
−0.131569 + 0.991307i \(0.542001\pi\)
\(348\) 0 0
\(349\) 11022.8 1.69065 0.845324 0.534254i \(-0.179407\pi\)
0.845324 + 0.534254i \(0.179407\pi\)
\(350\) 5181.37 0.791302
\(351\) 0 0
\(352\) −1314.20 −0.198998
\(353\) −3717.19 −0.560471 −0.280235 0.959931i \(-0.590412\pi\)
−0.280235 + 0.959931i \(0.590412\pi\)
\(354\) 0 0
\(355\) 5315.19 0.794650
\(356\) −3120.72 −0.464601
\(357\) 0 0
\(358\) 6613.22 0.976311
\(359\) 928.351 0.136480 0.0682402 0.997669i \(-0.478262\pi\)
0.0682402 + 0.997669i \(0.478262\pi\)
\(360\) 0 0
\(361\) 7265.24 1.05923
\(362\) 524.211 0.0761102
\(363\) 0 0
\(364\) 4140.16 0.596163
\(365\) 2836.03 0.406697
\(366\) 0 0
\(367\) −2808.73 −0.399494 −0.199747 0.979848i \(-0.564012\pi\)
−0.199747 + 0.979848i \(0.564012\pi\)
\(368\) −368.000 −0.0521286
\(369\) 0 0
\(370\) −220.493 −0.0309807
\(371\) −16668.1 −2.33252
\(372\) 0 0
\(373\) −4512.14 −0.626353 −0.313177 0.949695i \(-0.601393\pi\)
−0.313177 + 0.949695i \(0.601393\pi\)
\(374\) −94.2474 −0.0130305
\(375\) 0 0
\(376\) 1387.84 0.190352
\(377\) −7896.64 −1.07877
\(378\) 0 0
\(379\) 18.9605 0.00256975 0.00128487 0.999999i \(-0.499591\pi\)
0.00128487 + 0.999999i \(0.499591\pi\)
\(380\) 3461.20 0.467252
\(381\) 0 0
\(382\) −9835.24 −1.31732
\(383\) −4582.21 −0.611331 −0.305665 0.952139i \(-0.598879\pi\)
−0.305665 + 0.952139i \(0.598879\pi\)
\(384\) 0 0
\(385\) 10760.8 1.42447
\(386\) −924.822 −0.121949
\(387\) 0 0
\(388\) −1374.37 −0.179828
\(389\) 8916.93 1.16223 0.581114 0.813822i \(-0.302617\pi\)
0.581114 + 0.813822i \(0.302617\pi\)
\(390\) 0 0
\(391\) −26.3910 −0.00341342
\(392\) −7616.71 −0.981383
\(393\) 0 0
\(394\) −211.887 −0.0270932
\(395\) −4140.78 −0.527457
\(396\) 0 0
\(397\) 3271.65 0.413600 0.206800 0.978383i \(-0.433695\pi\)
0.206800 + 0.978383i \(0.433695\pi\)
\(398\) 1375.02 0.173175
\(399\) 0 0
\(400\) −1151.82 −0.143978
\(401\) 4014.90 0.499987 0.249993 0.968248i \(-0.419572\pi\)
0.249993 + 0.968248i \(0.419572\pi\)
\(402\) 0 0
\(403\) −2703.31 −0.334148
\(404\) 7224.34 0.889664
\(405\) 0 0
\(406\) 19761.3 2.41561
\(407\) 621.860 0.0757357
\(408\) 0 0
\(409\) 6139.64 0.742263 0.371131 0.928580i \(-0.378970\pi\)
0.371131 + 0.928580i \(0.378970\pi\)
\(410\) 90.6025 0.0109135
\(411\) 0 0
\(412\) −4991.92 −0.596928
\(413\) −7056.95 −0.840799
\(414\) 0 0
\(415\) 8688.39 1.02770
\(416\) −920.359 −0.108472
\(417\) 0 0
\(418\) −9761.68 −1.14225
\(419\) 1194.52 0.139275 0.0696376 0.997572i \(-0.477816\pi\)
0.0696376 + 0.997572i \(0.477816\pi\)
\(420\) 0 0
\(421\) −9138.18 −1.05788 −0.528940 0.848659i \(-0.677410\pi\)
−0.528940 + 0.848659i \(0.677410\pi\)
\(422\) −8408.81 −0.969987
\(423\) 0 0
\(424\) 3705.32 0.424402
\(425\) −82.6023 −0.00942776
\(426\) 0 0
\(427\) −12285.4 −1.39234
\(428\) 1970.57 0.222549
\(429\) 0 0
\(430\) −2748.25 −0.308215
\(431\) −4775.85 −0.533746 −0.266873 0.963732i \(-0.585990\pi\)
−0.266873 + 0.963732i \(0.585990\pi\)
\(432\) 0 0
\(433\) −6005.84 −0.666564 −0.333282 0.942827i \(-0.608156\pi\)
−0.333282 + 0.942827i \(0.608156\pi\)
\(434\) 6765.01 0.748228
\(435\) 0 0
\(436\) 1497.08 0.164443
\(437\) −2733.45 −0.299218
\(438\) 0 0
\(439\) 16077.0 1.74786 0.873932 0.486048i \(-0.161562\pi\)
0.873932 + 0.486048i \(0.161562\pi\)
\(440\) −2392.14 −0.259183
\(441\) 0 0
\(442\) −66.0031 −0.00710283
\(443\) −1018.10 −0.109190 −0.0545952 0.998509i \(-0.517387\pi\)
−0.0545952 + 0.998509i \(0.517387\pi\)
\(444\) 0 0
\(445\) −5680.40 −0.605116
\(446\) −6879.26 −0.730364
\(447\) 0 0
\(448\) 2303.19 0.242892
\(449\) −6465.49 −0.679567 −0.339783 0.940504i \(-0.610354\pi\)
−0.339783 + 0.940504i \(0.610354\pi\)
\(450\) 0 0
\(451\) −255.528 −0.0266792
\(452\) −6394.29 −0.665403
\(453\) 0 0
\(454\) 5813.47 0.600969
\(455\) 7536.00 0.776469
\(456\) 0 0
\(457\) −6983.59 −0.714833 −0.357416 0.933945i \(-0.616342\pi\)
−0.357416 + 0.933945i \(0.616342\pi\)
\(458\) 12441.1 1.26929
\(459\) 0 0
\(460\) −669.841 −0.0678946
\(461\) −8285.05 −0.837035 −0.418517 0.908209i \(-0.637450\pi\)
−0.418517 + 0.908209i \(0.637450\pi\)
\(462\) 0 0
\(463\) −17934.5 −1.80019 −0.900093 0.435697i \(-0.856502\pi\)
−0.900093 + 0.435697i \(0.856502\pi\)
\(464\) −4392.94 −0.439520
\(465\) 0 0
\(466\) −10631.4 −1.05684
\(467\) −10559.7 −1.04635 −0.523176 0.852225i \(-0.675253\pi\)
−0.523176 + 0.852225i \(0.675253\pi\)
\(468\) 0 0
\(469\) 16689.9 1.64322
\(470\) 2526.18 0.247923
\(471\) 0 0
\(472\) 1568.76 0.152983
\(473\) 7750.93 0.753464
\(474\) 0 0
\(475\) −8555.54 −0.826431
\(476\) 165.172 0.0159048
\(477\) 0 0
\(478\) −3267.14 −0.312626
\(479\) 6175.49 0.589071 0.294536 0.955641i \(-0.404835\pi\)
0.294536 + 0.955641i \(0.404835\pi\)
\(480\) 0 0
\(481\) 435.499 0.0412829
\(482\) −61.0506 −0.00576925
\(483\) 0 0
\(484\) 1422.58 0.133601
\(485\) −2501.66 −0.234215
\(486\) 0 0
\(487\) −16616.4 −1.54612 −0.773062 0.634331i \(-0.781276\pi\)
−0.773062 + 0.634331i \(0.781276\pi\)
\(488\) 2731.04 0.253337
\(489\) 0 0
\(490\) −13864.1 −1.27820
\(491\) −1923.41 −0.176787 −0.0883936 0.996086i \(-0.528173\pi\)
−0.0883936 + 0.996086i \(0.528173\pi\)
\(492\) 0 0
\(493\) −315.038 −0.0287801
\(494\) −6836.28 −0.622629
\(495\) 0 0
\(496\) −1503.86 −0.136140
\(497\) 26271.5 2.37110
\(498\) 0 0
\(499\) −2001.76 −0.179582 −0.0897908 0.995961i \(-0.528620\pi\)
−0.0897908 + 0.995961i \(0.528620\pi\)
\(500\) −5737.01 −0.513134
\(501\) 0 0
\(502\) 11729.6 1.04287
\(503\) −12903.3 −1.14380 −0.571899 0.820324i \(-0.693793\pi\)
−0.571899 + 0.820324i \(0.693793\pi\)
\(504\) 0 0
\(505\) 13149.9 1.15874
\(506\) 1889.16 0.165975
\(507\) 0 0
\(508\) 5282.05 0.461325
\(509\) 2208.97 0.192360 0.0961798 0.995364i \(-0.469338\pi\)
0.0961798 + 0.995364i \(0.469338\pi\)
\(510\) 0 0
\(511\) 14017.7 1.21351
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −10700.3 −0.918227
\(515\) −9086.40 −0.777465
\(516\) 0 0
\(517\) −7124.62 −0.606075
\(518\) −1089.83 −0.0924412
\(519\) 0 0
\(520\) −1675.26 −0.141278
\(521\) 7525.04 0.632779 0.316390 0.948629i \(-0.397529\pi\)
0.316390 + 0.948629i \(0.397529\pi\)
\(522\) 0 0
\(523\) −5782.76 −0.483485 −0.241742 0.970340i \(-0.577719\pi\)
−0.241742 + 0.970340i \(0.577719\pi\)
\(524\) 2138.01 0.178243
\(525\) 0 0
\(526\) 9914.55 0.821853
\(527\) −107.849 −0.00891457
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 6744.51 0.552760
\(531\) 0 0
\(532\) 17107.7 1.39420
\(533\) −178.951 −0.0145426
\(534\) 0 0
\(535\) 3586.87 0.289858
\(536\) −3710.18 −0.298984
\(537\) 0 0
\(538\) −446.872 −0.0358105
\(539\) 39101.2 3.12469
\(540\) 0 0
\(541\) 13452.7 1.06909 0.534546 0.845139i \(-0.320483\pi\)
0.534546 + 0.845139i \(0.320483\pi\)
\(542\) 10307.9 0.816906
\(543\) 0 0
\(544\) −36.7179 −0.00289387
\(545\) 2725.02 0.214178
\(546\) 0 0
\(547\) −9628.07 −0.752589 −0.376295 0.926500i \(-0.622802\pi\)
−0.376295 + 0.926500i \(0.622802\pi\)
\(548\) 10179.0 0.793481
\(549\) 0 0
\(550\) 5912.98 0.458419
\(551\) −32630.1 −2.52284
\(552\) 0 0
\(553\) −20466.7 −1.57384
\(554\) −12365.0 −0.948266
\(555\) 0 0
\(556\) −7949.98 −0.606392
\(557\) −10299.2 −0.783466 −0.391733 0.920079i \(-0.628124\pi\)
−0.391733 + 0.920079i \(0.628124\pi\)
\(558\) 0 0
\(559\) 5428.12 0.410706
\(560\) 4192.31 0.316353
\(561\) 0 0
\(562\) −7408.02 −0.556030
\(563\) −16390.8 −1.22698 −0.613492 0.789701i \(-0.710236\pi\)
−0.613492 + 0.789701i \(0.710236\pi\)
\(564\) 0 0
\(565\) −11639.0 −0.866650
\(566\) −3894.20 −0.289197
\(567\) 0 0
\(568\) −5840.16 −0.431422
\(569\) 18730.9 1.38003 0.690017 0.723793i \(-0.257603\pi\)
0.690017 + 0.723793i \(0.257603\pi\)
\(570\) 0 0
\(571\) −23266.5 −1.70520 −0.852602 0.522561i \(-0.824977\pi\)
−0.852602 + 0.522561i \(0.824977\pi\)
\(572\) 4724.75 0.345370
\(573\) 0 0
\(574\) 447.823 0.0325640
\(575\) 1655.74 0.120086
\(576\) 0 0
\(577\) −22221.0 −1.60324 −0.801622 0.597831i \(-0.796029\pi\)
−0.801622 + 0.597831i \(0.796029\pi\)
\(578\) 9823.37 0.706917
\(579\) 0 0
\(580\) −7996.12 −0.572450
\(581\) 42944.3 3.06649
\(582\) 0 0
\(583\) −19021.7 −1.35128
\(584\) −3116.13 −0.220799
\(585\) 0 0
\(586\) −104.422 −0.00736113
\(587\) −19974.9 −1.40452 −0.702261 0.711920i \(-0.747826\pi\)
−0.702261 + 0.711920i \(0.747826\pi\)
\(588\) 0 0
\(589\) −11170.5 −0.781445
\(590\) 2855.50 0.199252
\(591\) 0 0
\(592\) 242.270 0.0168197
\(593\) −13138.3 −0.909827 −0.454913 0.890536i \(-0.650330\pi\)
−0.454913 + 0.890536i \(0.650330\pi\)
\(594\) 0 0
\(595\) 300.650 0.0207150
\(596\) 11023.2 0.757596
\(597\) 0 0
\(598\) 1323.02 0.0904718
\(599\) −4445.05 −0.303205 −0.151602 0.988442i \(-0.548443\pi\)
−0.151602 + 0.988442i \(0.548443\pi\)
\(600\) 0 0
\(601\) 9950.36 0.675347 0.337674 0.941263i \(-0.390360\pi\)
0.337674 + 0.941263i \(0.390360\pi\)
\(602\) −13583.8 −0.919660
\(603\) 0 0
\(604\) −10031.9 −0.675812
\(605\) 2589.41 0.174008
\(606\) 0 0
\(607\) 21986.0 1.47015 0.735076 0.677985i \(-0.237146\pi\)
0.735076 + 0.677985i \(0.237146\pi\)
\(608\) −3803.05 −0.253675
\(609\) 0 0
\(610\) 4971.10 0.329957
\(611\) −4989.50 −0.330366
\(612\) 0 0
\(613\) −17727.9 −1.16807 −0.584033 0.811730i \(-0.698526\pi\)
−0.584033 + 0.811730i \(0.698526\pi\)
\(614\) −19168.9 −1.25992
\(615\) 0 0
\(616\) −11823.7 −0.773358
\(617\) 20217.9 1.31919 0.659597 0.751619i \(-0.270727\pi\)
0.659597 + 0.751619i \(0.270727\pi\)
\(618\) 0 0
\(619\) 26698.5 1.73361 0.866803 0.498651i \(-0.166171\pi\)
0.866803 + 0.498651i \(0.166171\pi\)
\(620\) −2737.37 −0.177315
\(621\) 0 0
\(622\) −18296.6 −1.17946
\(623\) −28076.6 −1.80556
\(624\) 0 0
\(625\) −1444.03 −0.0924177
\(626\) −887.231 −0.0566468
\(627\) 0 0
\(628\) −8439.62 −0.536270
\(629\) 17.3743 0.00110137
\(630\) 0 0
\(631\) −21906.3 −1.38205 −0.691027 0.722829i \(-0.742842\pi\)
−0.691027 + 0.722829i \(0.742842\pi\)
\(632\) 4549.76 0.286360
\(633\) 0 0
\(634\) 13853.6 0.867819
\(635\) 9614.49 0.600850
\(636\) 0 0
\(637\) 27383.2 1.70324
\(638\) 22551.6 1.39941
\(639\) 0 0
\(640\) −931.953 −0.0575604
\(641\) 26702.8 1.64540 0.822698 0.568479i \(-0.192468\pi\)
0.822698 + 0.568479i \(0.192468\pi\)
\(642\) 0 0
\(643\) −25413.0 −1.55862 −0.779310 0.626639i \(-0.784430\pi\)
−0.779310 + 0.626639i \(0.784430\pi\)
\(644\) −3310.84 −0.202586
\(645\) 0 0
\(646\) −272.734 −0.0166108
\(647\) 15981.9 0.971116 0.485558 0.874204i \(-0.338616\pi\)
0.485558 + 0.874204i \(0.338616\pi\)
\(648\) 0 0
\(649\) −8053.40 −0.487094
\(650\) 4140.97 0.249880
\(651\) 0 0
\(652\) −9032.16 −0.542526
\(653\) −31104.7 −1.86404 −0.932022 0.362401i \(-0.881957\pi\)
−0.932022 + 0.362401i \(0.881957\pi\)
\(654\) 0 0
\(655\) 3891.65 0.232152
\(656\) −99.5511 −0.00592503
\(657\) 0 0
\(658\) 12486.2 0.739760
\(659\) 2540.74 0.150187 0.0750933 0.997177i \(-0.476075\pi\)
0.0750933 + 0.997177i \(0.476075\pi\)
\(660\) 0 0
\(661\) 11474.7 0.675211 0.337605 0.941288i \(-0.390383\pi\)
0.337605 + 0.941288i \(0.390383\pi\)
\(662\) −1354.19 −0.0795046
\(663\) 0 0
\(664\) −9546.52 −0.557947
\(665\) 31139.8 1.81587
\(666\) 0 0
\(667\) 6314.85 0.366585
\(668\) −16226.8 −0.939872
\(669\) 0 0
\(670\) −6753.34 −0.389410
\(671\) −14020.1 −0.806616
\(672\) 0 0
\(673\) −3530.79 −0.202232 −0.101116 0.994875i \(-0.532241\pi\)
−0.101116 + 0.994875i \(0.532241\pi\)
\(674\) 6286.88 0.359290
\(675\) 0 0
\(676\) −5479.17 −0.311742
\(677\) 22802.8 1.29451 0.647254 0.762274i \(-0.275917\pi\)
0.647254 + 0.762274i \(0.275917\pi\)
\(678\) 0 0
\(679\) −12365.0 −0.698858
\(680\) −66.8346 −0.00376910
\(681\) 0 0
\(682\) 7720.24 0.433465
\(683\) 13774.7 0.771703 0.385852 0.922561i \(-0.373908\pi\)
0.385852 + 0.922561i \(0.373908\pi\)
\(684\) 0 0
\(685\) 18528.1 1.03346
\(686\) −43839.0 −2.43991
\(687\) 0 0
\(688\) 3019.69 0.167332
\(689\) −13321.2 −0.736571
\(690\) 0 0
\(691\) 9020.06 0.496584 0.248292 0.968685i \(-0.420131\pi\)
0.248292 + 0.968685i \(0.420131\pi\)
\(692\) −3432.07 −0.188537
\(693\) 0 0
\(694\) 3401.78 0.186066
\(695\) −14470.7 −0.789792
\(696\) 0 0
\(697\) −7.13927 −0.000387976 0
\(698\) −22045.6 −1.19547
\(699\) 0 0
\(700\) −10362.7 −0.559535
\(701\) −6122.50 −0.329877 −0.164938 0.986304i \(-0.552743\pi\)
−0.164938 + 0.986304i \(0.552743\pi\)
\(702\) 0 0
\(703\) 1799.55 0.0965450
\(704\) 2628.40 0.140713
\(705\) 0 0
\(706\) 7434.38 0.396313
\(707\) 64996.2 3.45747
\(708\) 0 0
\(709\) 18858.6 0.998940 0.499470 0.866331i \(-0.333528\pi\)
0.499470 + 0.866331i \(0.333528\pi\)
\(710\) −10630.4 −0.561903
\(711\) 0 0
\(712\) 6241.44 0.328522
\(713\) 2161.81 0.113549
\(714\) 0 0
\(715\) 8600.09 0.449825
\(716\) −13226.4 −0.690356
\(717\) 0 0
\(718\) −1856.70 −0.0965063
\(719\) −15517.2 −0.804862 −0.402431 0.915450i \(-0.631835\pi\)
−0.402431 + 0.915450i \(0.631835\pi\)
\(720\) 0 0
\(721\) −44911.5 −2.31982
\(722\) −14530.5 −0.748987
\(723\) 0 0
\(724\) −1048.42 −0.0538181
\(725\) 19765.1 1.01250
\(726\) 0 0
\(727\) 32390.6 1.65241 0.826203 0.563372i \(-0.190496\pi\)
0.826203 + 0.563372i \(0.190496\pi\)
\(728\) −8280.32 −0.421551
\(729\) 0 0
\(730\) −5672.05 −0.287578
\(731\) 216.556 0.0109570
\(732\) 0 0
\(733\) −30356.1 −1.52964 −0.764821 0.644243i \(-0.777173\pi\)
−0.764821 + 0.644243i \(0.777173\pi\)
\(734\) 5617.45 0.282485
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 19046.6 0.951953
\(738\) 0 0
\(739\) 20619.4 1.02638 0.513190 0.858275i \(-0.328464\pi\)
0.513190 + 0.858275i \(0.328464\pi\)
\(740\) 440.986 0.0219067
\(741\) 0 0
\(742\) 33336.2 1.64934
\(743\) 21874.4 1.08007 0.540036 0.841642i \(-0.318411\pi\)
0.540036 + 0.841642i \(0.318411\pi\)
\(744\) 0 0
\(745\) 20064.6 0.986726
\(746\) 9024.28 0.442898
\(747\) 0 0
\(748\) 188.495 0.00921397
\(749\) 17728.9 0.864886
\(750\) 0 0
\(751\) −6510.13 −0.316322 −0.158161 0.987413i \(-0.550557\pi\)
−0.158161 + 0.987413i \(0.550557\pi\)
\(752\) −2775.68 −0.134599
\(753\) 0 0
\(754\) 15793.3 0.762808
\(755\) −18260.2 −0.880207
\(756\) 0 0
\(757\) −9314.75 −0.447226 −0.223613 0.974678i \(-0.571785\pi\)
−0.223613 + 0.974678i \(0.571785\pi\)
\(758\) −37.9209 −0.00181709
\(759\) 0 0
\(760\) −6922.40 −0.330397
\(761\) 13223.9 0.629917 0.314959 0.949105i \(-0.398009\pi\)
0.314959 + 0.949105i \(0.398009\pi\)
\(762\) 0 0
\(763\) 13469.0 0.639069
\(764\) 19670.5 0.931483
\(765\) 0 0
\(766\) 9164.41 0.432276
\(767\) −5639.94 −0.265510
\(768\) 0 0
\(769\) −6700.61 −0.314214 −0.157107 0.987582i \(-0.550217\pi\)
−0.157107 + 0.987582i \(0.550217\pi\)
\(770\) −21521.7 −1.00726
\(771\) 0 0
\(772\) 1849.64 0.0862308
\(773\) −17607.4 −0.819266 −0.409633 0.912250i \(-0.634343\pi\)
−0.409633 + 0.912250i \(0.634343\pi\)
\(774\) 0 0
\(775\) 6766.33 0.313618
\(776\) 2748.74 0.127157
\(777\) 0 0
\(778\) −17833.9 −0.821819
\(779\) −739.450 −0.0340097
\(780\) 0 0
\(781\) 29981.0 1.37363
\(782\) 52.7819 0.00241365
\(783\) 0 0
\(784\) 15233.4 0.693943
\(785\) −15362.0 −0.698462
\(786\) 0 0
\(787\) −40685.3 −1.84279 −0.921393 0.388631i \(-0.872948\pi\)
−0.921393 + 0.388631i \(0.872948\pi\)
\(788\) 423.774 0.0191578
\(789\) 0 0
\(790\) 8281.56 0.372968
\(791\) −57528.4 −2.58594
\(792\) 0 0
\(793\) −9818.51 −0.439679
\(794\) −6543.29 −0.292459
\(795\) 0 0
\(796\) −2750.05 −0.122453
\(797\) −1758.02 −0.0781331 −0.0390666 0.999237i \(-0.512438\pi\)
−0.0390666 + 0.999237i \(0.512438\pi\)
\(798\) 0 0
\(799\) −199.057 −0.00881368
\(800\) 2303.64 0.101807
\(801\) 0 0
\(802\) −8029.81 −0.353544
\(803\) 15997.0 0.703015
\(804\) 0 0
\(805\) −6026.45 −0.263857
\(806\) 5406.62 0.236278
\(807\) 0 0
\(808\) −14448.7 −0.629087
\(809\) −6510.49 −0.282938 −0.141469 0.989943i \(-0.545182\pi\)
−0.141469 + 0.989943i \(0.545182\pi\)
\(810\) 0 0
\(811\) −14997.6 −0.649369 −0.324684 0.945822i \(-0.605258\pi\)
−0.324684 + 0.945822i \(0.605258\pi\)
\(812\) −39522.6 −1.70809
\(813\) 0 0
\(814\) −1243.72 −0.0535532
\(815\) −16440.5 −0.706609
\(816\) 0 0
\(817\) 22429.8 0.960487
\(818\) −12279.3 −0.524859
\(819\) 0 0
\(820\) −181.205 −0.00771702
\(821\) 34974.5 1.48674 0.743372 0.668878i \(-0.233225\pi\)
0.743372 + 0.668878i \(0.233225\pi\)
\(822\) 0 0
\(823\) −14794.5 −0.626616 −0.313308 0.949652i \(-0.601437\pi\)
−0.313308 + 0.949652i \(0.601437\pi\)
\(824\) 9983.85 0.422092
\(825\) 0 0
\(826\) 14113.9 0.594535
\(827\) 4958.24 0.208482 0.104241 0.994552i \(-0.466759\pi\)
0.104241 + 0.994552i \(0.466759\pi\)
\(828\) 0 0
\(829\) −7537.16 −0.315774 −0.157887 0.987457i \(-0.550468\pi\)
−0.157887 + 0.987457i \(0.550468\pi\)
\(830\) −17376.8 −0.726695
\(831\) 0 0
\(832\) 1840.72 0.0767012
\(833\) 1092.46 0.0454399
\(834\) 0 0
\(835\) −29536.4 −1.22413
\(836\) 19523.4 0.807691
\(837\) 0 0
\(838\) −2389.05 −0.0984825
\(839\) −2097.47 −0.0863082 −0.0431541 0.999068i \(-0.513741\pi\)
−0.0431541 + 0.999068i \(0.513741\pi\)
\(840\) 0 0
\(841\) 50993.5 2.09084
\(842\) 18276.4 0.748034
\(843\) 0 0
\(844\) 16817.6 0.685884
\(845\) −9973.30 −0.406026
\(846\) 0 0
\(847\) 12798.7 0.519209
\(848\) −7410.65 −0.300098
\(849\) 0 0
\(850\) 165.205 0.00666644
\(851\) −348.264 −0.0140286
\(852\) 0 0
\(853\) −28566.3 −1.14665 −0.573324 0.819328i \(-0.694347\pi\)
−0.573324 + 0.819328i \(0.694347\pi\)
\(854\) 24570.7 0.984536
\(855\) 0 0
\(856\) −3941.14 −0.157366
\(857\) −13310.2 −0.530535 −0.265267 0.964175i \(-0.585460\pi\)
−0.265267 + 0.964175i \(0.585460\pi\)
\(858\) 0 0
\(859\) 4372.20 0.173664 0.0868322 0.996223i \(-0.472326\pi\)
0.0868322 + 0.996223i \(0.472326\pi\)
\(860\) 5496.50 0.217941
\(861\) 0 0
\(862\) 9551.70 0.377416
\(863\) −24600.4 −0.970346 −0.485173 0.874418i \(-0.661243\pi\)
−0.485173 + 0.874418i \(0.661243\pi\)
\(864\) 0 0
\(865\) −6247.13 −0.245559
\(866\) 12011.7 0.471332
\(867\) 0 0
\(868\) −13530.0 −0.529077
\(869\) −23356.6 −0.911760
\(870\) 0 0
\(871\) 13338.7 0.518901
\(872\) −2994.16 −0.116279
\(873\) 0 0
\(874\) 5466.89 0.211579
\(875\) −51614.9 −1.99417
\(876\) 0 0
\(877\) 24776.6 0.953988 0.476994 0.878907i \(-0.341726\pi\)
0.476994 + 0.878907i \(0.341726\pi\)
\(878\) −32154.0 −1.23593
\(879\) 0 0
\(880\) 4784.27 0.183270
\(881\) −14728.1 −0.563225 −0.281612 0.959528i \(-0.590869\pi\)
−0.281612 + 0.959528i \(0.590869\pi\)
\(882\) 0 0
\(883\) 15491.8 0.590420 0.295210 0.955432i \(-0.404610\pi\)
0.295210 + 0.955432i \(0.404610\pi\)
\(884\) 132.006 0.00502246
\(885\) 0 0
\(886\) 2036.20 0.0772093
\(887\) −946.347 −0.0358233 −0.0179116 0.999840i \(-0.505702\pi\)
−0.0179116 + 0.999840i \(0.505702\pi\)
\(888\) 0 0
\(889\) 47521.7 1.79283
\(890\) 11360.8 0.427882
\(891\) 0 0
\(892\) 13758.5 0.516445
\(893\) −20617.3 −0.772601
\(894\) 0 0
\(895\) −24075.0 −0.899151
\(896\) −4606.38 −0.171750
\(897\) 0 0
\(898\) 12931.0 0.480526
\(899\) 25806.2 0.957381
\(900\) 0 0
\(901\) −531.452 −0.0196506
\(902\) 511.055 0.0188651
\(903\) 0 0
\(904\) 12788.6 0.470511
\(905\) −1908.36 −0.0700950
\(906\) 0 0
\(907\) 36233.2 1.32647 0.663233 0.748413i \(-0.269184\pi\)
0.663233 + 0.748413i \(0.269184\pi\)
\(908\) −11626.9 −0.424949
\(909\) 0 0
\(910\) −15072.0 −0.549046
\(911\) 51440.1 1.87079 0.935394 0.353607i \(-0.115045\pi\)
0.935394 + 0.353607i \(0.115045\pi\)
\(912\) 0 0
\(913\) 49008.0 1.77648
\(914\) 13967.2 0.505463
\(915\) 0 0
\(916\) −24882.2 −0.897524
\(917\) 19235.3 0.692701
\(918\) 0 0
\(919\) −2379.26 −0.0854020 −0.0427010 0.999088i \(-0.513596\pi\)
−0.0427010 + 0.999088i \(0.513596\pi\)
\(920\) 1339.68 0.0480087
\(921\) 0 0
\(922\) 16570.1 0.591873
\(923\) 20996.2 0.748754
\(924\) 0 0
\(925\) −1090.05 −0.0387465
\(926\) 35869.0 1.27292
\(927\) 0 0
\(928\) 8785.88 0.310787
\(929\) 8555.16 0.302137 0.151069 0.988523i \(-0.451729\pi\)
0.151069 + 0.988523i \(0.451729\pi\)
\(930\) 0 0
\(931\) 113151. 3.98323
\(932\) 21262.7 0.747300
\(933\) 0 0
\(934\) 21119.5 0.739882
\(935\) 343.102 0.0120007
\(936\) 0 0
\(937\) 33864.3 1.18068 0.590340 0.807155i \(-0.298994\pi\)
0.590340 + 0.807155i \(0.298994\pi\)
\(938\) −33379.9 −1.16193
\(939\) 0 0
\(940\) −5052.36 −0.175308
\(941\) −48573.1 −1.68272 −0.841360 0.540475i \(-0.818244\pi\)
−0.841360 + 0.540475i \(0.818244\pi\)
\(942\) 0 0
\(943\) 143.105 0.00494181
\(944\) −3137.53 −0.108176
\(945\) 0 0
\(946\) −15501.9 −0.532779
\(947\) −13683.6 −0.469542 −0.234771 0.972051i \(-0.575434\pi\)
−0.234771 + 0.972051i \(0.575434\pi\)
\(948\) 0 0
\(949\) 11203.0 0.383207
\(950\) 17111.1 0.584375
\(951\) 0 0
\(952\) −330.345 −0.0112464
\(953\) 38125.9 1.29593 0.647964 0.761671i \(-0.275621\pi\)
0.647964 + 0.761671i \(0.275621\pi\)
\(954\) 0 0
\(955\) 35804.6 1.21320
\(956\) 6534.27 0.221060
\(957\) 0 0
\(958\) −12351.0 −0.416536
\(959\) 91579.2 3.08368
\(960\) 0 0
\(961\) −20956.6 −0.703454
\(962\) −870.999 −0.0291914
\(963\) 0 0
\(964\) 122.101 0.00407948
\(965\) 3366.76 0.112311
\(966\) 0 0
\(967\) 24301.7 0.808159 0.404079 0.914724i \(-0.367592\pi\)
0.404079 + 0.914724i \(0.367592\pi\)
\(968\) −2845.17 −0.0944701
\(969\) 0 0
\(970\) 5003.32 0.165615
\(971\) 52900.8 1.74837 0.874186 0.485592i \(-0.161396\pi\)
0.874186 + 0.485592i \(0.161396\pi\)
\(972\) 0 0
\(973\) −71524.6 −2.35660
\(974\) 33232.9 1.09327
\(975\) 0 0
\(976\) −5462.09 −0.179136
\(977\) −37262.3 −1.22019 −0.610095 0.792329i \(-0.708869\pi\)
−0.610095 + 0.792329i \(0.708869\pi\)
\(978\) 0 0
\(979\) −32041.0 −1.04600
\(980\) 27728.2 0.903821
\(981\) 0 0
\(982\) 3846.83 0.125007
\(983\) 11137.2 0.361366 0.180683 0.983541i \(-0.442169\pi\)
0.180683 + 0.983541i \(0.442169\pi\)
\(984\) 0 0
\(985\) 771.363 0.0249519
\(986\) 630.076 0.0203506
\(987\) 0 0
\(988\) 13672.6 0.440265
\(989\) −4340.80 −0.139565
\(990\) 0 0
\(991\) 24618.4 0.789130 0.394565 0.918868i \(-0.370895\pi\)
0.394565 + 0.918868i \(0.370895\pi\)
\(992\) 3007.73 0.0962656
\(993\) 0 0
\(994\) −52542.9 −1.67662
\(995\) −5005.69 −0.159489
\(996\) 0 0
\(997\) −29265.4 −0.929635 −0.464817 0.885407i \(-0.653880\pi\)
−0.464817 + 0.885407i \(0.653880\pi\)
\(998\) 4003.53 0.126983
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 414.4.a.m.1.3 4
3.2 odd 2 414.4.a.n.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
414.4.a.m.1.3 4 1.1 even 1 trivial
414.4.a.n.1.2 yes 4 3.2 odd 2