Properties

Label 414.4.a.l
Level $414$
Weight $4$
Character orbit 414.a
Self dual yes
Analytic conductor $24.427$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,4,Mod(1,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4267907424\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.16372.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 40x - 84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 138)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + ( - \beta_{2} - 7) q^{5} + ( - \beta_{2} + \beta_1 + 3) q^{7} - 8 q^{8} + (2 \beta_{2} + 14) q^{10} + (2 \beta_{2} + 5 \beta_1 - 6) q^{11} + ( - 4 \beta_{2} - 2) q^{13} + (2 \beta_{2} - 2 \beta_1 - 6) q^{14}+ \cdots + ( - 32 \beta_{2} - 28 \beta_1 + 38) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 12 q^{4} - 20 q^{5} + 10 q^{7} - 24 q^{8} + 40 q^{10} - 20 q^{11} - 2 q^{13} - 20 q^{14} + 48 q^{16} - 32 q^{17} - 26 q^{19} - 80 q^{20} + 40 q^{22} + 69 q^{23} + 89 q^{25} + 4 q^{26} + 40 q^{28}+ \cdots + 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 40x - 84 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4\nu - 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 27 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.70671
7.18917
−2.48246
−2.00000 0 4.00000 −20.9800 0 −20.3934 −8.00000 0 41.9600
1.2 −2.00000 0 4.00000 −2.92753 0 21.4508 −8.00000 0 5.85507
1.3 −2.00000 0 4.00000 3.90754 0 8.94262 −8.00000 0 −7.81508
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 414.4.a.l 3
3.b odd 2 1 138.4.a.f 3
12.b even 2 1 1104.4.a.r 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
138.4.a.f 3 3.b odd 2 1
414.4.a.l 3 1.a even 1 1 trivial
1104.4.a.r 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(414))\):

\( T_{5}^{3} + 20T_{5}^{2} - 32T_{5} - 240 \) Copy content Toggle raw display
\( T_{7}^{3} - 10T_{7}^{2} - 428T_{7} + 3912 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 20 T^{2} + \cdots - 240 \) Copy content Toggle raw display
$7$ \( T^{3} - 10 T^{2} + \cdots + 3912 \) Copy content Toggle raw display
$11$ \( T^{3} + 20 T^{2} + \cdots - 76320 \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots + 34456 \) Copy content Toggle raw display
$17$ \( T^{3} + 32 T^{2} + \cdots - 321648 \) Copy content Toggle raw display
$19$ \( T^{3} + 26 T^{2} + \cdots + 124552 \) Copy content Toggle raw display
$23$ \( (T - 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 50 T^{2} + \cdots - 2646168 \) Copy content Toggle raw display
$31$ \( T^{3} - 12 T^{2} + \cdots + 4079040 \) Copy content Toggle raw display
$37$ \( T^{3} + 90 T^{2} + \cdots - 235496 \) Copy content Toggle raw display
$41$ \( T^{3} - 466 T^{2} + \cdots + 66217896 \) Copy content Toggle raw display
$43$ \( T^{3} + 274 T^{2} + \cdots - 25943800 \) Copy content Toggle raw display
$47$ \( T^{3} - 680 T^{2} + \cdots + 574848 \) Copy content Toggle raw display
$53$ \( T^{3} - 408 T^{2} + \cdots + 117418800 \) Copy content Toggle raw display
$59$ \( T^{3} - 1244 T^{2} + \cdots - 7860672 \) Copy content Toggle raw display
$61$ \( T^{3} + 130 T^{2} + \cdots + 87594872 \) Copy content Toggle raw display
$67$ \( T^{3} - 450 T^{2} + \cdots + 15728056 \) Copy content Toggle raw display
$71$ \( T^{3} - 1512 T^{2} + \cdots - 125266176 \) Copy content Toggle raw display
$73$ \( T^{3} - 710 T^{2} + \cdots + 12034296 \) Copy content Toggle raw display
$79$ \( T^{3} - 478 T^{2} + \cdots + 175419096 \) Copy content Toggle raw display
$83$ \( T^{3} - 1092 T^{2} + \cdots + 152516256 \) Copy content Toggle raw display
$89$ \( T^{3} - 372 T^{2} + \cdots + 139730832 \) Copy content Toggle raw display
$97$ \( T^{3} - 2106 T^{2} + \cdots - 304805880 \) Copy content Toggle raw display
show more
show less