Properties

Label 414.4.a.g.1.1
Level $414$
Weight $4$
Character 414.1
Self dual yes
Analytic conductor $24.427$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,4,Mod(1,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4267907424\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 138)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 414.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -15.3137 q^{5} -5.31371 q^{7} -8.00000 q^{8} +30.6274 q^{10} +21.2548 q^{11} +87.2548 q^{13} +10.6274 q^{14} +16.0000 q^{16} -18.0589 q^{17} +47.9411 q^{19} -61.2548 q^{20} -42.5097 q^{22} -23.0000 q^{23} +109.510 q^{25} -174.510 q^{26} -21.2548 q^{28} -179.137 q^{29} -117.137 q^{31} -32.0000 q^{32} +36.1177 q^{34} +81.3726 q^{35} -410.902 q^{37} -95.8823 q^{38} +122.510 q^{40} +205.765 q^{41} -149.549 q^{43} +85.0193 q^{44} +46.0000 q^{46} +299.882 q^{47} -314.765 q^{49} -219.019 q^{50} +349.019 q^{52} +295.862 q^{53} -325.490 q^{55} +42.5097 q^{56} +358.274 q^{58} -737.450 q^{59} +550.431 q^{61} +234.274 q^{62} +64.0000 q^{64} -1336.20 q^{65} -527.470 q^{67} -72.2355 q^{68} -162.745 q^{70} +297.568 q^{71} -714.313 q^{73} +821.803 q^{74} +191.765 q^{76} -112.942 q^{77} -834.686 q^{79} -245.019 q^{80} -411.529 q^{82} -795.606 q^{83} +276.548 q^{85} +299.098 q^{86} -170.039 q^{88} -46.9605 q^{89} -463.647 q^{91} -92.0000 q^{92} -599.765 q^{94} -734.156 q^{95} +1037.72 q^{97} +629.529 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 8 q^{5} + 12 q^{7} - 16 q^{8} + 16 q^{10} - 48 q^{11} + 84 q^{13} - 24 q^{14} + 32 q^{16} - 104 q^{17} + 28 q^{19} - 32 q^{20} + 96 q^{22} - 46 q^{23} + 38 q^{25} - 168 q^{26}+ \cdots + 716 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −15.3137 −1.36970 −0.684850 0.728684i \(-0.740132\pi\)
−0.684850 + 0.728684i \(0.740132\pi\)
\(6\) 0 0
\(7\) −5.31371 −0.286913 −0.143457 0.989657i \(-0.545822\pi\)
−0.143457 + 0.989657i \(0.545822\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 30.6274 0.968524
\(11\) 21.2548 0.582598 0.291299 0.956632i \(-0.405913\pi\)
0.291299 + 0.956632i \(0.405913\pi\)
\(12\) 0 0
\(13\) 87.2548 1.86155 0.930774 0.365594i \(-0.119134\pi\)
0.930774 + 0.365594i \(0.119134\pi\)
\(14\) 10.6274 0.202878
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −18.0589 −0.257642 −0.128821 0.991668i \(-0.541119\pi\)
−0.128821 + 0.991668i \(0.541119\pi\)
\(18\) 0 0
\(19\) 47.9411 0.578866 0.289433 0.957198i \(-0.406533\pi\)
0.289433 + 0.957198i \(0.406533\pi\)
\(20\) −61.2548 −0.684850
\(21\) 0 0
\(22\) −42.5097 −0.411959
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 109.510 0.876077
\(26\) −174.510 −1.31631
\(27\) 0 0
\(28\) −21.2548 −0.143457
\(29\) −179.137 −1.14707 −0.573533 0.819182i \(-0.694428\pi\)
−0.573533 + 0.819182i \(0.694428\pi\)
\(30\) 0 0
\(31\) −117.137 −0.678659 −0.339330 0.940668i \(-0.610200\pi\)
−0.339330 + 0.940668i \(0.610200\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 36.1177 0.182181
\(35\) 81.3726 0.392985
\(36\) 0 0
\(37\) −410.902 −1.82572 −0.912862 0.408268i \(-0.866133\pi\)
−0.912862 + 0.408268i \(0.866133\pi\)
\(38\) −95.8823 −0.409320
\(39\) 0 0
\(40\) 122.510 0.484262
\(41\) 205.765 0.783781 0.391890 0.920012i \(-0.371821\pi\)
0.391890 + 0.920012i \(0.371821\pi\)
\(42\) 0 0
\(43\) −149.549 −0.530373 −0.265187 0.964197i \(-0.585434\pi\)
−0.265187 + 0.964197i \(0.585434\pi\)
\(44\) 85.0193 0.291299
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 299.882 0.930688 0.465344 0.885130i \(-0.345931\pi\)
0.465344 + 0.885130i \(0.345931\pi\)
\(48\) 0 0
\(49\) −314.765 −0.917681
\(50\) −219.019 −0.619480
\(51\) 0 0
\(52\) 349.019 0.930774
\(53\) 295.862 0.766788 0.383394 0.923585i \(-0.374755\pi\)
0.383394 + 0.923585i \(0.374755\pi\)
\(54\) 0 0
\(55\) −325.490 −0.797984
\(56\) 42.5097 0.101439
\(57\) 0 0
\(58\) 358.274 0.811098
\(59\) −737.450 −1.62725 −0.813625 0.581389i \(-0.802509\pi\)
−0.813625 + 0.581389i \(0.802509\pi\)
\(60\) 0 0
\(61\) 550.431 1.15533 0.577667 0.816272i \(-0.303963\pi\)
0.577667 + 0.816272i \(0.303963\pi\)
\(62\) 234.274 0.479885
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −1336.20 −2.54976
\(66\) 0 0
\(67\) −527.470 −0.961802 −0.480901 0.876775i \(-0.659690\pi\)
−0.480901 + 0.876775i \(0.659690\pi\)
\(68\) −72.2355 −0.128821
\(69\) 0 0
\(70\) −162.745 −0.277882
\(71\) 297.568 0.497391 0.248696 0.968582i \(-0.419998\pi\)
0.248696 + 0.968582i \(0.419998\pi\)
\(72\) 0 0
\(73\) −714.313 −1.14526 −0.572630 0.819814i \(-0.694077\pi\)
−0.572630 + 0.819814i \(0.694077\pi\)
\(74\) 821.803 1.29098
\(75\) 0 0
\(76\) 191.765 0.289433
\(77\) −112.942 −0.167155
\(78\) 0 0
\(79\) −834.686 −1.18873 −0.594364 0.804196i \(-0.702596\pi\)
−0.594364 + 0.804196i \(0.702596\pi\)
\(80\) −245.019 −0.342425
\(81\) 0 0
\(82\) −411.529 −0.554217
\(83\) −795.606 −1.05216 −0.526079 0.850436i \(-0.676338\pi\)
−0.526079 + 0.850436i \(0.676338\pi\)
\(84\) 0 0
\(85\) 276.548 0.352893
\(86\) 299.098 0.375030
\(87\) 0 0
\(88\) −170.039 −0.205979
\(89\) −46.9605 −0.0559303 −0.0279652 0.999609i \(-0.508903\pi\)
−0.0279652 + 0.999609i \(0.508903\pi\)
\(90\) 0 0
\(91\) −463.647 −0.534103
\(92\) −92.0000 −0.104257
\(93\) 0 0
\(94\) −599.765 −0.658096
\(95\) −734.156 −0.792872
\(96\) 0 0
\(97\) 1037.72 1.08624 0.543118 0.839656i \(-0.317244\pi\)
0.543118 + 0.839656i \(0.317244\pi\)
\(98\) 629.529 0.648898
\(99\) 0 0
\(100\) 438.039 0.438039
\(101\) 374.548 0.369000 0.184500 0.982833i \(-0.440934\pi\)
0.184500 + 0.982833i \(0.440934\pi\)
\(102\) 0 0
\(103\) −408.883 −0.391150 −0.195575 0.980689i \(-0.562657\pi\)
−0.195575 + 0.980689i \(0.562657\pi\)
\(104\) −698.039 −0.658157
\(105\) 0 0
\(106\) −591.724 −0.542201
\(107\) −1266.51 −1.14428 −0.572141 0.820155i \(-0.693887\pi\)
−0.572141 + 0.820155i \(0.693887\pi\)
\(108\) 0 0
\(109\) −1367.57 −1.20174 −0.600868 0.799348i \(-0.705178\pi\)
−0.600868 + 0.799348i \(0.705178\pi\)
\(110\) 650.981 0.564260
\(111\) 0 0
\(112\) −85.0193 −0.0717283
\(113\) −94.5703 −0.0787294 −0.0393647 0.999225i \(-0.512533\pi\)
−0.0393647 + 0.999225i \(0.512533\pi\)
\(114\) 0 0
\(115\) 352.215 0.285602
\(116\) −716.548 −0.573533
\(117\) 0 0
\(118\) 1474.90 1.15064
\(119\) 95.9596 0.0739210
\(120\) 0 0
\(121\) −879.232 −0.660580
\(122\) −1100.86 −0.816945
\(123\) 0 0
\(124\) −468.548 −0.339330
\(125\) 237.214 0.169737
\(126\) 0 0
\(127\) 2078.47 1.45224 0.726119 0.687569i \(-0.241322\pi\)
0.726119 + 0.687569i \(0.241322\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 2672.39 1.80295
\(131\) −749.568 −0.499924 −0.249962 0.968256i \(-0.580418\pi\)
−0.249962 + 0.968256i \(0.580418\pi\)
\(132\) 0 0
\(133\) −254.745 −0.166084
\(134\) 1054.94 0.680097
\(135\) 0 0
\(136\) 144.471 0.0910903
\(137\) −1443.04 −0.899905 −0.449953 0.893052i \(-0.648559\pi\)
−0.449953 + 0.893052i \(0.648559\pi\)
\(138\) 0 0
\(139\) −2228.63 −1.35992 −0.679962 0.733247i \(-0.738004\pi\)
−0.679962 + 0.733247i \(0.738004\pi\)
\(140\) 325.490 0.196493
\(141\) 0 0
\(142\) −595.135 −0.351709
\(143\) 1854.59 1.08453
\(144\) 0 0
\(145\) 2743.25 1.57114
\(146\) 1428.63 0.809821
\(147\) 0 0
\(148\) −1643.61 −0.912862
\(149\) −1486.29 −0.817193 −0.408596 0.912715i \(-0.633982\pi\)
−0.408596 + 0.912715i \(0.633982\pi\)
\(150\) 0 0
\(151\) 348.865 0.188015 0.0940073 0.995572i \(-0.470032\pi\)
0.0940073 + 0.995572i \(0.470032\pi\)
\(152\) −383.529 −0.204660
\(153\) 0 0
\(154\) 225.884 0.118196
\(155\) 1793.80 0.929560
\(156\) 0 0
\(157\) 1751.14 0.890165 0.445083 0.895489i \(-0.353174\pi\)
0.445083 + 0.895489i \(0.353174\pi\)
\(158\) 1669.37 0.840558
\(159\) 0 0
\(160\) 490.039 0.242131
\(161\) 122.215 0.0598256
\(162\) 0 0
\(163\) 420.743 0.202179 0.101089 0.994877i \(-0.467767\pi\)
0.101089 + 0.994877i \(0.467767\pi\)
\(164\) 823.058 0.391890
\(165\) 0 0
\(166\) 1591.21 0.743988
\(167\) −651.606 −0.301933 −0.150967 0.988539i \(-0.548239\pi\)
−0.150967 + 0.988539i \(0.548239\pi\)
\(168\) 0 0
\(169\) 5416.41 2.46536
\(170\) −553.097 −0.249533
\(171\) 0 0
\(172\) −598.197 −0.265187
\(173\) 1346.35 0.591684 0.295842 0.955237i \(-0.404400\pi\)
0.295842 + 0.955237i \(0.404400\pi\)
\(174\) 0 0
\(175\) −581.902 −0.251358
\(176\) 340.077 0.145649
\(177\) 0 0
\(178\) 93.9209 0.0395487
\(179\) 3424.82 1.43007 0.715037 0.699086i \(-0.246410\pi\)
0.715037 + 0.699086i \(0.246410\pi\)
\(180\) 0 0
\(181\) −3256.98 −1.33751 −0.668755 0.743482i \(-0.733173\pi\)
−0.668755 + 0.743482i \(0.733173\pi\)
\(182\) 927.294 0.377668
\(183\) 0 0
\(184\) 184.000 0.0737210
\(185\) 6292.43 2.50069
\(186\) 0 0
\(187\) −383.838 −0.150102
\(188\) 1199.53 0.465344
\(189\) 0 0
\(190\) 1468.31 0.560645
\(191\) 4033.37 1.52798 0.763990 0.645228i \(-0.223237\pi\)
0.763990 + 0.645228i \(0.223237\pi\)
\(192\) 0 0
\(193\) 298.784 0.111435 0.0557174 0.998447i \(-0.482255\pi\)
0.0557174 + 0.998447i \(0.482255\pi\)
\(194\) −2075.45 −0.768085
\(195\) 0 0
\(196\) −1259.06 −0.458840
\(197\) −4254.19 −1.53857 −0.769286 0.638905i \(-0.779388\pi\)
−0.769286 + 0.638905i \(0.779388\pi\)
\(198\) 0 0
\(199\) −4731.23 −1.68537 −0.842684 0.538409i \(-0.819026\pi\)
−0.842684 + 0.538409i \(0.819026\pi\)
\(200\) −876.077 −0.309740
\(201\) 0 0
\(202\) −749.097 −0.260922
\(203\) 951.882 0.329109
\(204\) 0 0
\(205\) −3151.02 −1.07354
\(206\) 817.766 0.276585
\(207\) 0 0
\(208\) 1396.08 0.465387
\(209\) 1018.98 0.337246
\(210\) 0 0
\(211\) 5131.40 1.67422 0.837110 0.547035i \(-0.184243\pi\)
0.837110 + 0.547035i \(0.184243\pi\)
\(212\) 1183.45 0.383394
\(213\) 0 0
\(214\) 2533.02 0.809129
\(215\) 2290.15 0.726452
\(216\) 0 0
\(217\) 622.432 0.194716
\(218\) 2735.14 0.849756
\(219\) 0 0
\(220\) −1301.96 −0.398992
\(221\) −1575.72 −0.479614
\(222\) 0 0
\(223\) 2189.41 0.657461 0.328730 0.944424i \(-0.393379\pi\)
0.328730 + 0.944424i \(0.393379\pi\)
\(224\) 170.039 0.0507196
\(225\) 0 0
\(226\) 189.141 0.0556701
\(227\) 5853.37 1.71146 0.855731 0.517421i \(-0.173108\pi\)
0.855731 + 0.517421i \(0.173108\pi\)
\(228\) 0 0
\(229\) −3427.17 −0.988970 −0.494485 0.869186i \(-0.664643\pi\)
−0.494485 + 0.869186i \(0.664643\pi\)
\(230\) −704.431 −0.201951
\(231\) 0 0
\(232\) 1433.10 0.405549
\(233\) −5723.33 −1.60922 −0.804609 0.593805i \(-0.797625\pi\)
−0.804609 + 0.593805i \(0.797625\pi\)
\(234\) 0 0
\(235\) −4592.31 −1.27476
\(236\) −2949.80 −0.813625
\(237\) 0 0
\(238\) −191.919 −0.0522701
\(239\) −3298.04 −0.892604 −0.446302 0.894882i \(-0.647259\pi\)
−0.446302 + 0.894882i \(0.647259\pi\)
\(240\) 0 0
\(241\) −5391.60 −1.44109 −0.720547 0.693406i \(-0.756109\pi\)
−0.720547 + 0.693406i \(0.756109\pi\)
\(242\) 1758.46 0.467101
\(243\) 0 0
\(244\) 2201.72 0.577667
\(245\) 4820.21 1.25695
\(246\) 0 0
\(247\) 4183.09 1.07759
\(248\) 937.097 0.239942
\(249\) 0 0
\(250\) −474.429 −0.120022
\(251\) −3592.11 −0.903315 −0.451657 0.892191i \(-0.649167\pi\)
−0.451657 + 0.892191i \(0.649167\pi\)
\(252\) 0 0
\(253\) −488.861 −0.121480
\(254\) −4156.94 −1.02689
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5645.61 −1.37029 −0.685143 0.728409i \(-0.740260\pi\)
−0.685143 + 0.728409i \(0.740260\pi\)
\(258\) 0 0
\(259\) 2183.41 0.523825
\(260\) −5344.78 −1.27488
\(261\) 0 0
\(262\) 1499.14 0.353500
\(263\) −304.427 −0.0713756 −0.0356878 0.999363i \(-0.511362\pi\)
−0.0356878 + 0.999363i \(0.511362\pi\)
\(264\) 0 0
\(265\) −4530.75 −1.05027
\(266\) 509.490 0.117439
\(267\) 0 0
\(268\) −2109.88 −0.480901
\(269\) −2748.79 −0.623035 −0.311517 0.950240i \(-0.600837\pi\)
−0.311517 + 0.950240i \(0.600837\pi\)
\(270\) 0 0
\(271\) −1324.28 −0.296841 −0.148421 0.988924i \(-0.547419\pi\)
−0.148421 + 0.988924i \(0.547419\pi\)
\(272\) −288.942 −0.0644106
\(273\) 0 0
\(274\) 2886.08 0.636329
\(275\) 2327.61 0.510401
\(276\) 0 0
\(277\) 5660.74 1.22787 0.613937 0.789355i \(-0.289585\pi\)
0.613937 + 0.789355i \(0.289585\pi\)
\(278\) 4457.25 0.961612
\(279\) 0 0
\(280\) −650.981 −0.138941
\(281\) −4981.86 −1.05763 −0.528813 0.848739i \(-0.677363\pi\)
−0.528813 + 0.848739i \(0.677363\pi\)
\(282\) 0 0
\(283\) −5093.51 −1.06989 −0.534943 0.844888i \(-0.679667\pi\)
−0.534943 + 0.844888i \(0.679667\pi\)
\(284\) 1190.27 0.248696
\(285\) 0 0
\(286\) −3709.17 −0.766881
\(287\) −1093.37 −0.224877
\(288\) 0 0
\(289\) −4586.88 −0.933620
\(290\) −5486.51 −1.11096
\(291\) 0 0
\(292\) −2857.25 −0.572630
\(293\) 7943.46 1.58383 0.791914 0.610632i \(-0.209085\pi\)
0.791914 + 0.610632i \(0.209085\pi\)
\(294\) 0 0
\(295\) 11293.1 2.22885
\(296\) 3287.21 0.645491
\(297\) 0 0
\(298\) 2972.58 0.577842
\(299\) −2006.86 −0.388160
\(300\) 0 0
\(301\) 794.661 0.152171
\(302\) −697.729 −0.132946
\(303\) 0 0
\(304\) 767.058 0.144716
\(305\) −8429.13 −1.58246
\(306\) 0 0
\(307\) 7444.59 1.38399 0.691995 0.721902i \(-0.256732\pi\)
0.691995 + 0.721902i \(0.256732\pi\)
\(308\) −451.768 −0.0835775
\(309\) 0 0
\(310\) −3587.61 −0.657298
\(311\) 6584.66 1.20058 0.600292 0.799781i \(-0.295051\pi\)
0.600292 + 0.799781i \(0.295051\pi\)
\(312\) 0 0
\(313\) 2790.86 0.503990 0.251995 0.967728i \(-0.418913\pi\)
0.251995 + 0.967728i \(0.418913\pi\)
\(314\) −3502.27 −0.629442
\(315\) 0 0
\(316\) −3338.75 −0.594364
\(317\) 2083.69 0.369184 0.184592 0.982815i \(-0.440904\pi\)
0.184592 + 0.982815i \(0.440904\pi\)
\(318\) 0 0
\(319\) −3807.53 −0.668278
\(320\) −980.077 −0.171212
\(321\) 0 0
\(322\) −244.431 −0.0423031
\(323\) −865.763 −0.149140
\(324\) 0 0
\(325\) 9555.25 1.63086
\(326\) −841.487 −0.142962
\(327\) 0 0
\(328\) −1646.12 −0.277108
\(329\) −1593.49 −0.267027
\(330\) 0 0
\(331\) 4687.57 0.778405 0.389203 0.921152i \(-0.372751\pi\)
0.389203 + 0.921152i \(0.372751\pi\)
\(332\) −3182.43 −0.526079
\(333\) 0 0
\(334\) 1303.21 0.213499
\(335\) 8077.52 1.31738
\(336\) 0 0
\(337\) −5987.61 −0.967851 −0.483926 0.875109i \(-0.660789\pi\)
−0.483926 + 0.875109i \(0.660789\pi\)
\(338\) −10832.8 −1.74328
\(339\) 0 0
\(340\) 1106.19 0.176446
\(341\) −2489.73 −0.395385
\(342\) 0 0
\(343\) 3495.17 0.550208
\(344\) 1196.39 0.187515
\(345\) 0 0
\(346\) −2692.71 −0.418384
\(347\) 3378.30 0.522642 0.261321 0.965252i \(-0.415842\pi\)
0.261321 + 0.965252i \(0.415842\pi\)
\(348\) 0 0
\(349\) −844.271 −0.129492 −0.0647461 0.997902i \(-0.520624\pi\)
−0.0647461 + 0.997902i \(0.520624\pi\)
\(350\) 1163.80 0.177737
\(351\) 0 0
\(352\) −680.155 −0.102990
\(353\) −3167.13 −0.477534 −0.238767 0.971077i \(-0.576743\pi\)
−0.238767 + 0.971077i \(0.576743\pi\)
\(354\) 0 0
\(355\) −4556.86 −0.681277
\(356\) −187.842 −0.0279652
\(357\) 0 0
\(358\) −6849.65 −1.01122
\(359\) −10484.0 −1.54130 −0.770650 0.637259i \(-0.780068\pi\)
−0.770650 + 0.637259i \(0.780068\pi\)
\(360\) 0 0
\(361\) −4560.65 −0.664914
\(362\) 6513.96 0.945763
\(363\) 0 0
\(364\) −1854.59 −0.267052
\(365\) 10938.8 1.56866
\(366\) 0 0
\(367\) 2349.00 0.334106 0.167053 0.985948i \(-0.446575\pi\)
0.167053 + 0.985948i \(0.446575\pi\)
\(368\) −368.000 −0.0521286
\(369\) 0 0
\(370\) −12584.9 −1.76826
\(371\) −1572.12 −0.220002
\(372\) 0 0
\(373\) −12076.3 −1.67637 −0.838187 0.545384i \(-0.816384\pi\)
−0.838187 + 0.545384i \(0.816384\pi\)
\(374\) 767.677 0.106138
\(375\) 0 0
\(376\) −2399.06 −0.329048
\(377\) −15630.6 −2.13532
\(378\) 0 0
\(379\) −1987.35 −0.269349 −0.134674 0.990890i \(-0.542999\pi\)
−0.134674 + 0.990890i \(0.542999\pi\)
\(380\) −2936.63 −0.396436
\(381\) 0 0
\(382\) −8066.74 −1.08045
\(383\) −10474.6 −1.39746 −0.698731 0.715385i \(-0.746251\pi\)
−0.698731 + 0.715385i \(0.746251\pi\)
\(384\) 0 0
\(385\) 1729.56 0.228952
\(386\) −597.568 −0.0787964
\(387\) 0 0
\(388\) 4150.90 0.543118
\(389\) 3978.53 0.518559 0.259279 0.965802i \(-0.416515\pi\)
0.259279 + 0.965802i \(0.416515\pi\)
\(390\) 0 0
\(391\) 415.354 0.0537221
\(392\) 2518.12 0.324449
\(393\) 0 0
\(394\) 8508.38 1.08793
\(395\) 12782.1 1.62820
\(396\) 0 0
\(397\) 5539.81 0.700340 0.350170 0.936686i \(-0.386124\pi\)
0.350170 + 0.936686i \(0.386124\pi\)
\(398\) 9462.46 1.19173
\(399\) 0 0
\(400\) 1752.15 0.219019
\(401\) −2345.20 −0.292054 −0.146027 0.989281i \(-0.546649\pi\)
−0.146027 + 0.989281i \(0.546649\pi\)
\(402\) 0 0
\(403\) −10220.8 −1.26336
\(404\) 1498.19 0.184500
\(405\) 0 0
\(406\) −1903.76 −0.232715
\(407\) −8733.65 −1.06366
\(408\) 0 0
\(409\) −7263.96 −0.878190 −0.439095 0.898441i \(-0.644701\pi\)
−0.439095 + 0.898441i \(0.644701\pi\)
\(410\) 6302.04 0.759111
\(411\) 0 0
\(412\) −1635.53 −0.195575
\(413\) 3918.59 0.466880
\(414\) 0 0
\(415\) 12183.7 1.44114
\(416\) −2792.15 −0.329078
\(417\) 0 0
\(418\) −2037.96 −0.238469
\(419\) −4094.89 −0.477443 −0.238721 0.971088i \(-0.576728\pi\)
−0.238721 + 0.971088i \(0.576728\pi\)
\(420\) 0 0
\(421\) 4677.67 0.541510 0.270755 0.962648i \(-0.412727\pi\)
0.270755 + 0.962648i \(0.412727\pi\)
\(422\) −10262.8 −1.18385
\(423\) 0 0
\(424\) −2366.90 −0.271101
\(425\) −1977.62 −0.225715
\(426\) 0 0
\(427\) −2924.83 −0.331481
\(428\) −5066.04 −0.572141
\(429\) 0 0
\(430\) −4580.31 −0.513679
\(431\) −13219.0 −1.47735 −0.738676 0.674060i \(-0.764549\pi\)
−0.738676 + 0.674060i \(0.764549\pi\)
\(432\) 0 0
\(433\) 3109.77 0.345141 0.172571 0.984997i \(-0.444793\pi\)
0.172571 + 0.984997i \(0.444793\pi\)
\(434\) −1244.86 −0.137685
\(435\) 0 0
\(436\) −5470.27 −0.600868
\(437\) −1102.65 −0.120702
\(438\) 0 0
\(439\) 16425.0 1.78570 0.892851 0.450352i \(-0.148702\pi\)
0.892851 + 0.450352i \(0.148702\pi\)
\(440\) 2603.92 0.282130
\(441\) 0 0
\(442\) 3151.45 0.339138
\(443\) 4736.14 0.507948 0.253974 0.967211i \(-0.418262\pi\)
0.253974 + 0.967211i \(0.418262\pi\)
\(444\) 0 0
\(445\) 719.139 0.0766078
\(446\) −4378.82 −0.464895
\(447\) 0 0
\(448\) −340.077 −0.0358642
\(449\) 12341.8 1.29721 0.648605 0.761125i \(-0.275353\pi\)
0.648605 + 0.761125i \(0.275353\pi\)
\(450\) 0 0
\(451\) 4373.49 0.456629
\(452\) −378.281 −0.0393647
\(453\) 0 0
\(454\) −11706.7 −1.21019
\(455\) 7100.15 0.731561
\(456\) 0 0
\(457\) 5.80491 0.000594184 0 0.000297092 1.00000i \(-0.499905\pi\)
0.000297092 1.00000i \(0.499905\pi\)
\(458\) 6854.35 0.699307
\(459\) 0 0
\(460\) 1408.86 0.142801
\(461\) 11502.8 1.16213 0.581063 0.813859i \(-0.302637\pi\)
0.581063 + 0.813859i \(0.302637\pi\)
\(462\) 0 0
\(463\) 11739.5 1.17836 0.589182 0.808001i \(-0.299450\pi\)
0.589182 + 0.808001i \(0.299450\pi\)
\(464\) −2866.19 −0.286767
\(465\) 0 0
\(466\) 11446.7 1.13789
\(467\) 12169.8 1.20590 0.602948 0.797781i \(-0.293993\pi\)
0.602948 + 0.797781i \(0.293993\pi\)
\(468\) 0 0
\(469\) 2802.82 0.275954
\(470\) 9184.62 0.901393
\(471\) 0 0
\(472\) 5899.60 0.575320
\(473\) −3178.64 −0.308994
\(474\) 0 0
\(475\) 5250.02 0.507131
\(476\) 383.838 0.0369605
\(477\) 0 0
\(478\) 6596.08 0.631166
\(479\) −9096.85 −0.867737 −0.433868 0.900976i \(-0.642852\pi\)
−0.433868 + 0.900976i \(0.642852\pi\)
\(480\) 0 0
\(481\) −35853.1 −3.39868
\(482\) 10783.2 1.01901
\(483\) 0 0
\(484\) −3516.93 −0.330290
\(485\) −15891.4 −1.48782
\(486\) 0 0
\(487\) 18741.0 1.74381 0.871906 0.489674i \(-0.162884\pi\)
0.871906 + 0.489674i \(0.162884\pi\)
\(488\) −4403.44 −0.408472
\(489\) 0 0
\(490\) −9640.42 −0.888796
\(491\) 16903.7 1.55367 0.776837 0.629702i \(-0.216823\pi\)
0.776837 + 0.629702i \(0.216823\pi\)
\(492\) 0 0
\(493\) 3235.01 0.295533
\(494\) −8366.19 −0.761969
\(495\) 0 0
\(496\) −1874.19 −0.169665
\(497\) −1581.19 −0.142708
\(498\) 0 0
\(499\) −2690.01 −0.241326 −0.120663 0.992694i \(-0.538502\pi\)
−0.120663 + 0.992694i \(0.538502\pi\)
\(500\) 948.858 0.0848684
\(501\) 0 0
\(502\) 7184.22 0.638740
\(503\) −2009.56 −0.178135 −0.0890675 0.996026i \(-0.528389\pi\)
−0.0890675 + 0.996026i \(0.528389\pi\)
\(504\) 0 0
\(505\) −5735.72 −0.505419
\(506\) 977.722 0.0858993
\(507\) 0 0
\(508\) 8313.88 0.726119
\(509\) −16797.6 −1.46275 −0.731377 0.681973i \(-0.761122\pi\)
−0.731377 + 0.681973i \(0.761122\pi\)
\(510\) 0 0
\(511\) 3795.65 0.328590
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 11291.2 0.968938
\(515\) 6261.52 0.535758
\(516\) 0 0
\(517\) 6373.95 0.542216
\(518\) −4366.82 −0.370400
\(519\) 0 0
\(520\) 10689.6 0.901477
\(521\) −3387.35 −0.284841 −0.142421 0.989806i \(-0.545489\pi\)
−0.142421 + 0.989806i \(0.545489\pi\)
\(522\) 0 0
\(523\) −4402.98 −0.368124 −0.184062 0.982915i \(-0.558925\pi\)
−0.184062 + 0.982915i \(0.558925\pi\)
\(524\) −2998.27 −0.249962
\(525\) 0 0
\(526\) 608.854 0.0504702
\(527\) 2115.36 0.174851
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 9061.49 0.742653
\(531\) 0 0
\(532\) −1018.98 −0.0830421
\(533\) 17953.9 1.45905
\(534\) 0 0
\(535\) 19395.0 1.56732
\(536\) 4219.76 0.340048
\(537\) 0 0
\(538\) 5497.57 0.440552
\(539\) −6690.27 −0.534639
\(540\) 0 0
\(541\) −7658.32 −0.608608 −0.304304 0.952575i \(-0.598424\pi\)
−0.304304 + 0.952575i \(0.598424\pi\)
\(542\) 2648.55 0.209899
\(543\) 0 0
\(544\) 577.884 0.0455452
\(545\) 20942.5 1.64602
\(546\) 0 0
\(547\) 3176.92 0.248327 0.124164 0.992262i \(-0.460375\pi\)
0.124164 + 0.992262i \(0.460375\pi\)
\(548\) −5772.15 −0.449953
\(549\) 0 0
\(550\) −4655.22 −0.360908
\(551\) −8588.03 −0.663997
\(552\) 0 0
\(553\) 4435.28 0.341062
\(554\) −11321.5 −0.868238
\(555\) 0 0
\(556\) −8914.50 −0.679962
\(557\) 18450.7 1.40356 0.701780 0.712393i \(-0.252389\pi\)
0.701780 + 0.712393i \(0.252389\pi\)
\(558\) 0 0
\(559\) −13048.9 −0.987315
\(560\) 1301.96 0.0982463
\(561\) 0 0
\(562\) 9963.71 0.747854
\(563\) 5515.81 0.412902 0.206451 0.978457i \(-0.433809\pi\)
0.206451 + 0.978457i \(0.433809\pi\)
\(564\) 0 0
\(565\) 1448.22 0.107836
\(566\) 10187.0 0.756523
\(567\) 0 0
\(568\) −2380.54 −0.175854
\(569\) −23452.9 −1.72794 −0.863968 0.503546i \(-0.832028\pi\)
−0.863968 + 0.503546i \(0.832028\pi\)
\(570\) 0 0
\(571\) 17731.8 1.29957 0.649784 0.760119i \(-0.274859\pi\)
0.649784 + 0.760119i \(0.274859\pi\)
\(572\) 7418.35 0.542267
\(573\) 0 0
\(574\) 2186.75 0.159012
\(575\) −2518.72 −0.182675
\(576\) 0 0
\(577\) −15350.1 −1.10751 −0.553756 0.832679i \(-0.686806\pi\)
−0.553756 + 0.832679i \(0.686806\pi\)
\(578\) 9173.75 0.660169
\(579\) 0 0
\(580\) 10973.0 0.785568
\(581\) 4227.62 0.301878
\(582\) 0 0
\(583\) 6288.50 0.446729
\(584\) 5714.50 0.404911
\(585\) 0 0
\(586\) −15886.9 −1.11994
\(587\) −23291.6 −1.63773 −0.818866 0.573984i \(-0.805397\pi\)
−0.818866 + 0.573984i \(0.805397\pi\)
\(588\) 0 0
\(589\) −5615.68 −0.392853
\(590\) −22586.2 −1.57603
\(591\) 0 0
\(592\) −6574.43 −0.456431
\(593\) 20205.9 1.39925 0.699626 0.714509i \(-0.253350\pi\)
0.699626 + 0.714509i \(0.253350\pi\)
\(594\) 0 0
\(595\) −1469.50 −0.101250
\(596\) −5945.16 −0.408596
\(597\) 0 0
\(598\) 4013.72 0.274470
\(599\) −11173.3 −0.762153 −0.381077 0.924543i \(-0.624447\pi\)
−0.381077 + 0.924543i \(0.624447\pi\)
\(600\) 0 0
\(601\) −16631.6 −1.12881 −0.564405 0.825498i \(-0.690894\pi\)
−0.564405 + 0.825498i \(0.690894\pi\)
\(602\) −1589.32 −0.107601
\(603\) 0 0
\(604\) 1395.46 0.0940073
\(605\) 13464.3 0.904796
\(606\) 0 0
\(607\) −23958.5 −1.60205 −0.801025 0.598631i \(-0.795712\pi\)
−0.801025 + 0.598631i \(0.795712\pi\)
\(608\) −1534.12 −0.102330
\(609\) 0 0
\(610\) 16858.3 1.11897
\(611\) 26166.2 1.73252
\(612\) 0 0
\(613\) 25615.0 1.68774 0.843868 0.536551i \(-0.180273\pi\)
0.843868 + 0.536551i \(0.180273\pi\)
\(614\) −14889.2 −0.978629
\(615\) 0 0
\(616\) 903.536 0.0590982
\(617\) 11722.2 0.764859 0.382429 0.923985i \(-0.375088\pi\)
0.382429 + 0.923985i \(0.375088\pi\)
\(618\) 0 0
\(619\) −18949.8 −1.23047 −0.615233 0.788346i \(-0.710938\pi\)
−0.615233 + 0.788346i \(0.710938\pi\)
\(620\) 7175.21 0.464780
\(621\) 0 0
\(622\) −13169.3 −0.848941
\(623\) 249.534 0.0160472
\(624\) 0 0
\(625\) −17321.3 −1.10857
\(626\) −5581.73 −0.356375
\(627\) 0 0
\(628\) 7004.55 0.445083
\(629\) 7420.42 0.470384
\(630\) 0 0
\(631\) −1559.47 −0.0983859 −0.0491930 0.998789i \(-0.515665\pi\)
−0.0491930 + 0.998789i \(0.515665\pi\)
\(632\) 6677.49 0.420279
\(633\) 0 0
\(634\) −4167.37 −0.261053
\(635\) −31829.1 −1.98913
\(636\) 0 0
\(637\) −27464.7 −1.70831
\(638\) 7615.06 0.472544
\(639\) 0 0
\(640\) 1960.15 0.121065
\(641\) 5937.72 0.365875 0.182938 0.983125i \(-0.441439\pi\)
0.182938 + 0.983125i \(0.441439\pi\)
\(642\) 0 0
\(643\) 10389.6 0.637209 0.318604 0.947888i \(-0.396786\pi\)
0.318604 + 0.947888i \(0.396786\pi\)
\(644\) 488.861 0.0299128
\(645\) 0 0
\(646\) 1731.53 0.105458
\(647\) −23853.1 −1.44940 −0.724701 0.689064i \(-0.758022\pi\)
−0.724701 + 0.689064i \(0.758022\pi\)
\(648\) 0 0
\(649\) −15674.4 −0.948032
\(650\) −19110.5 −1.15319
\(651\) 0 0
\(652\) 1682.97 0.101089
\(653\) −13748.3 −0.823912 −0.411956 0.911204i \(-0.635154\pi\)
−0.411956 + 0.911204i \(0.635154\pi\)
\(654\) 0 0
\(655\) 11478.7 0.684746
\(656\) 3292.23 0.195945
\(657\) 0 0
\(658\) 3186.97 0.188816
\(659\) 22821.1 1.34899 0.674495 0.738279i \(-0.264361\pi\)
0.674495 + 0.738279i \(0.264361\pi\)
\(660\) 0 0
\(661\) −14131.9 −0.831567 −0.415783 0.909464i \(-0.636493\pi\)
−0.415783 + 0.909464i \(0.636493\pi\)
\(662\) −9375.14 −0.550416
\(663\) 0 0
\(664\) 6364.85 0.371994
\(665\) 3901.09 0.227486
\(666\) 0 0
\(667\) 4120.15 0.239180
\(668\) −2606.43 −0.150967
\(669\) 0 0
\(670\) −16155.0 −0.931528
\(671\) 11699.3 0.673095
\(672\) 0 0
\(673\) 7960.88 0.455972 0.227986 0.973664i \(-0.426786\pi\)
0.227986 + 0.973664i \(0.426786\pi\)
\(674\) 11975.2 0.684374
\(675\) 0 0
\(676\) 21665.6 1.23268
\(677\) −10547.0 −0.598751 −0.299376 0.954135i \(-0.596778\pi\)
−0.299376 + 0.954135i \(0.596778\pi\)
\(678\) 0 0
\(679\) −5514.16 −0.311656
\(680\) −2212.39 −0.124766
\(681\) 0 0
\(682\) 4979.46 0.279580
\(683\) −870.274 −0.0487557 −0.0243778 0.999703i \(-0.507760\pi\)
−0.0243778 + 0.999703i \(0.507760\pi\)
\(684\) 0 0
\(685\) 22098.3 1.23260
\(686\) −6990.34 −0.389056
\(687\) 0 0
\(688\) −2392.79 −0.132593
\(689\) 25815.4 1.42741
\(690\) 0 0
\(691\) 19966.0 1.09919 0.549596 0.835431i \(-0.314782\pi\)
0.549596 + 0.835431i \(0.314782\pi\)
\(692\) 5385.41 0.295842
\(693\) 0 0
\(694\) −6756.61 −0.369564
\(695\) 34128.5 1.86269
\(696\) 0 0
\(697\) −3715.88 −0.201935
\(698\) 1688.54 0.0915648
\(699\) 0 0
\(700\) −2327.61 −0.125679
\(701\) 28944.0 1.55949 0.779744 0.626099i \(-0.215349\pi\)
0.779744 + 0.626099i \(0.215349\pi\)
\(702\) 0 0
\(703\) −19699.1 −1.05685
\(704\) 1360.31 0.0728247
\(705\) 0 0
\(706\) 6334.26 0.337667
\(707\) −1990.24 −0.105871
\(708\) 0 0
\(709\) 8061.61 0.427024 0.213512 0.976940i \(-0.431510\pi\)
0.213512 + 0.976940i \(0.431510\pi\)
\(710\) 9113.73 0.481735
\(711\) 0 0
\(712\) 375.684 0.0197744
\(713\) 2694.15 0.141510
\(714\) 0 0
\(715\) −28400.6 −1.48549
\(716\) 13699.3 0.715037
\(717\) 0 0
\(718\) 20968.1 1.08986
\(719\) 21709.2 1.12603 0.563015 0.826447i \(-0.309641\pi\)
0.563015 + 0.826447i \(0.309641\pi\)
\(720\) 0 0
\(721\) 2172.69 0.112226
\(722\) 9121.30 0.470166
\(723\) 0 0
\(724\) −13027.9 −0.668755
\(725\) −19617.2 −1.00492
\(726\) 0 0
\(727\) 11612.3 0.592403 0.296202 0.955125i \(-0.404280\pi\)
0.296202 + 0.955125i \(0.404280\pi\)
\(728\) 3709.17 0.188834
\(729\) 0 0
\(730\) −21877.6 −1.10921
\(731\) 2700.69 0.136647
\(732\) 0 0
\(733\) −25130.2 −1.26631 −0.633155 0.774025i \(-0.718240\pi\)
−0.633155 + 0.774025i \(0.718240\pi\)
\(734\) −4698.01 −0.236249
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −11211.3 −0.560344
\(738\) 0 0
\(739\) −14011.9 −0.697478 −0.348739 0.937220i \(-0.613390\pi\)
−0.348739 + 0.937220i \(0.613390\pi\)
\(740\) 25169.7 1.25035
\(741\) 0 0
\(742\) 3144.25 0.155565
\(743\) 6207.90 0.306522 0.153261 0.988186i \(-0.451022\pi\)
0.153261 + 0.988186i \(0.451022\pi\)
\(744\) 0 0
\(745\) 22760.6 1.11931
\(746\) 24152.6 1.18537
\(747\) 0 0
\(748\) −1535.35 −0.0750509
\(749\) 6729.86 0.328310
\(750\) 0 0
\(751\) −8787.36 −0.426971 −0.213485 0.976946i \(-0.568482\pi\)
−0.213485 + 0.976946i \(0.568482\pi\)
\(752\) 4798.12 0.232672
\(753\) 0 0
\(754\) 31261.2 1.50990
\(755\) −5342.41 −0.257524
\(756\) 0 0
\(757\) 35327.3 1.69616 0.848079 0.529870i \(-0.177759\pi\)
0.848079 + 0.529870i \(0.177759\pi\)
\(758\) 3974.70 0.190458
\(759\) 0 0
\(760\) 5873.25 0.280323
\(761\) −20753.0 −0.988562 −0.494281 0.869302i \(-0.664569\pi\)
−0.494281 + 0.869302i \(0.664569\pi\)
\(762\) 0 0
\(763\) 7266.86 0.344794
\(764\) 16133.5 0.763990
\(765\) 0 0
\(766\) 20949.2 0.988154
\(767\) −64346.1 −3.02921
\(768\) 0 0
\(769\) −3409.43 −0.159879 −0.0799397 0.996800i \(-0.525473\pi\)
−0.0799397 + 0.996800i \(0.525473\pi\)
\(770\) −3459.12 −0.161894
\(771\) 0 0
\(772\) 1195.14 0.0557174
\(773\) 504.444 0.0234716 0.0117358 0.999931i \(-0.496264\pi\)
0.0117358 + 0.999931i \(0.496264\pi\)
\(774\) 0 0
\(775\) −12827.6 −0.594558
\(776\) −8301.79 −0.384043
\(777\) 0 0
\(778\) −7957.05 −0.366676
\(779\) 9864.58 0.453704
\(780\) 0 0
\(781\) 6324.75 0.289779
\(782\) −830.708 −0.0379873
\(783\) 0 0
\(784\) −5036.23 −0.229420
\(785\) −26816.4 −1.21926
\(786\) 0 0
\(787\) −8403.22 −0.380613 −0.190306 0.981725i \(-0.560948\pi\)
−0.190306 + 0.981725i \(0.560948\pi\)
\(788\) −17016.8 −0.769286
\(789\) 0 0
\(790\) −25564.3 −1.15131
\(791\) 502.519 0.0225885
\(792\) 0 0
\(793\) 48027.7 2.15071
\(794\) −11079.6 −0.495215
\(795\) 0 0
\(796\) −18924.9 −0.842684
\(797\) −19884.7 −0.883754 −0.441877 0.897076i \(-0.645687\pi\)
−0.441877 + 0.897076i \(0.645687\pi\)
\(798\) 0 0
\(799\) −5415.54 −0.239785
\(800\) −3504.31 −0.154870
\(801\) 0 0
\(802\) 4690.40 0.206513
\(803\) −15182.6 −0.667226
\(804\) 0 0
\(805\) −1871.57 −0.0819430
\(806\) 20441.6 0.893329
\(807\) 0 0
\(808\) −2996.39 −0.130461
\(809\) −33037.5 −1.43577 −0.717883 0.696164i \(-0.754889\pi\)
−0.717883 + 0.696164i \(0.754889\pi\)
\(810\) 0 0
\(811\) −11788.0 −0.510399 −0.255199 0.966888i \(-0.582141\pi\)
−0.255199 + 0.966888i \(0.582141\pi\)
\(812\) 3807.53 0.164554
\(813\) 0 0
\(814\) 17467.3 0.752123
\(815\) −6443.14 −0.276924
\(816\) 0 0
\(817\) −7169.56 −0.307015
\(818\) 14527.9 0.620974
\(819\) 0 0
\(820\) −12604.1 −0.536772
\(821\) −22695.5 −0.964772 −0.482386 0.875959i \(-0.660230\pi\)
−0.482386 + 0.875959i \(0.660230\pi\)
\(822\) 0 0
\(823\) 33804.9 1.43179 0.715896 0.698207i \(-0.246018\pi\)
0.715896 + 0.698207i \(0.246018\pi\)
\(824\) 3271.06 0.138292
\(825\) 0 0
\(826\) −7837.19 −0.330134
\(827\) −25825.6 −1.08591 −0.542953 0.839763i \(-0.682694\pi\)
−0.542953 + 0.839763i \(0.682694\pi\)
\(828\) 0 0
\(829\) −11682.4 −0.489442 −0.244721 0.969594i \(-0.578696\pi\)
−0.244721 + 0.969594i \(0.578696\pi\)
\(830\) −24367.4 −1.01904
\(831\) 0 0
\(832\) 5584.31 0.232694
\(833\) 5684.29 0.236433
\(834\) 0 0
\(835\) 9978.51 0.413558
\(836\) 4075.92 0.168623
\(837\) 0 0
\(838\) 8189.78 0.337603
\(839\) 20526.4 0.844635 0.422317 0.906448i \(-0.361217\pi\)
0.422317 + 0.906448i \(0.361217\pi\)
\(840\) 0 0
\(841\) 7701.10 0.315761
\(842\) −9355.35 −0.382906
\(843\) 0 0
\(844\) 20525.6 0.837110
\(845\) −82945.3 −3.37681
\(846\) 0 0
\(847\) 4671.98 0.189529
\(848\) 4733.79 0.191697
\(849\) 0 0
\(850\) 3955.24 0.159604
\(851\) 9450.74 0.380690
\(852\) 0 0
\(853\) 15186.7 0.609593 0.304797 0.952417i \(-0.401412\pi\)
0.304797 + 0.952417i \(0.401412\pi\)
\(854\) 5849.66 0.234392
\(855\) 0 0
\(856\) 10132.1 0.404565
\(857\) −37394.9 −1.49053 −0.745266 0.666767i \(-0.767678\pi\)
−0.745266 + 0.666767i \(0.767678\pi\)
\(858\) 0 0
\(859\) 19572.9 0.777437 0.388719 0.921356i \(-0.372918\pi\)
0.388719 + 0.921356i \(0.372918\pi\)
\(860\) 9160.61 0.363226
\(861\) 0 0
\(862\) 26438.1 1.04465
\(863\) −16086.0 −0.634500 −0.317250 0.948342i \(-0.602759\pi\)
−0.317250 + 0.948342i \(0.602759\pi\)
\(864\) 0 0
\(865\) −20617.7 −0.810429
\(866\) −6219.55 −0.244052
\(867\) 0 0
\(868\) 2489.73 0.0973582
\(869\) −17741.1 −0.692550
\(870\) 0 0
\(871\) −46024.3 −1.79044
\(872\) 10940.5 0.424878
\(873\) 0 0
\(874\) 2205.29 0.0853491
\(875\) −1260.49 −0.0486998
\(876\) 0 0
\(877\) 1016.11 0.0391239 0.0195620 0.999809i \(-0.493773\pi\)
0.0195620 + 0.999809i \(0.493773\pi\)
\(878\) −32850.0 −1.26268
\(879\) 0 0
\(880\) −5207.85 −0.199496
\(881\) −7851.35 −0.300248 −0.150124 0.988667i \(-0.547967\pi\)
−0.150124 + 0.988667i \(0.547967\pi\)
\(882\) 0 0
\(883\) 17536.2 0.668336 0.334168 0.942513i \(-0.391545\pi\)
0.334168 + 0.942513i \(0.391545\pi\)
\(884\) −6302.90 −0.239807
\(885\) 0 0
\(886\) −9472.29 −0.359174
\(887\) 32681.8 1.23714 0.618572 0.785728i \(-0.287711\pi\)
0.618572 + 0.785728i \(0.287711\pi\)
\(888\) 0 0
\(889\) −11044.4 −0.416667
\(890\) −1438.28 −0.0541699
\(891\) 0 0
\(892\) 8757.64 0.328730
\(893\) 14376.7 0.538743
\(894\) 0 0
\(895\) −52446.8 −1.95877
\(896\) 680.155 0.0253598
\(897\) 0 0
\(898\) −24683.7 −0.917266
\(899\) 20983.6 0.778467
\(900\) 0 0
\(901\) −5342.94 −0.197557
\(902\) −8746.98 −0.322885
\(903\) 0 0
\(904\) 756.562 0.0278350
\(905\) 49876.5 1.83199
\(906\) 0 0
\(907\) 14992.8 0.548874 0.274437 0.961605i \(-0.411509\pi\)
0.274437 + 0.961605i \(0.411509\pi\)
\(908\) 23413.5 0.855731
\(909\) 0 0
\(910\) −14200.3 −0.517292
\(911\) 28483.3 1.03589 0.517943 0.855415i \(-0.326698\pi\)
0.517943 + 0.855415i \(0.326698\pi\)
\(912\) 0 0
\(913\) −16910.5 −0.612985
\(914\) −11.6098 −0.000420152 0
\(915\) 0 0
\(916\) −13708.7 −0.494485
\(917\) 3982.98 0.143435
\(918\) 0 0
\(919\) 48476.1 1.74002 0.870011 0.493032i \(-0.164111\pi\)
0.870011 + 0.493032i \(0.164111\pi\)
\(920\) −2817.72 −0.100976
\(921\) 0 0
\(922\) −23005.6 −0.821747
\(923\) 25964.2 0.925918
\(924\) 0 0
\(925\) −44997.7 −1.59948
\(926\) −23479.1 −0.833229
\(927\) 0 0
\(928\) 5732.39 0.202775
\(929\) −44980.1 −1.58853 −0.794267 0.607568i \(-0.792145\pi\)
−0.794267 + 0.607568i \(0.792145\pi\)
\(930\) 0 0
\(931\) −15090.2 −0.531214
\(932\) −22893.3 −0.804609
\(933\) 0 0
\(934\) −24339.7 −0.852697
\(935\) 5877.99 0.205594
\(936\) 0 0
\(937\) 1296.80 0.0452131 0.0226065 0.999744i \(-0.492804\pi\)
0.0226065 + 0.999744i \(0.492804\pi\)
\(938\) −5605.65 −0.195129
\(939\) 0 0
\(940\) −18369.2 −0.637381
\(941\) −42721.5 −1.48000 −0.740000 0.672607i \(-0.765175\pi\)
−0.740000 + 0.672607i \(0.765175\pi\)
\(942\) 0 0
\(943\) −4732.58 −0.163430
\(944\) −11799.2 −0.406813
\(945\) 0 0
\(946\) 6357.29 0.218492
\(947\) 13367.3 0.458688 0.229344 0.973345i \(-0.426342\pi\)
0.229344 + 0.973345i \(0.426342\pi\)
\(948\) 0 0
\(949\) −62327.2 −2.13196
\(950\) −10500.0 −0.358596
\(951\) 0 0
\(952\) −767.677 −0.0261350
\(953\) −7309.26 −0.248447 −0.124224 0.992254i \(-0.539644\pi\)
−0.124224 + 0.992254i \(0.539644\pi\)
\(954\) 0 0
\(955\) −61765.8 −2.09287
\(956\) −13192.2 −0.446302
\(957\) 0 0
\(958\) 18193.7 0.613583
\(959\) 7667.88 0.258195
\(960\) 0 0
\(961\) −16069.9 −0.539421
\(962\) 71706.3 2.40323
\(963\) 0 0
\(964\) −21566.4 −0.720547
\(965\) −4575.49 −0.152632
\(966\) 0 0
\(967\) 41664.5 1.38556 0.692782 0.721147i \(-0.256385\pi\)
0.692782 + 0.721147i \(0.256385\pi\)
\(968\) 7033.86 0.233550
\(969\) 0 0
\(970\) 31782.8 1.05205
\(971\) −54110.9 −1.78836 −0.894182 0.447705i \(-0.852242\pi\)
−0.894182 + 0.447705i \(0.852242\pi\)
\(972\) 0 0
\(973\) 11842.3 0.390181
\(974\) −37482.0 −1.23306
\(975\) 0 0
\(976\) 8806.89 0.288834
\(977\) −5877.98 −0.192480 −0.0962401 0.995358i \(-0.530682\pi\)
−0.0962401 + 0.995358i \(0.530682\pi\)
\(978\) 0 0
\(979\) −998.137 −0.0325849
\(980\) 19280.8 0.628474
\(981\) 0 0
\(982\) −33807.4 −1.09861
\(983\) 14598.5 0.473674 0.236837 0.971549i \(-0.423889\pi\)
0.236837 + 0.971549i \(0.423889\pi\)
\(984\) 0 0
\(985\) 65147.5 2.10738
\(986\) −6470.03 −0.208973
\(987\) 0 0
\(988\) 16732.4 0.538793
\(989\) 3439.63 0.110590
\(990\) 0 0
\(991\) 36254.6 1.16212 0.581062 0.813859i \(-0.302637\pi\)
0.581062 + 0.813859i \(0.302637\pi\)
\(992\) 3748.39 0.119971
\(993\) 0 0
\(994\) 3162.38 0.100910
\(995\) 72452.7 2.30845
\(996\) 0 0
\(997\) 8640.87 0.274483 0.137241 0.990538i \(-0.456176\pi\)
0.137241 + 0.990538i \(0.456176\pi\)
\(998\) 5380.02 0.170643
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 414.4.a.g.1.1 2
3.2 odd 2 138.4.a.e.1.2 2
12.11 even 2 1104.4.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
138.4.a.e.1.2 2 3.2 odd 2
414.4.a.g.1.1 2 1.1 even 1 trivial
1104.4.a.p.1.2 2 12.11 even 2