Properties

Label 414.4.a.g
Level $414$
Weight $4$
Character orbit 414.a
Self dual yes
Analytic conductor $24.427$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(24.4267907424\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 138)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 8\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + (\beta - 4) q^{5} + (\beta + 6) q^{7} - 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 4 q^{4} + (\beta - 4) q^{5} + (\beta + 6) q^{7} - 8 q^{8} + ( - 2 \beta + 8) q^{10} + ( - 4 \beta - 24) q^{11} + ( - 4 \beta + 42) q^{13} + ( - 2 \beta - 12) q^{14} + 16 q^{16} + ( - 3 \beta - 52) q^{17} + ( - 3 \beta + 14) q^{19} + (4 \beta - 16) q^{20} + (8 \beta + 48) q^{22} - 23 q^{23} + ( - 8 \beta + 19) q^{25} + (8 \beta - 84) q^{26} + (4 \beta + 24) q^{28} + (10 \beta - 66) q^{29} + (10 \beta - 4) q^{31} - 32 q^{32} + (6 \beta + 104) q^{34} + (2 \beta + 104) q^{35} + (22 \beta - 162) q^{37} + (6 \beta - 28) q^{38} + ( - 8 \beta + 32) q^{40} + ( - 12 \beta + 70) q^{41} + ( - 11 \beta - 274) q^{43} + ( - 16 \beta - 96) q^{44} + 46 q^{46} + ( - 6 \beta + 232) q^{47} + (12 \beta - 179) q^{49} + (16 \beta - 38) q^{50} + ( - 16 \beta + 168) q^{52} + ( - 41 \beta - 168) q^{53} + ( - 8 \beta - 416) q^{55} + ( - 8 \beta - 48) q^{56} + ( - 20 \beta + 132) q^{58} + (62 \beta - 36) q^{59} + ( - 46 \beta + 30) q^{61} + ( - 20 \beta + 8) q^{62} + 64 q^{64} + (58 \beta - 680) q^{65} + (27 \beta - 222) q^{67} + ( - 12 \beta - 208) q^{68} + ( - 4 \beta - 208) q^{70} + ( - 56 \beta - 336) q^{71} + (52 \beta - 126) q^{73} + ( - 44 \beta + 324) q^{74} + ( - 12 \beta + 56) q^{76} + ( - 48 \beta - 656) q^{77} + ( - \beta - 846) q^{79} + (16 \beta - 64) q^{80} + (24 \beta - 140) q^{82} + (88 \beta + 200) q^{83} + ( - 40 \beta - 176) q^{85} + (22 \beta + 548) q^{86} + (32 \beta + 192) q^{88} + (19 \beta + 168) q^{89} + (18 \beta - 260) q^{91} - 92 q^{92} + (12 \beta - 464) q^{94} + (26 \beta - 440) q^{95} + ( - 82 \beta + 110) q^{97} + ( - 24 \beta + 358) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 8 q^{5} + 12 q^{7} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} + 8 q^{4} - 8 q^{5} + 12 q^{7} - 16 q^{8} + 16 q^{10} - 48 q^{11} + 84 q^{13} - 24 q^{14} + 32 q^{16} - 104 q^{17} + 28 q^{19} - 32 q^{20} + 96 q^{22} - 46 q^{23} + 38 q^{25} - 168 q^{26} + 48 q^{28} - 132 q^{29} - 8 q^{31} - 64 q^{32} + 208 q^{34} + 208 q^{35} - 324 q^{37} - 56 q^{38} + 64 q^{40} + 140 q^{41} - 548 q^{43} - 192 q^{44} + 92 q^{46} + 464 q^{47} - 358 q^{49} - 76 q^{50} + 336 q^{52} - 336 q^{53} - 832 q^{55} - 96 q^{56} + 264 q^{58} - 72 q^{59} + 60 q^{61} + 16 q^{62} + 128 q^{64} - 1360 q^{65} - 444 q^{67} - 416 q^{68} - 416 q^{70} - 672 q^{71} - 252 q^{73} + 648 q^{74} + 112 q^{76} - 1312 q^{77} - 1692 q^{79} - 128 q^{80} - 280 q^{82} + 400 q^{83} - 352 q^{85} + 1096 q^{86} + 384 q^{88} + 336 q^{89} - 520 q^{91} - 184 q^{92} - 928 q^{94} - 880 q^{95} + 220 q^{97} + 716 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.00000 0 4.00000 −15.3137 0 −5.31371 −8.00000 0 30.6274
1.2 −2.00000 0 4.00000 7.31371 0 17.3137 −8.00000 0 −14.6274
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 414.4.a.g 2
3.b odd 2 1 138.4.a.e 2
12.b even 2 1 1104.4.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
138.4.a.e 2 3.b odd 2 1
414.4.a.g 2 1.a even 1 1 trivial
1104.4.a.p 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(414))\):

\( T_{5}^{2} + 8T_{5} - 112 \) Copy content Toggle raw display
\( T_{7}^{2} - 12T_{7} - 92 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 8T - 112 \) Copy content Toggle raw display
$7$ \( T^{2} - 12T - 92 \) Copy content Toggle raw display
$11$ \( T^{2} + 48T - 1472 \) Copy content Toggle raw display
$13$ \( T^{2} - 84T - 284 \) Copy content Toggle raw display
$17$ \( T^{2} + 104T + 1552 \) Copy content Toggle raw display
$19$ \( T^{2} - 28T - 956 \) Copy content Toggle raw display
$23$ \( (T + 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 132T - 8444 \) Copy content Toggle raw display
$31$ \( T^{2} + 8T - 12784 \) Copy content Toggle raw display
$37$ \( T^{2} + 324T - 35708 \) Copy content Toggle raw display
$41$ \( T^{2} - 140T - 13532 \) Copy content Toggle raw display
$43$ \( T^{2} + 548T + 59588 \) Copy content Toggle raw display
$47$ \( T^{2} - 464T + 49216 \) Copy content Toggle raw display
$53$ \( T^{2} + 336T - 186944 \) Copy content Toggle raw display
$59$ \( T^{2} + 72T - 490736 \) Copy content Toggle raw display
$61$ \( T^{2} - 60T - 269948 \) Copy content Toggle raw display
$67$ \( T^{2} + 444T - 44028 \) Copy content Toggle raw display
$71$ \( T^{2} + 672T - 288512 \) Copy content Toggle raw display
$73$ \( T^{2} + 252T - 330236 \) Copy content Toggle raw display
$79$ \( T^{2} + 1692 T + 715588 \) Copy content Toggle raw display
$83$ \( T^{2} - 400T - 951232 \) Copy content Toggle raw display
$89$ \( T^{2} - 336T - 17984 \) Copy content Toggle raw display
$97$ \( T^{2} - 220T - 848572 \) Copy content Toggle raw display
show more
show less