Properties

Label 414.4.a.b.1.1
Level $414$
Weight $4$
Character 414.1
Self dual yes
Analytic conductor $24.427$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [414,4,Mod(1,414)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(414, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("414.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4267907424\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 414.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +20.0000 q^{5} +2.00000 q^{7} -8.00000 q^{8} -40.0000 q^{10} +52.0000 q^{11} +43.0000 q^{13} -4.00000 q^{14} +16.0000 q^{16} +50.0000 q^{17} -74.0000 q^{19} +80.0000 q^{20} -104.000 q^{22} +23.0000 q^{23} +275.000 q^{25} -86.0000 q^{26} +8.00000 q^{28} +7.00000 q^{29} -273.000 q^{31} -32.0000 q^{32} -100.000 q^{34} +40.0000 q^{35} -4.00000 q^{37} +148.000 q^{38} -160.000 q^{40} -123.000 q^{41} -152.000 q^{43} +208.000 q^{44} -46.0000 q^{46} -75.0000 q^{47} -339.000 q^{49} -550.000 q^{50} +172.000 q^{52} -86.0000 q^{53} +1040.00 q^{55} -16.0000 q^{56} -14.0000 q^{58} +444.000 q^{59} +262.000 q^{61} +546.000 q^{62} +64.0000 q^{64} +860.000 q^{65} +764.000 q^{67} +200.000 q^{68} -80.0000 q^{70} +21.0000 q^{71} +681.000 q^{73} +8.00000 q^{74} -296.000 q^{76} +104.000 q^{77} +426.000 q^{79} +320.000 q^{80} +246.000 q^{82} -902.000 q^{83} +1000.00 q^{85} +304.000 q^{86} -416.000 q^{88} +1272.00 q^{89} +86.0000 q^{91} +92.0000 q^{92} +150.000 q^{94} -1480.00 q^{95} -342.000 q^{97} +678.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 20.0000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) 2.00000 0.107990 0.0539949 0.998541i \(-0.482805\pi\)
0.0539949 + 0.998541i \(0.482805\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −40.0000 −1.26491
\(11\) 52.0000 1.42533 0.712663 0.701506i \(-0.247489\pi\)
0.712663 + 0.701506i \(0.247489\pi\)
\(12\) 0 0
\(13\) 43.0000 0.917389 0.458694 0.888594i \(-0.348317\pi\)
0.458694 + 0.888594i \(0.348317\pi\)
\(14\) −4.00000 −0.0763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 50.0000 0.713340 0.356670 0.934230i \(-0.383912\pi\)
0.356670 + 0.934230i \(0.383912\pi\)
\(18\) 0 0
\(19\) −74.0000 −0.893514 −0.446757 0.894655i \(-0.647421\pi\)
−0.446757 + 0.894655i \(0.647421\pi\)
\(20\) 80.0000 0.894427
\(21\) 0 0
\(22\) −104.000 −1.00786
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 275.000 2.20000
\(26\) −86.0000 −0.648692
\(27\) 0 0
\(28\) 8.00000 0.0539949
\(29\) 7.00000 0.0448230 0.0224115 0.999749i \(-0.492866\pi\)
0.0224115 + 0.999749i \(0.492866\pi\)
\(30\) 0 0
\(31\) −273.000 −1.58169 −0.790843 0.612019i \(-0.790357\pi\)
−0.790843 + 0.612019i \(0.790357\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −100.000 −0.504408
\(35\) 40.0000 0.193178
\(36\) 0 0
\(37\) −4.00000 −0.0177729 −0.00888643 0.999961i \(-0.502829\pi\)
−0.00888643 + 0.999961i \(0.502829\pi\)
\(38\) 148.000 0.631810
\(39\) 0 0
\(40\) −160.000 −0.632456
\(41\) −123.000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) −152.000 −0.539065 −0.269532 0.962991i \(-0.586869\pi\)
−0.269532 + 0.962991i \(0.586869\pi\)
\(44\) 208.000 0.712663
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) −75.0000 −0.232763 −0.116382 0.993205i \(-0.537130\pi\)
−0.116382 + 0.993205i \(0.537130\pi\)
\(48\) 0 0
\(49\) −339.000 −0.988338
\(50\) −550.000 −1.55563
\(51\) 0 0
\(52\) 172.000 0.458694
\(53\) −86.0000 −0.222887 −0.111443 0.993771i \(-0.535547\pi\)
−0.111443 + 0.993771i \(0.535547\pi\)
\(54\) 0 0
\(55\) 1040.00 2.54970
\(56\) −16.0000 −0.0381802
\(57\) 0 0
\(58\) −14.0000 −0.0316947
\(59\) 444.000 0.979727 0.489863 0.871799i \(-0.337047\pi\)
0.489863 + 0.871799i \(0.337047\pi\)
\(60\) 0 0
\(61\) 262.000 0.549929 0.274964 0.961454i \(-0.411334\pi\)
0.274964 + 0.961454i \(0.411334\pi\)
\(62\) 546.000 1.11842
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 860.000 1.64107
\(66\) 0 0
\(67\) 764.000 1.39310 0.696548 0.717510i \(-0.254718\pi\)
0.696548 + 0.717510i \(0.254718\pi\)
\(68\) 200.000 0.356670
\(69\) 0 0
\(70\) −80.0000 −0.136598
\(71\) 21.0000 0.0351020 0.0175510 0.999846i \(-0.494413\pi\)
0.0175510 + 0.999846i \(0.494413\pi\)
\(72\) 0 0
\(73\) 681.000 1.09185 0.545925 0.837834i \(-0.316178\pi\)
0.545925 + 0.837834i \(0.316178\pi\)
\(74\) 8.00000 0.0125673
\(75\) 0 0
\(76\) −296.000 −0.446757
\(77\) 104.000 0.153921
\(78\) 0 0
\(79\) 426.000 0.606693 0.303346 0.952880i \(-0.401896\pi\)
0.303346 + 0.952880i \(0.401896\pi\)
\(80\) 320.000 0.447214
\(81\) 0 0
\(82\) 246.000 0.331295
\(83\) −902.000 −1.19286 −0.596430 0.802665i \(-0.703415\pi\)
−0.596430 + 0.802665i \(0.703415\pi\)
\(84\) 0 0
\(85\) 1000.00 1.27606
\(86\) 304.000 0.381176
\(87\) 0 0
\(88\) −416.000 −0.503929
\(89\) 1272.00 1.51496 0.757482 0.652856i \(-0.226430\pi\)
0.757482 + 0.652856i \(0.226430\pi\)
\(90\) 0 0
\(91\) 86.0000 0.0990687
\(92\) 92.0000 0.104257
\(93\) 0 0
\(94\) 150.000 0.164588
\(95\) −1480.00 −1.59837
\(96\) 0 0
\(97\) −342.000 −0.357988 −0.178994 0.983850i \(-0.557284\pi\)
−0.178994 + 0.983850i \(0.557284\pi\)
\(98\) 678.000 0.698861
\(99\) 0 0
\(100\) 1100.00 1.10000
\(101\) 1426.00 1.40487 0.702437 0.711746i \(-0.252095\pi\)
0.702437 + 0.711746i \(0.252095\pi\)
\(102\) 0 0
\(103\) −1190.00 −1.13839 −0.569195 0.822203i \(-0.692745\pi\)
−0.569195 + 0.822203i \(0.692745\pi\)
\(104\) −344.000 −0.324346
\(105\) 0 0
\(106\) 172.000 0.157605
\(107\) 1210.00 1.09323 0.546613 0.837386i \(-0.315917\pi\)
0.546613 + 0.837386i \(0.315917\pi\)
\(108\) 0 0
\(109\) −1680.00 −1.47628 −0.738141 0.674646i \(-0.764296\pi\)
−0.738141 + 0.674646i \(0.764296\pi\)
\(110\) −2080.00 −1.80291
\(111\) 0 0
\(112\) 32.0000 0.0269975
\(113\) −1030.00 −0.857471 −0.428736 0.903430i \(-0.641041\pi\)
−0.428736 + 0.903430i \(0.641041\pi\)
\(114\) 0 0
\(115\) 460.000 0.373002
\(116\) 28.0000 0.0224115
\(117\) 0 0
\(118\) −888.000 −0.692771
\(119\) 100.000 0.0770335
\(120\) 0 0
\(121\) 1373.00 1.03156
\(122\) −524.000 −0.388858
\(123\) 0 0
\(124\) −1092.00 −0.790843
\(125\) 3000.00 2.14663
\(126\) 0 0
\(127\) −2279.00 −1.59235 −0.796175 0.605066i \(-0.793147\pi\)
−0.796175 + 0.605066i \(0.793147\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −1720.00 −1.16042
\(131\) −987.000 −0.658279 −0.329140 0.944281i \(-0.606759\pi\)
−0.329140 + 0.944281i \(0.606759\pi\)
\(132\) 0 0
\(133\) −148.000 −0.0964904
\(134\) −1528.00 −0.985068
\(135\) 0 0
\(136\) −400.000 −0.252204
\(137\) 1644.00 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 2189.00 1.33575 0.667873 0.744276i \(-0.267205\pi\)
0.667873 + 0.744276i \(0.267205\pi\)
\(140\) 160.000 0.0965891
\(141\) 0 0
\(142\) −42.0000 −0.0248209
\(143\) 2236.00 1.30758
\(144\) 0 0
\(145\) 140.000 0.0801818
\(146\) −1362.00 −0.772054
\(147\) 0 0
\(148\) −16.0000 −0.00888643
\(149\) 946.000 0.520130 0.260065 0.965591i \(-0.416256\pi\)
0.260065 + 0.965591i \(0.416256\pi\)
\(150\) 0 0
\(151\) −365.000 −0.196710 −0.0983552 0.995151i \(-0.531358\pi\)
−0.0983552 + 0.995151i \(0.531358\pi\)
\(152\) 592.000 0.315905
\(153\) 0 0
\(154\) −208.000 −0.108838
\(155\) −5460.00 −2.82940
\(156\) 0 0
\(157\) −108.000 −0.0549002 −0.0274501 0.999623i \(-0.508739\pi\)
−0.0274501 + 0.999623i \(0.508739\pi\)
\(158\) −852.000 −0.428997
\(159\) 0 0
\(160\) −640.000 −0.316228
\(161\) 46.0000 0.0225174
\(162\) 0 0
\(163\) −1415.00 −0.679947 −0.339973 0.940435i \(-0.610418\pi\)
−0.339973 + 0.940435i \(0.610418\pi\)
\(164\) −492.000 −0.234261
\(165\) 0 0
\(166\) 1804.00 0.843479
\(167\) −1756.00 −0.813673 −0.406836 0.913501i \(-0.633368\pi\)
−0.406836 + 0.913501i \(0.633368\pi\)
\(168\) 0 0
\(169\) −348.000 −0.158398
\(170\) −2000.00 −0.902312
\(171\) 0 0
\(172\) −608.000 −0.269532
\(173\) −2358.00 −1.03627 −0.518137 0.855298i \(-0.673374\pi\)
−0.518137 + 0.855298i \(0.673374\pi\)
\(174\) 0 0
\(175\) 550.000 0.237578
\(176\) 832.000 0.356332
\(177\) 0 0
\(178\) −2544.00 −1.07124
\(179\) −1073.00 −0.448043 −0.224022 0.974584i \(-0.571919\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(180\) 0 0
\(181\) 2868.00 1.17777 0.588886 0.808216i \(-0.299567\pi\)
0.588886 + 0.808216i \(0.299567\pi\)
\(182\) −172.000 −0.0700521
\(183\) 0 0
\(184\) −184.000 −0.0737210
\(185\) −80.0000 −0.0317931
\(186\) 0 0
\(187\) 2600.00 1.01674
\(188\) −300.000 −0.116382
\(189\) 0 0
\(190\) 2960.00 1.13022
\(191\) −332.000 −0.125773 −0.0628866 0.998021i \(-0.520031\pi\)
−0.0628866 + 0.998021i \(0.520031\pi\)
\(192\) 0 0
\(193\) −2143.00 −0.799257 −0.399628 0.916677i \(-0.630861\pi\)
−0.399628 + 0.916677i \(0.630861\pi\)
\(194\) 684.000 0.253136
\(195\) 0 0
\(196\) −1356.00 −0.494169
\(197\) 2739.00 0.990587 0.495294 0.868726i \(-0.335060\pi\)
0.495294 + 0.868726i \(0.335060\pi\)
\(198\) 0 0
\(199\) 752.000 0.267879 0.133939 0.990990i \(-0.457237\pi\)
0.133939 + 0.990990i \(0.457237\pi\)
\(200\) −2200.00 −0.777817
\(201\) 0 0
\(202\) −2852.00 −0.993396
\(203\) 14.0000 0.00484043
\(204\) 0 0
\(205\) −2460.00 −0.838116
\(206\) 2380.00 0.804963
\(207\) 0 0
\(208\) 688.000 0.229347
\(209\) −3848.00 −1.27355
\(210\) 0 0
\(211\) −1016.00 −0.331490 −0.165745 0.986169i \(-0.553003\pi\)
−0.165745 + 0.986169i \(0.553003\pi\)
\(212\) −344.000 −0.111443
\(213\) 0 0
\(214\) −2420.00 −0.773027
\(215\) −3040.00 −0.964308
\(216\) 0 0
\(217\) −546.000 −0.170806
\(218\) 3360.00 1.04389
\(219\) 0 0
\(220\) 4160.00 1.27485
\(221\) 2150.00 0.654410
\(222\) 0 0
\(223\) −1120.00 −0.336326 −0.168163 0.985759i \(-0.553784\pi\)
−0.168163 + 0.985759i \(0.553784\pi\)
\(224\) −64.0000 −0.0190901
\(225\) 0 0
\(226\) 2060.00 0.606324
\(227\) −2706.00 −0.791205 −0.395602 0.918422i \(-0.629464\pi\)
−0.395602 + 0.918422i \(0.629464\pi\)
\(228\) 0 0
\(229\) 6140.00 1.77180 0.885901 0.463875i \(-0.153541\pi\)
0.885901 + 0.463875i \(0.153541\pi\)
\(230\) −920.000 −0.263752
\(231\) 0 0
\(232\) −56.0000 −0.0158473
\(233\) −6567.00 −1.84643 −0.923216 0.384282i \(-0.874449\pi\)
−0.923216 + 0.384282i \(0.874449\pi\)
\(234\) 0 0
\(235\) −1500.00 −0.416380
\(236\) 1776.00 0.489863
\(237\) 0 0
\(238\) −200.000 −0.0544709
\(239\) 729.000 0.197302 0.0986508 0.995122i \(-0.468547\pi\)
0.0986508 + 0.995122i \(0.468547\pi\)
\(240\) 0 0
\(241\) −2912.00 −0.778334 −0.389167 0.921167i \(-0.627237\pi\)
−0.389167 + 0.921167i \(0.627237\pi\)
\(242\) −2746.00 −0.729420
\(243\) 0 0
\(244\) 1048.00 0.274964
\(245\) −6780.00 −1.76799
\(246\) 0 0
\(247\) −3182.00 −0.819700
\(248\) 2184.00 0.559210
\(249\) 0 0
\(250\) −6000.00 −1.51789
\(251\) −398.000 −0.100086 −0.0500429 0.998747i \(-0.515936\pi\)
−0.0500429 + 0.998747i \(0.515936\pi\)
\(252\) 0 0
\(253\) 1196.00 0.297201
\(254\) 4558.00 1.12596
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −8131.00 −1.97353 −0.986766 0.162149i \(-0.948157\pi\)
−0.986766 + 0.162149i \(0.948157\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.00191929
\(260\) 3440.00 0.820537
\(261\) 0 0
\(262\) 1974.00 0.465474
\(263\) 1978.00 0.463759 0.231880 0.972744i \(-0.425512\pi\)
0.231880 + 0.972744i \(0.425512\pi\)
\(264\) 0 0
\(265\) −1720.00 −0.398712
\(266\) 296.000 0.0682290
\(267\) 0 0
\(268\) 3056.00 0.696548
\(269\) 8459.00 1.91730 0.958651 0.284584i \(-0.0918554\pi\)
0.958651 + 0.284584i \(0.0918554\pi\)
\(270\) 0 0
\(271\) −7240.00 −1.62287 −0.811437 0.584440i \(-0.801314\pi\)
−0.811437 + 0.584440i \(0.801314\pi\)
\(272\) 800.000 0.178335
\(273\) 0 0
\(274\) −3288.00 −0.724947
\(275\) 14300.0 3.13572
\(276\) 0 0
\(277\) −1319.00 −0.286105 −0.143052 0.989715i \(-0.545692\pi\)
−0.143052 + 0.989715i \(0.545692\pi\)
\(278\) −4378.00 −0.944514
\(279\) 0 0
\(280\) −320.000 −0.0682988
\(281\) −1770.00 −0.375763 −0.187881 0.982192i \(-0.560162\pi\)
−0.187881 + 0.982192i \(0.560162\pi\)
\(282\) 0 0
\(283\) 4144.00 0.870443 0.435221 0.900324i \(-0.356670\pi\)
0.435221 + 0.900324i \(0.356670\pi\)
\(284\) 84.0000 0.0175510
\(285\) 0 0
\(286\) −4472.00 −0.924598
\(287\) −246.000 −0.0505955
\(288\) 0 0
\(289\) −2413.00 −0.491146
\(290\) −280.000 −0.0566971
\(291\) 0 0
\(292\) 2724.00 0.545925
\(293\) 6812.00 1.35823 0.679115 0.734032i \(-0.262364\pi\)
0.679115 + 0.734032i \(0.262364\pi\)
\(294\) 0 0
\(295\) 8880.00 1.75259
\(296\) 32.0000 0.00628366
\(297\) 0 0
\(298\) −1892.00 −0.367787
\(299\) 989.000 0.191289
\(300\) 0 0
\(301\) −304.000 −0.0582135
\(302\) 730.000 0.139095
\(303\) 0 0
\(304\) −1184.00 −0.223378
\(305\) 5240.00 0.983743
\(306\) 0 0
\(307\) −5692.00 −1.05817 −0.529087 0.848567i \(-0.677466\pi\)
−0.529087 + 0.848567i \(0.677466\pi\)
\(308\) 416.000 0.0769604
\(309\) 0 0
\(310\) 10920.0 2.00069
\(311\) −5267.00 −0.960335 −0.480167 0.877177i \(-0.659424\pi\)
−0.480167 + 0.877177i \(0.659424\pi\)
\(312\) 0 0
\(313\) 6340.00 1.14491 0.572457 0.819935i \(-0.305990\pi\)
0.572457 + 0.819935i \(0.305990\pi\)
\(314\) 216.000 0.0388203
\(315\) 0 0
\(316\) 1704.00 0.303346
\(317\) 8794.00 1.55811 0.779054 0.626957i \(-0.215700\pi\)
0.779054 + 0.626957i \(0.215700\pi\)
\(318\) 0 0
\(319\) 364.000 0.0638874
\(320\) 1280.00 0.223607
\(321\) 0 0
\(322\) −92.0000 −0.0159222
\(323\) −3700.00 −0.637379
\(324\) 0 0
\(325\) 11825.0 2.01826
\(326\) 2830.00 0.480795
\(327\) 0 0
\(328\) 984.000 0.165647
\(329\) −150.000 −0.0251361
\(330\) 0 0
\(331\) 8225.00 1.36582 0.682911 0.730502i \(-0.260714\pi\)
0.682911 + 0.730502i \(0.260714\pi\)
\(332\) −3608.00 −0.596430
\(333\) 0 0
\(334\) 3512.00 0.575354
\(335\) 15280.0 2.49205
\(336\) 0 0
\(337\) −2576.00 −0.416391 −0.208195 0.978087i \(-0.566759\pi\)
−0.208195 + 0.978087i \(0.566759\pi\)
\(338\) 696.000 0.112004
\(339\) 0 0
\(340\) 4000.00 0.638031
\(341\) −14196.0 −2.25442
\(342\) 0 0
\(343\) −1364.00 −0.214720
\(344\) 1216.00 0.190588
\(345\) 0 0
\(346\) 4716.00 0.732756
\(347\) −596.000 −0.0922045 −0.0461022 0.998937i \(-0.514680\pi\)
−0.0461022 + 0.998937i \(0.514680\pi\)
\(348\) 0 0
\(349\) −9271.00 −1.42196 −0.710982 0.703210i \(-0.751749\pi\)
−0.710982 + 0.703210i \(0.751749\pi\)
\(350\) −1100.00 −0.167993
\(351\) 0 0
\(352\) −1664.00 −0.251964
\(353\) −8141.00 −1.22748 −0.613742 0.789507i \(-0.710336\pi\)
−0.613742 + 0.789507i \(0.710336\pi\)
\(354\) 0 0
\(355\) 420.000 0.0627924
\(356\) 5088.00 0.757482
\(357\) 0 0
\(358\) 2146.00 0.316815
\(359\) 2130.00 0.313140 0.156570 0.987667i \(-0.449956\pi\)
0.156570 + 0.987667i \(0.449956\pi\)
\(360\) 0 0
\(361\) −1383.00 −0.201633
\(362\) −5736.00 −0.832811
\(363\) 0 0
\(364\) 344.000 0.0495343
\(365\) 13620.0 1.95316
\(366\) 0 0
\(367\) −2574.00 −0.366108 −0.183054 0.983103i \(-0.558598\pi\)
−0.183054 + 0.983103i \(0.558598\pi\)
\(368\) 368.000 0.0521286
\(369\) 0 0
\(370\) 160.000 0.0224811
\(371\) −172.000 −0.0240695
\(372\) 0 0
\(373\) −4504.00 −0.625223 −0.312612 0.949881i \(-0.601204\pi\)
−0.312612 + 0.949881i \(0.601204\pi\)
\(374\) −5200.00 −0.718945
\(375\) 0 0
\(376\) 600.000 0.0822942
\(377\) 301.000 0.0411201
\(378\) 0 0
\(379\) 2740.00 0.371357 0.185679 0.982611i \(-0.440552\pi\)
0.185679 + 0.982611i \(0.440552\pi\)
\(380\) −5920.00 −0.799183
\(381\) 0 0
\(382\) 664.000 0.0889351
\(383\) −6948.00 −0.926961 −0.463481 0.886107i \(-0.653400\pi\)
−0.463481 + 0.886107i \(0.653400\pi\)
\(384\) 0 0
\(385\) 2080.00 0.275342
\(386\) 4286.00 0.565160
\(387\) 0 0
\(388\) −1368.00 −0.178994
\(389\) 1404.00 0.182996 0.0914982 0.995805i \(-0.470834\pi\)
0.0914982 + 0.995805i \(0.470834\pi\)
\(390\) 0 0
\(391\) 1150.00 0.148742
\(392\) 2712.00 0.349430
\(393\) 0 0
\(394\) −5478.00 −0.700451
\(395\) 8520.00 1.08529
\(396\) 0 0
\(397\) −8641.00 −1.09239 −0.546196 0.837658i \(-0.683924\pi\)
−0.546196 + 0.837658i \(0.683924\pi\)
\(398\) −1504.00 −0.189419
\(399\) 0 0
\(400\) 4400.00 0.550000
\(401\) 1140.00 0.141967 0.0709836 0.997477i \(-0.477386\pi\)
0.0709836 + 0.997477i \(0.477386\pi\)
\(402\) 0 0
\(403\) −11739.0 −1.45102
\(404\) 5704.00 0.702437
\(405\) 0 0
\(406\) −28.0000 −0.00342270
\(407\) −208.000 −0.0253321
\(408\) 0 0
\(409\) 12529.0 1.51472 0.757358 0.652999i \(-0.226490\pi\)
0.757358 + 0.652999i \(0.226490\pi\)
\(410\) 4920.00 0.592638
\(411\) 0 0
\(412\) −4760.00 −0.569195
\(413\) 888.000 0.105801
\(414\) 0 0
\(415\) −18040.0 −2.13385
\(416\) −1376.00 −0.162173
\(417\) 0 0
\(418\) 7696.00 0.900535
\(419\) −3252.00 −0.379166 −0.189583 0.981865i \(-0.560714\pi\)
−0.189583 + 0.981865i \(0.560714\pi\)
\(420\) 0 0
\(421\) 2206.00 0.255377 0.127689 0.991814i \(-0.459244\pi\)
0.127689 + 0.991814i \(0.459244\pi\)
\(422\) 2032.00 0.234399
\(423\) 0 0
\(424\) 688.000 0.0788024
\(425\) 13750.0 1.56935
\(426\) 0 0
\(427\) 524.000 0.0593867
\(428\) 4840.00 0.546613
\(429\) 0 0
\(430\) 6080.00 0.681869
\(431\) −14316.0 −1.59995 −0.799974 0.600035i \(-0.795153\pi\)
−0.799974 + 0.600035i \(0.795153\pi\)
\(432\) 0 0
\(433\) 7828.00 0.868798 0.434399 0.900720i \(-0.356961\pi\)
0.434399 + 0.900720i \(0.356961\pi\)
\(434\) 1092.00 0.120778
\(435\) 0 0
\(436\) −6720.00 −0.738141
\(437\) −1702.00 −0.186311
\(438\) 0 0
\(439\) −16039.0 −1.74374 −0.871868 0.489742i \(-0.837091\pi\)
−0.871868 + 0.489742i \(0.837091\pi\)
\(440\) −8320.00 −0.901456
\(441\) 0 0
\(442\) −4300.00 −0.462738
\(443\) −11747.0 −1.25986 −0.629929 0.776653i \(-0.716916\pi\)
−0.629929 + 0.776653i \(0.716916\pi\)
\(444\) 0 0
\(445\) 25440.0 2.71005
\(446\) 2240.00 0.237819
\(447\) 0 0
\(448\) 128.000 0.0134987
\(449\) 2890.00 0.303758 0.151879 0.988399i \(-0.451468\pi\)
0.151879 + 0.988399i \(0.451468\pi\)
\(450\) 0 0
\(451\) −6396.00 −0.667796
\(452\) −4120.00 −0.428736
\(453\) 0 0
\(454\) 5412.00 0.559466
\(455\) 1720.00 0.177219
\(456\) 0 0
\(457\) −13126.0 −1.34356 −0.671782 0.740749i \(-0.734471\pi\)
−0.671782 + 0.740749i \(0.734471\pi\)
\(458\) −12280.0 −1.25285
\(459\) 0 0
\(460\) 1840.00 0.186501
\(461\) −14481.0 −1.46301 −0.731505 0.681836i \(-0.761182\pi\)
−0.731505 + 0.681836i \(0.761182\pi\)
\(462\) 0 0
\(463\) 5272.00 0.529181 0.264590 0.964361i \(-0.414763\pi\)
0.264590 + 0.964361i \(0.414763\pi\)
\(464\) 112.000 0.0112058
\(465\) 0 0
\(466\) 13134.0 1.30562
\(467\) 13466.0 1.33433 0.667165 0.744910i \(-0.267508\pi\)
0.667165 + 0.744910i \(0.267508\pi\)
\(468\) 0 0
\(469\) 1528.00 0.150440
\(470\) 3000.00 0.294425
\(471\) 0 0
\(472\) −3552.00 −0.346386
\(473\) −7904.00 −0.768343
\(474\) 0 0
\(475\) −20350.0 −1.96573
\(476\) 400.000 0.0385167
\(477\) 0 0
\(478\) −1458.00 −0.139513
\(479\) 4526.00 0.431729 0.215865 0.976423i \(-0.430743\pi\)
0.215865 + 0.976423i \(0.430743\pi\)
\(480\) 0 0
\(481\) −172.000 −0.0163046
\(482\) 5824.00 0.550365
\(483\) 0 0
\(484\) 5492.00 0.515778
\(485\) −6840.00 −0.640388
\(486\) 0 0
\(487\) −8795.00 −0.818356 −0.409178 0.912455i \(-0.634185\pi\)
−0.409178 + 0.912455i \(0.634185\pi\)
\(488\) −2096.00 −0.194429
\(489\) 0 0
\(490\) 13560.0 1.25016
\(491\) 1275.00 0.117189 0.0585946 0.998282i \(-0.481338\pi\)
0.0585946 + 0.998282i \(0.481338\pi\)
\(492\) 0 0
\(493\) 350.000 0.0319741
\(494\) 6364.00 0.579615
\(495\) 0 0
\(496\) −4368.00 −0.395421
\(497\) 42.0000 0.00379066
\(498\) 0 0
\(499\) −9533.00 −0.855222 −0.427611 0.903963i \(-0.640645\pi\)
−0.427611 + 0.903963i \(0.640645\pi\)
\(500\) 12000.0 1.07331
\(501\) 0 0
\(502\) 796.000 0.0707714
\(503\) 13398.0 1.18765 0.593824 0.804595i \(-0.297617\pi\)
0.593824 + 0.804595i \(0.297617\pi\)
\(504\) 0 0
\(505\) 28520.0 2.51312
\(506\) −2392.00 −0.210153
\(507\) 0 0
\(508\) −9116.00 −0.796175
\(509\) 8031.00 0.699347 0.349674 0.936872i \(-0.386292\pi\)
0.349674 + 0.936872i \(0.386292\pi\)
\(510\) 0 0
\(511\) 1362.00 0.117909
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 16262.0 1.39550
\(515\) −23800.0 −2.03641
\(516\) 0 0
\(517\) −3900.00 −0.331764
\(518\) 16.0000 0.00135714
\(519\) 0 0
\(520\) −6880.00 −0.580208
\(521\) 21184.0 1.78136 0.890679 0.454632i \(-0.150229\pi\)
0.890679 + 0.454632i \(0.150229\pi\)
\(522\) 0 0
\(523\) −21706.0 −1.81479 −0.907397 0.420275i \(-0.861934\pi\)
−0.907397 + 0.420275i \(0.861934\pi\)
\(524\) −3948.00 −0.329140
\(525\) 0 0
\(526\) −3956.00 −0.327927
\(527\) −13650.0 −1.12828
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 3440.00 0.281932
\(531\) 0 0
\(532\) −592.000 −0.0482452
\(533\) −5289.00 −0.429816
\(534\) 0 0
\(535\) 24200.0 1.95562
\(536\) −6112.00 −0.492534
\(537\) 0 0
\(538\) −16918.0 −1.35574
\(539\) −17628.0 −1.40870
\(540\) 0 0
\(541\) 5781.00 0.459417 0.229709 0.973259i \(-0.426223\pi\)
0.229709 + 0.973259i \(0.426223\pi\)
\(542\) 14480.0 1.14754
\(543\) 0 0
\(544\) −1600.00 −0.126102
\(545\) −33600.0 −2.64085
\(546\) 0 0
\(547\) 7809.00 0.610400 0.305200 0.952288i \(-0.401277\pi\)
0.305200 + 0.952288i \(0.401277\pi\)
\(548\) 6576.00 0.512615
\(549\) 0 0
\(550\) −28600.0 −2.21729
\(551\) −518.000 −0.0400500
\(552\) 0 0
\(553\) 852.000 0.0655167
\(554\) 2638.00 0.202307
\(555\) 0 0
\(556\) 8756.00 0.667873
\(557\) 20240.0 1.53967 0.769835 0.638243i \(-0.220338\pi\)
0.769835 + 0.638243i \(0.220338\pi\)
\(558\) 0 0
\(559\) −6536.00 −0.494532
\(560\) 640.000 0.0482945
\(561\) 0 0
\(562\) 3540.00 0.265704
\(563\) −7612.00 −0.569818 −0.284909 0.958555i \(-0.591963\pi\)
−0.284909 + 0.958555i \(0.591963\pi\)
\(564\) 0 0
\(565\) −20600.0 −1.53389
\(566\) −8288.00 −0.615496
\(567\) 0 0
\(568\) −168.000 −0.0124104
\(569\) −19484.0 −1.43552 −0.717761 0.696290i \(-0.754833\pi\)
−0.717761 + 0.696290i \(0.754833\pi\)
\(570\) 0 0
\(571\) 6614.00 0.484741 0.242371 0.970184i \(-0.422075\pi\)
0.242371 + 0.970184i \(0.422075\pi\)
\(572\) 8944.00 0.653789
\(573\) 0 0
\(574\) 492.000 0.0357765
\(575\) 6325.00 0.458732
\(576\) 0 0
\(577\) −639.000 −0.0461038 −0.0230519 0.999734i \(-0.507338\pi\)
−0.0230519 + 0.999734i \(0.507338\pi\)
\(578\) 4826.00 0.347293
\(579\) 0 0
\(580\) 560.000 0.0400909
\(581\) −1804.00 −0.128817
\(582\) 0 0
\(583\) −4472.00 −0.317687
\(584\) −5448.00 −0.386027
\(585\) 0 0
\(586\) −13624.0 −0.960413
\(587\) 829.000 0.0582904 0.0291452 0.999575i \(-0.490721\pi\)
0.0291452 + 0.999575i \(0.490721\pi\)
\(588\) 0 0
\(589\) 20202.0 1.41326
\(590\) −17760.0 −1.23927
\(591\) 0 0
\(592\) −64.0000 −0.00444322
\(593\) 20610.0 1.42724 0.713618 0.700535i \(-0.247055\pi\)
0.713618 + 0.700535i \(0.247055\pi\)
\(594\) 0 0
\(595\) 2000.00 0.137802
\(596\) 3784.00 0.260065
\(597\) 0 0
\(598\) −1978.00 −0.135262
\(599\) 17240.0 1.17597 0.587986 0.808871i \(-0.299921\pi\)
0.587986 + 0.808871i \(0.299921\pi\)
\(600\) 0 0
\(601\) −8459.00 −0.574126 −0.287063 0.957912i \(-0.592679\pi\)
−0.287063 + 0.957912i \(0.592679\pi\)
\(602\) 608.000 0.0411632
\(603\) 0 0
\(604\) −1460.00 −0.0983552
\(605\) 27460.0 1.84530
\(606\) 0 0
\(607\) 17840.0 1.19292 0.596461 0.802642i \(-0.296573\pi\)
0.596461 + 0.802642i \(0.296573\pi\)
\(608\) 2368.00 0.157952
\(609\) 0 0
\(610\) −10480.0 −0.695611
\(611\) −3225.00 −0.213534
\(612\) 0 0
\(613\) 2534.00 0.166961 0.0834807 0.996509i \(-0.473396\pi\)
0.0834807 + 0.996509i \(0.473396\pi\)
\(614\) 11384.0 0.748242
\(615\) 0 0
\(616\) −832.000 −0.0544192
\(617\) 5610.00 0.366046 0.183023 0.983109i \(-0.441412\pi\)
0.183023 + 0.983109i \(0.441412\pi\)
\(618\) 0 0
\(619\) −11948.0 −0.775817 −0.387908 0.921698i \(-0.626802\pi\)
−0.387908 + 0.921698i \(0.626802\pi\)
\(620\) −21840.0 −1.41470
\(621\) 0 0
\(622\) 10534.0 0.679059
\(623\) 2544.00 0.163601
\(624\) 0 0
\(625\) 25625.0 1.64000
\(626\) −12680.0 −0.809576
\(627\) 0 0
\(628\) −432.000 −0.0274501
\(629\) −200.000 −0.0126781
\(630\) 0 0
\(631\) −7840.00 −0.494620 −0.247310 0.968936i \(-0.579547\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(632\) −3408.00 −0.214498
\(633\) 0 0
\(634\) −17588.0 −1.10175
\(635\) −45580.0 −2.84848
\(636\) 0 0
\(637\) −14577.0 −0.906690
\(638\) −728.000 −0.0451752
\(639\) 0 0
\(640\) −2560.00 −0.158114
\(641\) 2320.00 0.142956 0.0714778 0.997442i \(-0.477229\pi\)
0.0714778 + 0.997442i \(0.477229\pi\)
\(642\) 0 0
\(643\) 1864.00 0.114322 0.0571610 0.998365i \(-0.481795\pi\)
0.0571610 + 0.998365i \(0.481795\pi\)
\(644\) 184.000 0.0112587
\(645\) 0 0
\(646\) 7400.00 0.450695
\(647\) −11939.0 −0.725457 −0.362728 0.931895i \(-0.618155\pi\)
−0.362728 + 0.931895i \(0.618155\pi\)
\(648\) 0 0
\(649\) 23088.0 1.39643
\(650\) −23650.0 −1.42712
\(651\) 0 0
\(652\) −5660.00 −0.339973
\(653\) −10503.0 −0.629424 −0.314712 0.949187i \(-0.601908\pi\)
−0.314712 + 0.949187i \(0.601908\pi\)
\(654\) 0 0
\(655\) −19740.0 −1.17757
\(656\) −1968.00 −0.117130
\(657\) 0 0
\(658\) 300.000 0.0177739
\(659\) −10950.0 −0.647271 −0.323635 0.946182i \(-0.604905\pi\)
−0.323635 + 0.946182i \(0.604905\pi\)
\(660\) 0 0
\(661\) −3210.00 −0.188887 −0.0944437 0.995530i \(-0.530107\pi\)
−0.0944437 + 0.995530i \(0.530107\pi\)
\(662\) −16450.0 −0.965782
\(663\) 0 0
\(664\) 7216.00 0.421740
\(665\) −2960.00 −0.172607
\(666\) 0 0
\(667\) 161.000 0.00934624
\(668\) −7024.00 −0.406836
\(669\) 0 0
\(670\) −30560.0 −1.76214
\(671\) 13624.0 0.783828
\(672\) 0 0
\(673\) −13517.0 −0.774208 −0.387104 0.922036i \(-0.626525\pi\)
−0.387104 + 0.922036i \(0.626525\pi\)
\(674\) 5152.00 0.294433
\(675\) 0 0
\(676\) −1392.00 −0.0791989
\(677\) 7494.00 0.425433 0.212716 0.977114i \(-0.431769\pi\)
0.212716 + 0.977114i \(0.431769\pi\)
\(678\) 0 0
\(679\) −684.000 −0.0386591
\(680\) −8000.00 −0.451156
\(681\) 0 0
\(682\) 28392.0 1.59411
\(683\) −17865.0 −1.00086 −0.500428 0.865778i \(-0.666824\pi\)
−0.500428 + 0.865778i \(0.666824\pi\)
\(684\) 0 0
\(685\) 32880.0 1.83399
\(686\) 2728.00 0.151830
\(687\) 0 0
\(688\) −2432.00 −0.134766
\(689\) −3698.00 −0.204474
\(690\) 0 0
\(691\) 22364.0 1.23121 0.615605 0.788055i \(-0.288912\pi\)
0.615605 + 0.788055i \(0.288912\pi\)
\(692\) −9432.00 −0.518137
\(693\) 0 0
\(694\) 1192.00 0.0651984
\(695\) 43780.0 2.38945
\(696\) 0 0
\(697\) −6150.00 −0.334215
\(698\) 18542.0 1.00548
\(699\) 0 0
\(700\) 2200.00 0.118789
\(701\) −7842.00 −0.422522 −0.211261 0.977430i \(-0.567757\pi\)
−0.211261 + 0.977430i \(0.567757\pi\)
\(702\) 0 0
\(703\) 296.000 0.0158803
\(704\) 3328.00 0.178166
\(705\) 0 0
\(706\) 16282.0 0.867962
\(707\) 2852.00 0.151712
\(708\) 0 0
\(709\) 11234.0 0.595066 0.297533 0.954712i \(-0.403836\pi\)
0.297533 + 0.954712i \(0.403836\pi\)
\(710\) −840.000 −0.0444009
\(711\) 0 0
\(712\) −10176.0 −0.535620
\(713\) −6279.00 −0.329804
\(714\) 0 0
\(715\) 44720.0 2.33907
\(716\) −4292.00 −0.224022
\(717\) 0 0
\(718\) −4260.00 −0.221423
\(719\) 17568.0 0.911232 0.455616 0.890176i \(-0.349419\pi\)
0.455616 + 0.890176i \(0.349419\pi\)
\(720\) 0 0
\(721\) −2380.00 −0.122935
\(722\) 2766.00 0.142576
\(723\) 0 0
\(724\) 11472.0 0.588886
\(725\) 1925.00 0.0986106
\(726\) 0 0
\(727\) −35664.0 −1.81940 −0.909701 0.415265i \(-0.863689\pi\)
−0.909701 + 0.415265i \(0.863689\pi\)
\(728\) −688.000 −0.0350261
\(729\) 0 0
\(730\) −27240.0 −1.38109
\(731\) −7600.00 −0.384536
\(732\) 0 0
\(733\) −27914.0 −1.40659 −0.703293 0.710900i \(-0.748288\pi\)
−0.703293 + 0.710900i \(0.748288\pi\)
\(734\) 5148.00 0.258878
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 39728.0 1.98562
\(738\) 0 0
\(739\) 39529.0 1.96766 0.983828 0.179116i \(-0.0573237\pi\)
0.983828 + 0.179116i \(0.0573237\pi\)
\(740\) −320.000 −0.0158965
\(741\) 0 0
\(742\) 344.000 0.0170197
\(743\) −10062.0 −0.496822 −0.248411 0.968655i \(-0.579908\pi\)
−0.248411 + 0.968655i \(0.579908\pi\)
\(744\) 0 0
\(745\) 18920.0 0.930436
\(746\) 9008.00 0.442100
\(747\) 0 0
\(748\) 10400.0 0.508371
\(749\) 2420.00 0.118057
\(750\) 0 0
\(751\) 25644.0 1.24602 0.623011 0.782213i \(-0.285909\pi\)
0.623011 + 0.782213i \(0.285909\pi\)
\(752\) −1200.00 −0.0581908
\(753\) 0 0
\(754\) −602.000 −0.0290763
\(755\) −7300.00 −0.351886
\(756\) 0 0
\(757\) 37368.0 1.79414 0.897069 0.441890i \(-0.145692\pi\)
0.897069 + 0.441890i \(0.145692\pi\)
\(758\) −5480.00 −0.262589
\(759\) 0 0
\(760\) 11840.0 0.565108
\(761\) −105.000 −0.00500164 −0.00250082 0.999997i \(-0.500796\pi\)
−0.00250082 + 0.999997i \(0.500796\pi\)
\(762\) 0 0
\(763\) −3360.00 −0.159424
\(764\) −1328.00 −0.0628866
\(765\) 0 0
\(766\) 13896.0 0.655461
\(767\) 19092.0 0.898790
\(768\) 0 0
\(769\) −15464.0 −0.725157 −0.362579 0.931953i \(-0.618104\pi\)
−0.362579 + 0.931953i \(0.618104\pi\)
\(770\) −4160.00 −0.194696
\(771\) 0 0
\(772\) −8572.00 −0.399628
\(773\) −35168.0 −1.63636 −0.818179 0.574963i \(-0.805016\pi\)
−0.818179 + 0.574963i \(0.805016\pi\)
\(774\) 0 0
\(775\) −75075.0 −3.47971
\(776\) 2736.00 0.126568
\(777\) 0 0
\(778\) −2808.00 −0.129398
\(779\) 9102.00 0.418630
\(780\) 0 0
\(781\) 1092.00 0.0500318
\(782\) −2300.00 −0.105176
\(783\) 0 0
\(784\) −5424.00 −0.247085
\(785\) −2160.00 −0.0982085
\(786\) 0 0
\(787\) −21216.0 −0.960951 −0.480476 0.877008i \(-0.659536\pi\)
−0.480476 + 0.877008i \(0.659536\pi\)
\(788\) 10956.0 0.495294
\(789\) 0 0
\(790\) −17040.0 −0.767413
\(791\) −2060.00 −0.0925982
\(792\) 0 0
\(793\) 11266.0 0.504499
\(794\) 17282.0 0.772437
\(795\) 0 0
\(796\) 3008.00 0.133939
\(797\) −9506.00 −0.422484 −0.211242 0.977434i \(-0.567751\pi\)
−0.211242 + 0.977434i \(0.567751\pi\)
\(798\) 0 0
\(799\) −3750.00 −0.166039
\(800\) −8800.00 −0.388909
\(801\) 0 0
\(802\) −2280.00 −0.100386
\(803\) 35412.0 1.55624
\(804\) 0 0
\(805\) 920.000 0.0402804
\(806\) 23478.0 1.02603
\(807\) 0 0
\(808\) −11408.0 −0.496698
\(809\) 20550.0 0.893077 0.446539 0.894764i \(-0.352657\pi\)
0.446539 + 0.894764i \(0.352657\pi\)
\(810\) 0 0
\(811\) −5161.00 −0.223461 −0.111731 0.993739i \(-0.535639\pi\)
−0.111731 + 0.993739i \(0.535639\pi\)
\(812\) 56.0000 0.00242022
\(813\) 0 0
\(814\) 416.000 0.0179125
\(815\) −28300.0 −1.21633
\(816\) 0 0
\(817\) 11248.0 0.481662
\(818\) −25058.0 −1.07107
\(819\) 0 0
\(820\) −9840.00 −0.419058
\(821\) −7866.00 −0.334379 −0.167190 0.985925i \(-0.553469\pi\)
−0.167190 + 0.985925i \(0.553469\pi\)
\(822\) 0 0
\(823\) −22317.0 −0.945227 −0.472613 0.881270i \(-0.656689\pi\)
−0.472613 + 0.881270i \(0.656689\pi\)
\(824\) 9520.00 0.402482
\(825\) 0 0
\(826\) −1776.00 −0.0748123
\(827\) 26196.0 1.10148 0.550740 0.834677i \(-0.314346\pi\)
0.550740 + 0.834677i \(0.314346\pi\)
\(828\) 0 0
\(829\) 5886.00 0.246597 0.123299 0.992370i \(-0.460653\pi\)
0.123299 + 0.992370i \(0.460653\pi\)
\(830\) 36080.0 1.50886
\(831\) 0 0
\(832\) 2752.00 0.114674
\(833\) −16950.0 −0.705021
\(834\) 0 0
\(835\) −35120.0 −1.45554
\(836\) −15392.0 −0.636774
\(837\) 0 0
\(838\) 6504.00 0.268111
\(839\) −32394.0 −1.33297 −0.666487 0.745517i \(-0.732203\pi\)
−0.666487 + 0.745517i \(0.732203\pi\)
\(840\) 0 0
\(841\) −24340.0 −0.997991
\(842\) −4412.00 −0.180579
\(843\) 0 0
\(844\) −4064.00 −0.165745
\(845\) −6960.00 −0.283351
\(846\) 0 0
\(847\) 2746.00 0.111397
\(848\) −1376.00 −0.0557217
\(849\) 0 0
\(850\) −27500.0 −1.10970
\(851\) −92.0000 −0.00370590
\(852\) 0 0
\(853\) −31286.0 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(854\) −1048.00 −0.0419928
\(855\) 0 0
\(856\) −9680.00 −0.386514
\(857\) 2913.00 0.116110 0.0580550 0.998313i \(-0.481510\pi\)
0.0580550 + 0.998313i \(0.481510\pi\)
\(858\) 0 0
\(859\) 15451.0 0.613715 0.306858 0.951755i \(-0.400722\pi\)
0.306858 + 0.951755i \(0.400722\pi\)
\(860\) −12160.0 −0.482154
\(861\) 0 0
\(862\) 28632.0 1.13133
\(863\) 20627.0 0.813617 0.406808 0.913514i \(-0.366642\pi\)
0.406808 + 0.913514i \(0.366642\pi\)
\(864\) 0 0
\(865\) −47160.0 −1.85374
\(866\) −15656.0 −0.614333
\(867\) 0 0
\(868\) −2184.00 −0.0854030
\(869\) 22152.0 0.864735
\(870\) 0 0
\(871\) 32852.0 1.27801
\(872\) 13440.0 0.521945
\(873\) 0 0
\(874\) 3404.00 0.131741
\(875\) 6000.00 0.231814
\(876\) 0 0
\(877\) −6966.00 −0.268216 −0.134108 0.990967i \(-0.542817\pi\)
−0.134108 + 0.990967i \(0.542817\pi\)
\(878\) 32078.0 1.23301
\(879\) 0 0
\(880\) 16640.0 0.637425
\(881\) 37590.0 1.43750 0.718751 0.695268i \(-0.244714\pi\)
0.718751 + 0.695268i \(0.244714\pi\)
\(882\) 0 0
\(883\) 27876.0 1.06240 0.531202 0.847245i \(-0.321741\pi\)
0.531202 + 0.847245i \(0.321741\pi\)
\(884\) 8600.00 0.327205
\(885\) 0 0
\(886\) 23494.0 0.890854
\(887\) −9471.00 −0.358518 −0.179259 0.983802i \(-0.557370\pi\)
−0.179259 + 0.983802i \(0.557370\pi\)
\(888\) 0 0
\(889\) −4558.00 −0.171958
\(890\) −50880.0 −1.91629
\(891\) 0 0
\(892\) −4480.00 −0.168163
\(893\) 5550.00 0.207977
\(894\) 0 0
\(895\) −21460.0 −0.801485
\(896\) −256.000 −0.00954504
\(897\) 0 0
\(898\) −5780.00 −0.214790
\(899\) −1911.00 −0.0708959
\(900\) 0 0
\(901\) −4300.00 −0.158994
\(902\) 12792.0 0.472203
\(903\) 0 0
\(904\) 8240.00 0.303162
\(905\) 57360.0 2.10686
\(906\) 0 0
\(907\) 28366.0 1.03845 0.519227 0.854636i \(-0.326220\pi\)
0.519227 + 0.854636i \(0.326220\pi\)
\(908\) −10824.0 −0.395602
\(909\) 0 0
\(910\) −3440.00 −0.125313
\(911\) 7210.00 0.262215 0.131108 0.991368i \(-0.458147\pi\)
0.131108 + 0.991368i \(0.458147\pi\)
\(912\) 0 0
\(913\) −46904.0 −1.70021
\(914\) 26252.0 0.950043
\(915\) 0 0
\(916\) 24560.0 0.885901
\(917\) −1974.00 −0.0710875
\(918\) 0 0
\(919\) 17198.0 0.617312 0.308656 0.951174i \(-0.400121\pi\)
0.308656 + 0.951174i \(0.400121\pi\)
\(920\) −3680.00 −0.131876
\(921\) 0 0
\(922\) 28962.0 1.03450
\(923\) 903.000 0.0322022
\(924\) 0 0
\(925\) −1100.00 −0.0391003
\(926\) −10544.0 −0.374187
\(927\) 0 0
\(928\) −224.000 −0.00792366
\(929\) 51033.0 1.80230 0.901151 0.433505i \(-0.142724\pi\)
0.901151 + 0.433505i \(0.142724\pi\)
\(930\) 0 0
\(931\) 25086.0 0.883094
\(932\) −26268.0 −0.923216
\(933\) 0 0
\(934\) −26932.0 −0.943514
\(935\) 52000.0 1.81880
\(936\) 0 0
\(937\) 33328.0 1.16198 0.580992 0.813910i \(-0.302665\pi\)
0.580992 + 0.813910i \(0.302665\pi\)
\(938\) −3056.00 −0.106377
\(939\) 0 0
\(940\) −6000.00 −0.208190
\(941\) 20166.0 0.698611 0.349305 0.937009i \(-0.386418\pi\)
0.349305 + 0.937009i \(0.386418\pi\)
\(942\) 0 0
\(943\) −2829.00 −0.0976934
\(944\) 7104.00 0.244932
\(945\) 0 0
\(946\) 15808.0 0.543301
\(947\) 28629.0 0.982384 0.491192 0.871051i \(-0.336561\pi\)
0.491192 + 0.871051i \(0.336561\pi\)
\(948\) 0 0
\(949\) 29283.0 1.00165
\(950\) 40700.0 1.38998
\(951\) 0 0
\(952\) −800.000 −0.0272355
\(953\) −38146.0 −1.29661 −0.648305 0.761380i \(-0.724522\pi\)
−0.648305 + 0.761380i \(0.724522\pi\)
\(954\) 0 0
\(955\) −6640.00 −0.224990
\(956\) 2916.00 0.0986508
\(957\) 0 0
\(958\) −9052.00 −0.305279
\(959\) 3288.00 0.110714
\(960\) 0 0
\(961\) 44738.0 1.50173
\(962\) 344.000 0.0115291
\(963\) 0 0
\(964\) −11648.0 −0.389167
\(965\) −42860.0 −1.42975
\(966\) 0 0
\(967\) 44621.0 1.48388 0.741941 0.670465i \(-0.233905\pi\)
0.741941 + 0.670465i \(0.233905\pi\)
\(968\) −10984.0 −0.364710
\(969\) 0 0
\(970\) 13680.0 0.452823
\(971\) −5950.00 −0.196647 −0.0983237 0.995154i \(-0.531348\pi\)
−0.0983237 + 0.995154i \(0.531348\pi\)
\(972\) 0 0
\(973\) 4378.00 0.144247
\(974\) 17590.0 0.578665
\(975\) 0 0
\(976\) 4192.00 0.137482
\(977\) −40836.0 −1.33722 −0.668608 0.743615i \(-0.733109\pi\)
−0.668608 + 0.743615i \(0.733109\pi\)
\(978\) 0 0
\(979\) 66144.0 2.15932
\(980\) −27120.0 −0.883997
\(981\) 0 0
\(982\) −2550.00 −0.0828653
\(983\) −26874.0 −0.871971 −0.435985 0.899954i \(-0.643600\pi\)
−0.435985 + 0.899954i \(0.643600\pi\)
\(984\) 0 0
\(985\) 54780.0 1.77202
\(986\) −700.000 −0.0226091
\(987\) 0 0
\(988\) −12728.0 −0.409850
\(989\) −3496.00 −0.112403
\(990\) 0 0
\(991\) 21472.0 0.688275 0.344138 0.938919i \(-0.388171\pi\)
0.344138 + 0.938919i \(0.388171\pi\)
\(992\) 8736.00 0.279605
\(993\) 0 0
\(994\) −84.0000 −0.00268040
\(995\) 15040.0 0.479196
\(996\) 0 0
\(997\) 6286.00 0.199679 0.0998393 0.995004i \(-0.468167\pi\)
0.0998393 + 0.995004i \(0.468167\pi\)
\(998\) 19066.0 0.604733
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 414.4.a.b.1.1 1
3.2 odd 2 46.4.a.b.1.1 1
12.11 even 2 368.4.a.e.1.1 1
15.2 even 4 1150.4.b.a.599.2 2
15.8 even 4 1150.4.b.a.599.1 2
15.14 odd 2 1150.4.a.d.1.1 1
21.20 even 2 2254.4.a.b.1.1 1
24.5 odd 2 1472.4.a.j.1.1 1
24.11 even 2 1472.4.a.a.1.1 1
69.68 even 2 1058.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.4.a.b.1.1 1 3.2 odd 2
368.4.a.e.1.1 1 12.11 even 2
414.4.a.b.1.1 1 1.1 even 1 trivial
1058.4.a.b.1.1 1 69.68 even 2
1150.4.a.d.1.1 1 15.14 odd 2
1150.4.b.a.599.1 2 15.8 even 4
1150.4.b.a.599.2 2 15.2 even 4
1472.4.a.a.1.1 1 24.11 even 2
1472.4.a.j.1.1 1 24.5 odd 2
2254.4.a.b.1.1 1 21.20 even 2