Properties

Label 414.4.a
Level $414$
Weight $4$
Character orbit 414.a
Rep. character $\chi_{414}(1,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $14$
Sturm bound $288$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 414.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 14 \)
Sturm bound: \(288\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(414))\).

Total New Old
Modular forms 224 28 196
Cusp forms 208 28 180
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(3\)
Plus space\(+\)\(17\)
Minus space\(-\)\(11\)

Trace form

\( 28 q - 4 q^{2} + 112 q^{4} - 10 q^{5} + 40 q^{7} - 16 q^{8} + 4 q^{10} + 34 q^{11} + 4 q^{13} + 40 q^{14} + 448 q^{16} - 88 q^{17} - 98 q^{19} - 40 q^{20} + 148 q^{22} + 616 q^{25} - 120 q^{26} + 160 q^{28}+ \cdots + 540 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(414))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 23
414.4.a.a 414.a 1.a $1$ $24.427$ \(\Q\) None 138.4.a.c \(-2\) \(0\) \(2\) \(-34\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+2q^{5}-34q^{7}-8q^{8}+\cdots\)
414.4.a.b 414.a 1.a $1$ $24.427$ \(\Q\) None 46.4.a.b \(-2\) \(0\) \(20\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+20q^{5}+2q^{7}-8q^{8}+\cdots\)
414.4.a.c 414.a 1.a $1$ $24.427$ \(\Q\) None 138.4.a.b \(2\) \(0\) \(-2\) \(-32\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}-2q^{5}-2^{5}q^{7}+8q^{8}+\cdots\)
414.4.a.d 414.a 1.a $1$ $24.427$ \(\Q\) None 46.4.a.a \(2\) \(0\) \(10\) \(-12\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+10q^{5}-12q^{7}+8q^{8}+\cdots\)
414.4.a.e 414.a 1.a $1$ $24.427$ \(\Q\) None 138.4.a.a \(2\) \(0\) \(10\) \(32\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+10q^{5}+2^{5}q^{7}+8q^{8}+\cdots\)
414.4.a.f 414.a 1.a $2$ $24.427$ \(\Q(\sqrt{73}) \) None 46.4.a.d \(-4\) \(0\) \(-10\) \(12\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-4-2\beta )q^{5}+(4+4\beta )q^{7}+\cdots\)
414.4.a.g 414.a 1.a $2$ $24.427$ \(\Q(\sqrt{2}) \) None 138.4.a.e \(-4\) \(0\) \(-8\) \(12\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-4+\beta )q^{5}+(6+\beta )q^{7}+\cdots\)
414.4.a.h 414.a 1.a $2$ $24.427$ \(\Q(\sqrt{7}) \) None 414.4.a.h \(-4\) \(0\) \(10\) \(-10\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(5+3\beta )q^{5}+(-5+5\beta )q^{7}+\cdots\)
414.4.a.i 414.a 1.a $2$ $24.427$ \(\Q(\sqrt{7}) \) None 414.4.a.h \(4\) \(0\) \(-10\) \(-10\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-5+3\beta )q^{5}+(-5+\cdots)q^{7}+\cdots\)
414.4.a.j 414.a 1.a $2$ $24.427$ \(\Q(\sqrt{41}) \) None 46.4.a.c \(4\) \(0\) \(-10\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-4-2\beta )q^{5}+(2+2\beta )q^{7}+\cdots\)
414.4.a.k 414.a 1.a $2$ $24.427$ \(\Q(\sqrt{277}) \) None 138.4.a.d \(4\) \(0\) \(-2\) \(28\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+(-1-\beta )q^{5}+14q^{7}+\cdots\)
414.4.a.l 414.a 1.a $3$ $24.427$ 3.3.16372.1 None 138.4.a.f \(-6\) \(0\) \(-20\) \(10\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}+(-7-\beta _{2})q^{5}+(3+\beta _{1}+\cdots)q^{7}+\cdots\)
414.4.a.m 414.a 1.a $4$ $24.427$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 414.4.a.m \(-8\) \(0\) \(0\) \(18\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+4q^{4}-\beta _{3}q^{5}+(5+\beta _{2})q^{7}+\cdots\)
414.4.a.n 414.a 1.a $4$ $24.427$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 414.4.a.m \(8\) \(0\) \(0\) \(18\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+4q^{4}+\beta _{3}q^{5}+(5+\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(414))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(414)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 2}\)