Newspace parameters
Level: | \( N \) | \(=\) | \( 414 = 2 \cdot 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 414.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.2806829445\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.1358954496.3 |
Defining polynomial: |
\( x^{8} + 8x^{6} + 20x^{4} + 16x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{23}]\) |
Coefficient ring index: | \( 2^{3} \) |
Twist minimal: | no (minimal twist has level 138) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 8x^{6} + 20x^{4} + 16x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu^{4} + 4\nu^{2} + 2 \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{5} + 5\nu^{3} + 4\nu \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{5} + 5\nu^{3} + 6\nu \)
|
\(\beta_{4}\) | \(=\) |
\( -\nu^{6} - 6\nu^{4} - 7\nu^{2} + 2 \)
|
\(\beta_{5}\) | \(=\) |
\( \nu^{6} + 6\nu^{4} + 9\nu^{2} + 2 \)
|
\(\beta_{6}\) | \(=\) |
\( \nu^{7} + 7\nu^{5} + 13\nu^{3} + 5\nu \)
|
\(\beta_{7}\) | \(=\) |
\( \nu^{7} + 7\nu^{5} + 15\nu^{3} + 11\nu \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} - \beta_{2} ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{5} + \beta_{4} - 4 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{7} - \beta_{6} - 3\beta_{3} + 3\beta_{2} ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( -2\beta_{5} - 2\beta_{4} + \beta _1 + 6 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -5\beta_{7} + 5\beta_{6} + 11\beta_{3} - 9\beta_{2} ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 17\beta_{5} + 15\beta_{4} - 12\beta _1 - 40 ) / 2 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 22\beta_{7} - 20\beta_{6} - 43\beta_{3} + 29\beta_{2} ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/414\mathbb{Z}\right)^\times\).
\(n\) | \(47\) | \(235\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
91.1 |
|
−1.41421 | 0 | 2.00000 | − | 6.00464i | 0 | 4.69017i | −2.82843 | 0 | 8.49185i | |||||||||||||||||||||||||||||||||||||||||
91.2 | −1.41421 | 0 | 2.00000 | − | 4.92225i | 0 | 5.13851i | −2.82843 | 0 | 6.96111i | ||||||||||||||||||||||||||||||||||||||||||
91.3 | −1.41421 | 0 | 2.00000 | 4.92225i | 0 | − | 5.13851i | −2.82843 | 0 | − | 6.96111i | |||||||||||||||||||||||||||||||||||||||||
91.4 | −1.41421 | 0 | 2.00000 | 6.00464i | 0 | − | 4.69017i | −2.82843 | 0 | − | 8.49185i | |||||||||||||||||||||||||||||||||||||||||
91.5 | 1.41421 | 0 | 2.00000 | − | 1.69484i | 0 | − | 4.18388i | 2.82843 | 0 | − | 2.39686i | ||||||||||||||||||||||||||||||||||||||||
91.6 | 1.41421 | 0 | 2.00000 | − | 0.918288i | 0 | 10.4925i | 2.82843 | 0 | − | 1.29866i | |||||||||||||||||||||||||||||||||||||||||
91.7 | 1.41421 | 0 | 2.00000 | 0.918288i | 0 | − | 10.4925i | 2.82843 | 0 | 1.29866i | ||||||||||||||||||||||||||||||||||||||||||
91.8 | 1.41421 | 0 | 2.00000 | 1.69484i | 0 | 4.18388i | 2.82843 | 0 | 2.39686i | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 414.3.b.c | 8 | |
3.b | odd | 2 | 1 | 138.3.b.a | ✓ | 8 | |
12.b | even | 2 | 1 | 1104.3.c.c | 8 | ||
23.b | odd | 2 | 1 | inner | 414.3.b.c | 8 | |
69.c | even | 2 | 1 | 138.3.b.a | ✓ | 8 | |
276.h | odd | 2 | 1 | 1104.3.c.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
138.3.b.a | ✓ | 8 | 3.b | odd | 2 | 1 | |
138.3.b.a | ✓ | 8 | 69.c | even | 2 | 1 | |
414.3.b.c | 8 | 1.a | even | 1 | 1 | trivial | |
414.3.b.c | 8 | 23.b | odd | 2 | 1 | inner | |
1104.3.c.c | 8 | 12.b | even | 2 | 1 | ||
1104.3.c.c | 8 | 276.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 64T_{5}^{6} + 1100T_{5}^{4} + 3392T_{5}^{2} + 2116 \)
acting on \(S_{3}^{\mathrm{new}}(414, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2)^{4} \)
$3$
\( T^{8} \)
$5$
\( T^{8} + 64 T^{6} + 1100 T^{4} + \cdots + 2116 \)
$7$
\( T^{8} + 176 T^{6} + 8684 T^{4} + \cdots + 1119364 \)
$11$
\( T^{8} + 512 T^{6} + 43712 T^{4} + \cdots + 2262016 \)
$13$
\( (T^{4} - 8 T^{3} - 124 T^{2} + 1136 T - 956)^{2} \)
$17$
\( T^{8} + 1168 T^{6} + \cdots + 1138792516 \)
$19$
\( T^{8} + 2144 T^{6} + \cdots + 14491825924 \)
$23$
\( T^{8} + 16 T^{7} + \cdots + 78310985281 \)
$29$
\( (T^{4} - 72 T^{3} + 1160 T^{2} + \cdots - 6128)^{2} \)
$31$
\( (T^{4} + 64 T^{3} + 816 T^{2} + 2560 T + 1600)^{2} \)
$37$
\( T^{8} + 7168 T^{6} + \cdots + 2955978735616 \)
$41$
\( (T^{4} - 8 T^{3} - 2568 T^{2} + \cdots + 1208464)^{2} \)
$43$
\( T^{8} + 6704 T^{6} + \cdots + 26854687876 \)
$47$
\( (T^{4} - 56 T^{3} - 412 T^{2} + \cdots + 256036)^{2} \)
$53$
\( T^{8} + \cdots + 842259883497796 \)
$59$
\( (T^{4} + 40 T^{3} - 5788 T^{2} + \cdots + 6720292)^{2} \)
$61$
\( T^{8} + 24704 T^{6} + \cdots + 138674176 \)
$67$
\( T^{8} + 12192 T^{6} + \cdots + 15376496004 \)
$71$
\( (T^{4} + 16 T^{3} - 5704 T^{2} + \cdots - 812912)^{2} \)
$73$
\( (T^{4} - 32 T^{3} - 7872 T^{2} + \cdots + 590848)^{2} \)
$79$
\( T^{8} + 8800 T^{6} + \cdots + 7772598291844 \)
$83$
\( T^{8} + 14912 T^{6} + \cdots + 5440313672704 \)
$89$
\( T^{8} + 40448 T^{6} + \cdots + 69\!\cdots\!16 \)
$97$
\( T^{8} + \cdots + 380951699424256 \)
show more
show less