Newspace parameters
Level: | \( N \) | \(=\) | \( 414 = 2 \cdot 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 414.i (of order \(11\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.30580664368\) |
Analytic rank: | \(0\) |
Dimension: | \(10\) |
Coefficient field: | \(\Q(\zeta_{22})\) |
Defining polynomial: |
\( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 138) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{22}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/414\mathbb{Z}\right)^\times\).
\(n\) | \(47\) | \(235\) |
\(\chi(n)\) | \(1\) | \(\zeta_{22}^{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
55.1 |
|
0.959493 | − | 0.281733i | 0 | 0.841254 | − | 0.540641i | −0.455922 | − | 3.17101i | 0 | 0.628663 | − | 1.37658i | 0.654861 | − | 0.755750i | 0 | −1.33083 | − | 2.91411i | ||||||||||||||||||||||||||||||||||||
73.1 | −0.415415 | − | 0.909632i | 0 | −0.654861 | + | 0.755750i | −1.27310 | − | 0.818172i | 0 | 0.369215 | + | 2.56794i | 0.959493 | + | 0.281733i | 0 | −0.215370 | + | 1.49793i | |||||||||||||||||||||||||||||||||||||
127.1 | −0.841254 | + | 0.540641i | 0 | 0.415415 | − | 0.909632i | −1.18639 | + | 0.348356i | 0 | 0.968468 | + | 1.11767i | 0.142315 | + | 0.989821i | 0 | 0.809721 | − | 0.934468i | |||||||||||||||||||||||||||||||||||||
163.1 | −0.841254 | − | 0.540641i | 0 | 0.415415 | + | 0.909632i | −1.18639 | − | 0.348356i | 0 | 0.968468 | − | 1.11767i | 0.142315 | − | 0.989821i | 0 | 0.809721 | + | 0.934468i | |||||||||||||||||||||||||||||||||||||
271.1 | 0.959493 | + | 0.281733i | 0 | 0.841254 | + | 0.540641i | −0.455922 | + | 3.17101i | 0 | 0.628663 | + | 1.37658i | 0.654861 | + | 0.755750i | 0 | −1.33083 | + | 2.91411i | |||||||||||||||||||||||||||||||||||||
289.1 | 0.654861 | + | 0.755750i | 0 | −0.142315 | + | 0.989821i | 0.614354 | − | 1.34525i | 0 | 3.07385 | + | 0.902563i | −0.841254 | + | 0.540641i | 0 | 1.41899 | − | 0.416652i | |||||||||||||||||||||||||||||||||||||
307.1 | 0.142315 | − | 0.989821i | 0 | −0.959493 | − | 0.281733i | −1.69894 | − | 1.96068i | 0 | −1.04019 | − | 0.668491i | −0.415415 | + | 0.909632i | 0 | −2.18251 | + | 1.40261i | |||||||||||||||||||||||||||||||||||||
325.1 | 0.142315 | + | 0.989821i | 0 | −0.959493 | + | 0.281733i | −1.69894 | + | 1.96068i | 0 | −1.04019 | + | 0.668491i | −0.415415 | − | 0.909632i | 0 | −2.18251 | − | 1.40261i | |||||||||||||||||||||||||||||||||||||
361.1 | 0.654861 | − | 0.755750i | 0 | −0.142315 | − | 0.989821i | 0.614354 | + | 1.34525i | 0 | 3.07385 | − | 0.902563i | −0.841254 | − | 0.540641i | 0 | 1.41899 | + | 0.416652i | |||||||||||||||||||||||||||||||||||||
397.1 | −0.415415 | + | 0.909632i | 0 | −0.654861 | − | 0.755750i | −1.27310 | + | 0.818172i | 0 | 0.369215 | − | 2.56794i | 0.959493 | − | 0.281733i | 0 | −0.215370 | − | 1.49793i | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 414.2.i.d | 10 | |
3.b | odd | 2 | 1 | 138.2.e.a | ✓ | 10 | |
23.c | even | 11 | 1 | inner | 414.2.i.d | 10 | |
23.c | even | 11 | 1 | 9522.2.a.bt | 5 | ||
23.d | odd | 22 | 1 | 9522.2.a.bq | 5 | ||
69.g | even | 22 | 1 | 3174.2.a.bd | 5 | ||
69.h | odd | 22 | 1 | 138.2.e.a | ✓ | 10 | |
69.h | odd | 22 | 1 | 3174.2.a.bc | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
138.2.e.a | ✓ | 10 | 3.b | odd | 2 | 1 | |
138.2.e.a | ✓ | 10 | 69.h | odd | 22 | 1 | |
414.2.i.d | 10 | 1.a | even | 1 | 1 | trivial | |
414.2.i.d | 10 | 23.c | even | 11 | 1 | inner | |
3174.2.a.bc | 5 | 69.h | odd | 22 | 1 | ||
3174.2.a.bd | 5 | 69.g | even | 22 | 1 | ||
9522.2.a.bq | 5 | 23.d | odd | 22 | 1 | ||
9522.2.a.bt | 5 | 23.c | even | 11 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{10} + 8 T_{5}^{9} + 42 T_{5}^{8} + 149 T_{5}^{7} + 389 T_{5}^{6} + 736 T_{5}^{5} + 1092 T_{5}^{4} + 1465 T_{5}^{3} + 1754 T_{5}^{2} + 1426 T_{5} + 529 \)
acting on \(S_{2}^{\mathrm{new}}(414, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{10} - T^{9} + T^{8} - T^{7} + T^{6} - T^{5} + \cdots + 1 \)
$3$
\( T^{10} \)
$5$
\( T^{10} + 8 T^{9} + 42 T^{8} + 149 T^{7} + \cdots + 529 \)
$7$
\( T^{10} - 8 T^{9} + 31 T^{8} - 83 T^{7} + \cdots + 529 \)
$11$
\( T^{10} + 7 T^{9} + 5 T^{8} + 123 T^{7} + \cdots + 1 \)
$13$
\( T^{10} - 3 T^{9} + 31 T^{8} - 38 T^{7} + \cdots + 1 \)
$17$
\( T^{10} + 4 T^{9} + 5 T^{8} + 97 T^{7} + \cdots + 1849 \)
$19$
\( T^{10} + 22 T^{8} + 165 T^{7} + \cdots + 64009 \)
$23$
\( T^{10} - 12 T^{9} - 10 T^{8} + \cdots + 6436343 \)
$29$
\( T^{10} - 25 T^{9} + 372 T^{8} + \cdots + 2866249 \)
$31$
\( T^{10} - 6 T^{9} + 58 T^{8} + \cdots + 896809 \)
$37$
\( T^{10} - 9 T^{9} + 26 T^{8} - 69 T^{7} + \cdots + 529 \)
$41$
\( T^{10} + 24 T^{9} + 301 T^{8} + \cdots + 529 \)
$43$
\( T^{10} + 30 T^{9} + 427 T^{8} + \cdots + 192721 \)
$47$
\( (T^{5} - 24 T^{4} + 83 T^{3} + 1520 T^{2} + \cdots + 10649)^{2} \)
$53$
\( T^{10} + 15 T^{9} + \cdots + 361342081 \)
$59$
\( T^{10} + 5 T^{9} - 19 T^{8} + \cdots + 31730689 \)
$61$
\( T^{10} - 12 T^{9} + \cdots + 2801902489 \)
$67$
\( T^{10} - 18 T^{9} + \cdots + 1804635361 \)
$71$
\( T^{10} + 28 T^{9} + \cdots + 1490654881 \)
$73$
\( T^{10} - 19 T^{9} + \cdots + 236452129 \)
$79$
\( T^{10} + 52 T^{9} + \cdots + 2417590561 \)
$83$
\( T^{10} + 7 T^{9} + 269 T^{8} + \cdots + 659102929 \)
$89$
\( T^{10} + 3 T^{9} + 97 T^{8} + \cdots + 92871769 \)
$97$
\( T^{10} - 51 T^{9} + \cdots + 22314683161 \)
show more
show less