Properties

Label 414.2.i.b
Level $414$
Weight $2$
Character orbit 414.i
Analytic conductor $3.306$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 414 = 2 \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 414.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.30580664368\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 138)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{22}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{22}^{4} q^{2} + \zeta_{22}^{8} q^{4} + ( - \zeta_{22}^{9} + 2 \zeta_{22}^{8} - 2 \zeta_{22}^{7} + \zeta_{22}^{6} + \zeta_{22}^{4} - 2 \zeta_{22}^{3} - \zeta_{22}^{2} + \cdots + 1) q^{5}+ \cdots - \zeta_{22} q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{22}^{4} q^{2} + \zeta_{22}^{8} q^{4} + ( - \zeta_{22}^{9} + 2 \zeta_{22}^{8} - 2 \zeta_{22}^{7} + \zeta_{22}^{6} + \zeta_{22}^{4} - 2 \zeta_{22}^{3} - \zeta_{22}^{2} + \cdots + 1) q^{5}+ \cdots + (\zeta_{22}^{9} - \zeta_{22}^{8} + 2 \zeta_{22}^{5} - 3 \zeta_{22}^{4} + 2 \zeta_{22}^{3} - 3 \zeta_{22}^{2} + 2 \zeta_{22}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - q^{4} - 2 q^{7} - q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - q^{2} - q^{4} - 2 q^{7} - q^{8} + 11 q^{10} - 11 q^{11} - 13 q^{13} - 13 q^{14} - q^{16} - 2 q^{19} + 11 q^{20} - 22 q^{22} + 10 q^{23} + 5 q^{25} + 9 q^{26} - 13 q^{28} + 27 q^{29} - 18 q^{31} - q^{32} + 33 q^{34} - 44 q^{35} - q^{37} - 13 q^{38} - 11 q^{40} + 16 q^{41} + 20 q^{43} - 11 q^{44} - q^{46} - 19 q^{49} + 27 q^{50} - 2 q^{52} + q^{53} + 33 q^{55} - 2 q^{56} - 17 q^{58} + q^{59} - 34 q^{61} + 4 q^{62} - q^{64} - 11 q^{65} + 8 q^{67} - 22 q^{68} + 22 q^{70} + 22 q^{71} + 31 q^{73} - q^{74} - 2 q^{76} - 22 q^{77} + 32 q^{79} - 28 q^{82} - 33 q^{83} - 11 q^{85} + 20 q^{86} + 22 q^{88} + 23 q^{89} + 18 q^{91} - 23 q^{92} + 11 q^{94} + 22 q^{95} - q^{97} + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/414\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(235\)
\(\chi(n)\) \(1\) \(\zeta_{22}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.654861 0.755750i
0.959493 + 0.281733i
0.142315 + 0.989821i
0.142315 0.989821i
0.654861 + 0.755750i
−0.841254 + 0.540641i
−0.415415 + 0.909632i
−0.415415 0.909632i
−0.841254 0.540641i
0.959493 0.281733i
−0.959493 + 0.281733i 0 0.841254 0.540641i 0.592229 + 4.11904i 0 −1.22301 + 2.67803i −0.654861 + 0.755750i 0 −1.72871 3.78534i
73.1 0.415415 + 0.909632i 0 −0.654861 + 0.755750i −2.43450 1.56456i 0 0.394306 + 2.74246i −0.959493 0.281733i 0 0.411844 2.86444i
127.1 0.841254 0.540641i 0 0.415415 0.909632i 4.24593 1.24672i 0 −2.17208 2.50672i −0.142315 0.989821i 0 2.89788 3.34433i
163.1 0.841254 + 0.540641i 0 0.415415 + 0.909632i 4.24593 + 1.24672i 0 −2.17208 + 2.50672i −0.142315 + 0.989821i 0 2.89788 + 3.34433i
271.1 −0.959493 0.281733i 0 0.841254 + 0.540641i 0.592229 4.11904i 0 −1.22301 2.67803i −0.654861 0.755750i 0 −1.72871 + 3.78534i
289.1 −0.654861 0.755750i 0 −0.142315 + 0.989821i −0.810827 + 1.77546i 0 0.439490 + 0.129046i 0.841254 0.540641i 0 1.87279 0.549899i
307.1 −0.142315 + 0.989821i 0 −0.959493 0.281733i −1.59283 1.83823i 0 1.56130 + 1.00339i 0.415415 0.909632i 0 2.04620 1.31501i
325.1 −0.142315 0.989821i 0 −0.959493 + 0.281733i −1.59283 + 1.83823i 0 1.56130 1.00339i 0.415415 + 0.909632i 0 2.04620 + 1.31501i
361.1 −0.654861 + 0.755750i 0 −0.142315 0.989821i −0.810827 1.77546i 0 0.439490 0.129046i 0.841254 + 0.540641i 0 1.87279 + 0.549899i
397.1 0.415415 0.909632i 0 −0.654861 0.755750i −2.43450 + 1.56456i 0 0.394306 2.74246i −0.959493 + 0.281733i 0 0.411844 + 2.86444i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 397.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 414.2.i.b 10
3.b odd 2 1 138.2.e.c 10
23.c even 11 1 inner 414.2.i.b 10
23.c even 11 1 9522.2.a.bv 5
23.d odd 22 1 9522.2.a.ca 5
69.g even 22 1 3174.2.a.y 5
69.h odd 22 1 138.2.e.c 10
69.h odd 22 1 3174.2.a.z 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
138.2.e.c 10 3.b odd 2 1
138.2.e.c 10 69.h odd 22 1
414.2.i.b 10 1.a even 1 1 trivial
414.2.i.b 10 23.c even 11 1 inner
3174.2.a.y 5 69.g even 22 1
3174.2.a.z 5 69.h odd 22 1
9522.2.a.bv 5 23.c even 11 1
9522.2.a.ca 5 23.d odd 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{10} - 33T_{5}^{7} - 165T_{5}^{6} - 506T_{5}^{5} + 2178T_{5}^{4} + 14399T_{5}^{3} + 45012T_{5}^{2} + 66792T_{5} + 64009 \) acting on \(S_{2}^{\mathrm{new}}(414, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + T^{9} + T^{8} + T^{7} + T^{6} + T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( T^{10} - 33 T^{7} - 165 T^{6} + \cdots + 64009 \) Copy content Toggle raw display
$7$ \( T^{10} + 2 T^{9} + 15 T^{8} - 3 T^{7} + \cdots + 529 \) Copy content Toggle raw display
$11$ \( T^{10} + 11 T^{9} + 99 T^{8} + \cdots + 64009 \) Copy content Toggle raw display
$13$ \( T^{10} + 13 T^{9} + 59 T^{8} + 96 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{10} - 11 T^{8} - 253 T^{7} + \cdots + 33860761 \) Copy content Toggle raw display
$19$ \( T^{10} + 2 T^{9} + 26 T^{8} + \cdots + 978121 \) Copy content Toggle raw display
$23$ \( T^{10} - 10 T^{9} + 100 T^{8} + \cdots + 6436343 \) Copy content Toggle raw display
$29$ \( T^{10} - 27 T^{9} + 344 T^{8} + \cdots + 591361 \) Copy content Toggle raw display
$31$ \( T^{10} + 18 T^{9} + 148 T^{8} + \cdots + 529 \) Copy content Toggle raw display
$37$ \( T^{10} + T^{9} + 34 T^{8} + \cdots + 157609 \) Copy content Toggle raw display
$41$ \( T^{10} - 16 T^{9} + 223 T^{8} + \cdots + 38809 \) Copy content Toggle raw display
$43$ \( T^{10} - 20 T^{9} + 191 T^{8} + \cdots + 978121 \) Copy content Toggle raw display
$47$ \( (T^{5} - 55 T^{3} + 22 T^{2} + 352 T - 253)^{2} \) Copy content Toggle raw display
$53$ \( T^{10} - T^{9} + 67 T^{8} + \cdots + 31956409 \) Copy content Toggle raw display
$59$ \( T^{10} - T^{9} - 21 T^{8} + 65 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{10} + 34 T^{9} + 507 T^{8} + \cdots + 39601 \) Copy content Toggle raw display
$67$ \( T^{10} - 8 T^{9} + 64 T^{8} + \cdots + 10042561 \) Copy content Toggle raw display
$71$ \( T^{10} - 22 T^{9} + 374 T^{8} + \cdots + 64009 \) Copy content Toggle raw display
$73$ \( T^{10} - 31 T^{9} + 389 T^{8} + \cdots + 20151121 \) Copy content Toggle raw display
$79$ \( T^{10} - 32 T^{9} + \cdots + 650199001 \) Copy content Toggle raw display
$83$ \( T^{10} + 33 T^{9} + \cdots + 6146089609 \) Copy content Toggle raw display
$89$ \( T^{10} - 23 T^{9} + \cdots + 4197614521 \) Copy content Toggle raw display
$97$ \( T^{10} + T^{9} + 221 T^{8} + \cdots + 16124682289 \) Copy content Toggle raw display
show more
show less