Properties

Label 4100.2.a.c.1.4
Level $4100$
Weight $2$
Character 4100.1
Self dual yes
Analytic conductor $32.739$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4100 = 2^{2} \cdot 5^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4100.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.7386648287\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.25808.1
Defining polynomial: \(x^{4} - 10 x^{2} - 6 x + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 164)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.707500\) of defining polynomial
Character \(\chi\) \(=\) 4100.1

$q$-expansion

\(f(q)\) \(=\) \(q+3.24028 q^{3} +0.858626 q^{7} +7.49944 q^{9} +O(q^{10})\) \(q+3.24028 q^{3} +0.858626 q^{7} +7.49944 q^{9} +6.20694 q^{11} -1.41500 q^{13} +3.93332 q^{17} +3.82529 q^{19} +2.78219 q^{21} -3.06557 q^{23} +14.5795 q^{27} -8.48057 q^{29} +1.13225 q^{31} +20.1123 q^{33} -8.49944 q^{37} -4.58500 q^{39} -1.00000 q^{41} -5.34832 q^{43} +6.65528 q^{47} -6.26276 q^{49} +12.7451 q^{51} -6.41389 q^{53} +12.3950 q^{57} -3.06557 q^{59} +7.41500 q^{61} +6.43922 q^{63} -1.79306 q^{67} -9.93332 q^{69} -3.02422 q^{71} -0.632807 q^{73} +5.32944 q^{77} -14.3059 q^{79} +24.7433 q^{81} +8.76332 q^{83} -27.4795 q^{87} -7.89557 q^{89} -1.21496 q^{91} +3.66882 q^{93} -9.86664 q^{97} +46.5486 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{3} + 12q^{9} + O(q^{10}) \) \( 4q - 2q^{3} + 12q^{9} + 4q^{11} + 4q^{17} + 6q^{19} + 12q^{23} + 10q^{27} - 4q^{29} - 8q^{31} + 20q^{33} - 16q^{37} - 24q^{39} - 4q^{41} - 4q^{43} + 6q^{47} + 16q^{49} - 4q^{51} + 16q^{53} - 4q^{57} + 12q^{59} + 24q^{61} + 10q^{63} - 28q^{67} - 28q^{69} - 2q^{71} - 8q^{73} - 8q^{77} - 18q^{79} + 28q^{81} + 12q^{83} - 44q^{87} + 4q^{89} + 36q^{91} + 28q^{93} - 16q^{97} + 58q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.24028 1.87078 0.935390 0.353619i \(-0.115049\pi\)
0.935390 + 0.353619i \(0.115049\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.858626 0.324530 0.162265 0.986747i \(-0.448120\pi\)
0.162265 + 0.986747i \(0.448120\pi\)
\(8\) 0 0
\(9\) 7.49944 2.49981
\(10\) 0 0
\(11\) 6.20694 1.87146 0.935732 0.352712i \(-0.114740\pi\)
0.935732 + 0.352712i \(0.114740\pi\)
\(12\) 0 0
\(13\) −1.41500 −0.392450 −0.196225 0.980559i \(-0.562868\pi\)
−0.196225 + 0.980559i \(0.562868\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.93332 0.953970 0.476985 0.878911i \(-0.341730\pi\)
0.476985 + 0.878911i \(0.341730\pi\)
\(18\) 0 0
\(19\) 3.82529 0.877581 0.438790 0.898589i \(-0.355407\pi\)
0.438790 + 0.898589i \(0.355407\pi\)
\(20\) 0 0
\(21\) 2.78219 0.607124
\(22\) 0 0
\(23\) −3.06557 −0.639215 −0.319608 0.947550i \(-0.603551\pi\)
−0.319608 + 0.947550i \(0.603551\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 14.5795 2.80582
\(28\) 0 0
\(29\) −8.48057 −1.57480 −0.787401 0.616441i \(-0.788574\pi\)
−0.787401 + 0.616441i \(0.788574\pi\)
\(30\) 0 0
\(31\) 1.13225 0.203358 0.101679 0.994817i \(-0.467578\pi\)
0.101679 + 0.994817i \(0.467578\pi\)
\(32\) 0 0
\(33\) 20.1123 3.50110
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.49944 −1.39730 −0.698650 0.715464i \(-0.746216\pi\)
−0.698650 + 0.715464i \(0.746216\pi\)
\(38\) 0 0
\(39\) −4.58500 −0.734188
\(40\) 0 0
\(41\) −1.00000 −0.156174
\(42\) 0 0
\(43\) −5.34832 −0.815611 −0.407805 0.913069i \(-0.633706\pi\)
−0.407805 + 0.913069i \(0.633706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.65528 0.970773 0.485386 0.874300i \(-0.338679\pi\)
0.485386 + 0.874300i \(0.338679\pi\)
\(48\) 0 0
\(49\) −6.26276 −0.894680
\(50\) 0 0
\(51\) 12.7451 1.78467
\(52\) 0 0
\(53\) −6.41389 −0.881015 −0.440508 0.897749i \(-0.645202\pi\)
−0.440508 + 0.897749i \(0.645202\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.3950 1.64176
\(58\) 0 0
\(59\) −3.06557 −0.399103 −0.199552 0.979887i \(-0.563949\pi\)
−0.199552 + 0.979887i \(0.563949\pi\)
\(60\) 0 0
\(61\) 7.41500 0.949393 0.474697 0.880149i \(-0.342558\pi\)
0.474697 + 0.880149i \(0.342558\pi\)
\(62\) 0 0
\(63\) 6.43922 0.811265
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.79306 −0.219057 −0.109528 0.993984i \(-0.534934\pi\)
−0.109528 + 0.993984i \(0.534934\pi\)
\(68\) 0 0
\(69\) −9.93332 −1.19583
\(70\) 0 0
\(71\) −3.02422 −0.358909 −0.179454 0.983766i \(-0.557433\pi\)
−0.179454 + 0.983766i \(0.557433\pi\)
\(72\) 0 0
\(73\) −0.632807 −0.0740645 −0.0370322 0.999314i \(-0.511790\pi\)
−0.0370322 + 0.999314i \(0.511790\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.32944 0.607346
\(78\) 0 0
\(79\) −14.3059 −1.60953 −0.804767 0.593591i \(-0.797710\pi\)
−0.804767 + 0.593591i \(0.797710\pi\)
\(80\) 0 0
\(81\) 24.7433 2.74926
\(82\) 0 0
\(83\) 8.76332 0.961899 0.480950 0.876748i \(-0.340292\pi\)
0.480950 + 0.876748i \(0.340292\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −27.4795 −2.94611
\(88\) 0 0
\(89\) −7.89557 −0.836929 −0.418464 0.908233i \(-0.637431\pi\)
−0.418464 + 0.908233i \(0.637431\pi\)
\(90\) 0 0
\(91\) −1.21496 −0.127362
\(92\) 0 0
\(93\) 3.66882 0.380439
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.86664 −1.00181 −0.500903 0.865504i \(-0.666999\pi\)
−0.500903 + 0.865504i \(0.666999\pi\)
\(98\) 0 0
\(99\) 46.5486 4.67831
\(100\) 0 0
\(101\) −4.51832 −0.449590 −0.224795 0.974406i \(-0.572171\pi\)
−0.224795 + 0.974406i \(0.572171\pi\)
\(102\) 0 0
\(103\) 16.4139 1.61731 0.808654 0.588284i \(-0.200196\pi\)
0.808654 + 0.588284i \(0.200196\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0645 1.55301 0.776505 0.630111i \(-0.216991\pi\)
0.776505 + 0.630111i \(0.216991\pi\)
\(108\) 0 0
\(109\) −5.61282 −0.537611 −0.268805 0.963195i \(-0.586629\pi\)
−0.268805 + 0.963195i \(0.586629\pi\)
\(110\) 0 0
\(111\) −27.5406 −2.61404
\(112\) 0 0
\(113\) −5.63170 −0.529785 −0.264893 0.964278i \(-0.585337\pi\)
−0.264893 + 0.964278i \(0.585337\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −10.6117 −0.981053
\(118\) 0 0
\(119\) 3.37725 0.309592
\(120\) 0 0
\(121\) 27.5262 2.50238
\(122\) 0 0
\(123\) −3.24028 −0.292167
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.69775 −0.150651 −0.0753254 0.997159i \(-0.524000\pi\)
−0.0753254 + 0.997159i \(0.524000\pi\)
\(128\) 0 0
\(129\) −17.3301 −1.52583
\(130\) 0 0
\(131\) −2.48057 −0.216728 −0.108364 0.994111i \(-0.534561\pi\)
−0.108364 + 0.994111i \(0.534561\pi\)
\(132\) 0 0
\(133\) 3.28449 0.284801
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.76332 −0.236086 −0.118043 0.993008i \(-0.537662\pi\)
−0.118043 + 0.993008i \(0.537662\pi\)
\(138\) 0 0
\(139\) 8.99889 0.763276 0.381638 0.924312i \(-0.375360\pi\)
0.381638 + 0.924312i \(0.375360\pi\)
\(140\) 0 0
\(141\) 21.5650 1.81610
\(142\) 0 0
\(143\) −8.78282 −0.734456
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −20.2931 −1.67375
\(148\) 0 0
\(149\) −8.48057 −0.694755 −0.347378 0.937725i \(-0.612928\pi\)
−0.347378 + 0.937725i \(0.612928\pi\)
\(150\) 0 0
\(151\) −7.58971 −0.617642 −0.308821 0.951120i \(-0.599934\pi\)
−0.308821 + 0.951120i \(0.599934\pi\)
\(152\) 0 0
\(153\) 29.4977 2.38475
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.78282 0.541328 0.270664 0.962674i \(-0.412757\pi\)
0.270664 + 0.962674i \(0.412757\pi\)
\(158\) 0 0
\(159\) −20.7828 −1.64818
\(160\) 0 0
\(161\) −2.63218 −0.207445
\(162\) 0 0
\(163\) −15.0278 −1.17707 −0.588535 0.808472i \(-0.700295\pi\)
−0.588535 + 0.808472i \(0.700295\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.79306 −0.448280 −0.224140 0.974557i \(-0.571957\pi\)
−0.224140 + 0.974557i \(0.571957\pi\)
\(168\) 0 0
\(169\) −10.9978 −0.845983
\(170\) 0 0
\(171\) 28.6875 2.19379
\(172\) 0 0
\(173\) 5.43450 0.413178 0.206589 0.978428i \(-0.433764\pi\)
0.206589 + 0.978428i \(0.433764\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9.93332 −0.746634
\(178\) 0 0
\(179\) 8.10251 0.605610 0.302805 0.953052i \(-0.402077\pi\)
0.302805 + 0.953052i \(0.402077\pi\)
\(180\) 0 0
\(181\) −9.24389 −0.687093 −0.343546 0.939136i \(-0.611628\pi\)
−0.343546 + 0.939136i \(0.611628\pi\)
\(182\) 0 0
\(183\) 24.0267 1.77611
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 24.4139 1.78532
\(188\) 0 0
\(189\) 12.5183 0.910574
\(190\) 0 0
\(191\) 24.3381 1.76104 0.880521 0.474007i \(-0.157193\pi\)
0.880521 + 0.474007i \(0.157193\pi\)
\(192\) 0 0
\(193\) −13.2634 −0.954720 −0.477360 0.878708i \(-0.658406\pi\)
−0.477360 + 0.878708i \(0.658406\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.1116 1.29040 0.645200 0.764013i \(-0.276774\pi\)
0.645200 + 0.764013i \(0.276774\pi\)
\(198\) 0 0
\(199\) 19.7726 1.40164 0.700821 0.713337i \(-0.252817\pi\)
0.700821 + 0.713337i \(0.252817\pi\)
\(200\) 0 0
\(201\) −5.81001 −0.409807
\(202\) 0 0
\(203\) −7.28164 −0.511071
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −22.9901 −1.59792
\(208\) 0 0
\(209\) 23.7433 1.64236
\(210\) 0 0
\(211\) 1.53924 0.105966 0.0529828 0.998595i \(-0.483127\pi\)
0.0529828 + 0.998595i \(0.483127\pi\)
\(212\) 0 0
\(213\) −9.79933 −0.671439
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.972180 0.0659959
\(218\) 0 0
\(219\) −2.05047 −0.138558
\(220\) 0 0
\(221\) −5.56564 −0.374386
\(222\) 0 0
\(223\) 27.6578 1.85210 0.926051 0.377399i \(-0.123181\pi\)
0.926051 + 0.377399i \(0.123181\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.79635 0.119228 0.0596141 0.998221i \(-0.481013\pi\)
0.0596141 + 0.998221i \(0.481013\pi\)
\(228\) 0 0
\(229\) 21.6128 1.42822 0.714108 0.700036i \(-0.246833\pi\)
0.714108 + 0.700036i \(0.246833\pi\)
\(230\) 0 0
\(231\) 17.2689 1.13621
\(232\) 0 0
\(233\) 18.3312 1.20092 0.600458 0.799656i \(-0.294985\pi\)
0.600458 + 0.799656i \(0.294985\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −46.3550 −3.01108
\(238\) 0 0
\(239\) 11.9586 0.773541 0.386770 0.922176i \(-0.373591\pi\)
0.386770 + 0.922176i \(0.373591\pi\)
\(240\) 0 0
\(241\) 7.41500 0.477642 0.238821 0.971064i \(-0.423239\pi\)
0.238821 + 0.971064i \(0.423239\pi\)
\(242\) 0 0
\(243\) 36.4370 2.33743
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.41278 −0.344407
\(248\) 0 0
\(249\) 28.3956 1.79950
\(250\) 0 0
\(251\) −1.91507 −0.120878 −0.0604392 0.998172i \(-0.519250\pi\)
−0.0604392 + 0.998172i \(0.519250\pi\)
\(252\) 0 0
\(253\) −19.0278 −1.19627
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.93443 −0.183045 −0.0915224 0.995803i \(-0.529173\pi\)
−0.0915224 + 0.995803i \(0.529173\pi\)
\(258\) 0 0
\(259\) −7.29784 −0.453466
\(260\) 0 0
\(261\) −63.5996 −3.93671
\(262\) 0 0
\(263\) 3.10692 0.191581 0.0957905 0.995402i \(-0.469462\pi\)
0.0957905 + 0.995402i \(0.469462\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −25.5839 −1.56571
\(268\) 0 0
\(269\) −10.2450 −0.624649 −0.312324 0.949976i \(-0.601108\pi\)
−0.312324 + 0.949976i \(0.601108\pi\)
\(270\) 0 0
\(271\) −11.1989 −0.680287 −0.340143 0.940374i \(-0.610476\pi\)
−0.340143 + 0.940374i \(0.610476\pi\)
\(272\) 0 0
\(273\) −3.93680 −0.238266
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.52838 −0.151915 −0.0759577 0.997111i \(-0.524201\pi\)
−0.0759577 + 0.997111i \(0.524201\pi\)
\(278\) 0 0
\(279\) 8.49125 0.508358
\(280\) 0 0
\(281\) −23.5656 −1.40581 −0.702904 0.711285i \(-0.748114\pi\)
−0.702904 + 0.711285i \(0.748114\pi\)
\(282\) 0 0
\(283\) −8.99889 −0.534928 −0.267464 0.963568i \(-0.586186\pi\)
−0.267464 + 0.963568i \(0.586186\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.858626 −0.0506831
\(288\) 0 0
\(289\) −1.52900 −0.0899415
\(290\) 0 0
\(291\) −31.9707 −1.87416
\(292\) 0 0
\(293\) −3.17721 −0.185614 −0.0928072 0.995684i \(-0.529584\pi\)
−0.0928072 + 0.995684i \(0.529584\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 90.4940 5.25100
\(298\) 0 0
\(299\) 4.33778 0.250860
\(300\) 0 0
\(301\) −4.59220 −0.264690
\(302\) 0 0
\(303\) −14.6406 −0.841083
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.5839 1.00357 0.501783 0.864994i \(-0.332678\pi\)
0.501783 + 0.864994i \(0.332678\pi\)
\(308\) 0 0
\(309\) 53.1857 3.02563
\(310\) 0 0
\(311\) 1.55749 0.0883169 0.0441584 0.999025i \(-0.485939\pi\)
0.0441584 + 0.999025i \(0.485939\pi\)
\(312\) 0 0
\(313\) −20.5255 −1.16017 −0.580086 0.814556i \(-0.696981\pi\)
−0.580086 + 0.814556i \(0.696981\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −26.1094 −1.46645 −0.733225 0.679986i \(-0.761986\pi\)
−0.733225 + 0.679986i \(0.761986\pi\)
\(318\) 0 0
\(319\) −52.6384 −2.94719
\(320\) 0 0
\(321\) 52.0534 2.90534
\(322\) 0 0
\(323\) 15.0461 0.837185
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −18.1871 −1.00575
\(328\) 0 0
\(329\) 5.71440 0.315045
\(330\) 0 0
\(331\) 3.68862 0.202745 0.101373 0.994849i \(-0.467677\pi\)
0.101373 + 0.994849i \(0.467677\pi\)
\(332\) 0 0
\(333\) −63.7411 −3.49299
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −30.9240 −1.68454 −0.842269 0.539057i \(-0.818781\pi\)
−0.842269 + 0.539057i \(0.818781\pi\)
\(338\) 0 0
\(339\) −18.2483 −0.991111
\(340\) 0 0
\(341\) 7.02782 0.380578
\(342\) 0 0
\(343\) −11.3878 −0.614881
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −27.1264 −1.45622 −0.728111 0.685459i \(-0.759602\pi\)
−0.728111 + 0.685459i \(0.759602\pi\)
\(348\) 0 0
\(349\) −9.30051 −0.497845 −0.248922 0.968523i \(-0.580076\pi\)
−0.248922 + 0.968523i \(0.580076\pi\)
\(350\) 0 0
\(351\) −20.6300 −1.10115
\(352\) 0 0
\(353\) −13.3961 −0.713004 −0.356502 0.934295i \(-0.616031\pi\)
−0.356502 + 0.934295i \(0.616031\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.9432 0.579178
\(358\) 0 0
\(359\) −28.9611 −1.52851 −0.764255 0.644914i \(-0.776893\pi\)
−0.764255 + 0.644914i \(0.776893\pi\)
\(360\) 0 0
\(361\) −4.36719 −0.229852
\(362\) 0 0
\(363\) 89.1926 4.68140
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 31.4795 1.64321 0.821607 0.570054i \(-0.193078\pi\)
0.821607 + 0.570054i \(0.193078\pi\)
\(368\) 0 0
\(369\) −7.49944 −0.390405
\(370\) 0 0
\(371\) −5.50713 −0.285916
\(372\) 0 0
\(373\) 15.5266 0.803939 0.401969 0.915653i \(-0.368326\pi\)
0.401969 + 0.915653i \(0.368326\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 1.97107 0.101247 0.0506235 0.998718i \(-0.483879\pi\)
0.0506235 + 0.998718i \(0.483879\pi\)
\(380\) 0 0
\(381\) −5.50119 −0.281834
\(382\) 0 0
\(383\) 12.8404 0.656113 0.328056 0.944658i \(-0.393606\pi\)
0.328056 + 0.944658i \(0.393606\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −40.1094 −2.03888
\(388\) 0 0
\(389\) 1.03886 0.0526724 0.0263362 0.999653i \(-0.491616\pi\)
0.0263362 + 0.999653i \(0.491616\pi\)
\(390\) 0 0
\(391\) −12.0579 −0.609792
\(392\) 0 0
\(393\) −8.03775 −0.405451
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 24.6406 1.23668 0.618339 0.785911i \(-0.287806\pi\)
0.618339 + 0.785911i \(0.287806\pi\)
\(398\) 0 0
\(399\) 10.6427 0.532800
\(400\) 0 0
\(401\) 0.397236 0.0198370 0.00991851 0.999951i \(-0.496843\pi\)
0.00991851 + 0.999951i \(0.496843\pi\)
\(402\) 0 0
\(403\) −1.60213 −0.0798080
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −52.7556 −2.61500
\(408\) 0 0
\(409\) −2.76395 −0.136668 −0.0683342 0.997662i \(-0.521768\pi\)
−0.0683342 + 0.997662i \(0.521768\pi\)
\(410\) 0 0
\(411\) −8.95393 −0.441665
\(412\) 0 0
\(413\) −2.63218 −0.129521
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 29.1590 1.42792
\(418\) 0 0
\(419\) 1.48168 0.0723848 0.0361924 0.999345i \(-0.488477\pi\)
0.0361924 + 0.999345i \(0.488477\pi\)
\(420\) 0 0
\(421\) −18.9039 −0.921319 −0.460659 0.887577i \(-0.652387\pi\)
−0.460659 + 0.887577i \(0.652387\pi\)
\(422\) 0 0
\(423\) 49.9109 2.42675
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.36671 0.308107
\(428\) 0 0
\(429\) −28.4588 −1.37401
\(430\) 0 0
\(431\) −7.28164 −0.350744 −0.175372 0.984502i \(-0.556113\pi\)
−0.175372 + 0.984502i \(0.556113\pi\)
\(432\) 0 0
\(433\) 0.397865 0.0191202 0.00956009 0.999954i \(-0.496957\pi\)
0.00956009 + 0.999954i \(0.496957\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.7267 −0.560963
\(438\) 0 0
\(439\) 33.9798 1.62177 0.810885 0.585206i \(-0.198986\pi\)
0.810885 + 0.585206i \(0.198986\pi\)
\(440\) 0 0
\(441\) −46.9672 −2.23653
\(442\) 0 0
\(443\) −16.2050 −0.769924 −0.384962 0.922932i \(-0.625785\pi\)
−0.384962 + 0.922932i \(0.625785\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −27.4795 −1.29973
\(448\) 0 0
\(449\) −23.1118 −1.09071 −0.545356 0.838204i \(-0.683606\pi\)
−0.545356 + 0.838204i \(0.683606\pi\)
\(450\) 0 0
\(451\) −6.20694 −0.292274
\(452\) 0 0
\(453\) −24.5928 −1.15547
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −35.6301 −1.66671 −0.833353 0.552741i \(-0.813582\pi\)
−0.833353 + 0.552741i \(0.813582\pi\)
\(458\) 0 0
\(459\) 57.3457 2.67667
\(460\) 0 0
\(461\) 6.63058 0.308817 0.154409 0.988007i \(-0.450653\pi\)
0.154409 + 0.988007i \(0.450653\pi\)
\(462\) 0 0
\(463\) 21.0220 0.976975 0.488487 0.872571i \(-0.337549\pi\)
0.488487 + 0.872571i \(0.337549\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15.8933 −0.735456 −0.367728 0.929933i \(-0.619864\pi\)
−0.367728 + 0.929933i \(0.619864\pi\)
\(468\) 0 0
\(469\) −1.53956 −0.0710905
\(470\) 0 0
\(471\) 21.9783 1.01271
\(472\) 0 0
\(473\) −33.1967 −1.52639
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −48.1006 −2.20237
\(478\) 0 0
\(479\) −34.8564 −1.59263 −0.796315 0.604882i \(-0.793220\pi\)
−0.796315 + 0.604882i \(0.793220\pi\)
\(480\) 0 0
\(481\) 12.0267 0.548371
\(482\) 0 0
\(483\) −8.52900 −0.388083
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.44393 0.427945 0.213973 0.976840i \(-0.431360\pi\)
0.213973 + 0.976840i \(0.431360\pi\)
\(488\) 0 0
\(489\) −48.6944 −2.20204
\(490\) 0 0
\(491\) 33.1577 1.49639 0.748193 0.663481i \(-0.230922\pi\)
0.748193 + 0.663481i \(0.230922\pi\)
\(492\) 0 0
\(493\) −33.3568 −1.50231
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.59667 −0.116477
\(498\) 0 0
\(499\) 12.7597 0.571203 0.285602 0.958348i \(-0.407807\pi\)
0.285602 + 0.958348i \(0.407807\pi\)
\(500\) 0 0
\(501\) −18.7712 −0.838633
\(502\) 0 0
\(503\) 17.0025 0.758104 0.379052 0.925375i \(-0.376250\pi\)
0.379052 + 0.925375i \(0.376250\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −35.6359 −1.58265
\(508\) 0 0
\(509\) −2.50950 −0.111232 −0.0556158 0.998452i \(-0.517712\pi\)
−0.0556158 + 0.998452i \(0.517712\pi\)
\(510\) 0 0
\(511\) −0.543345 −0.0240361
\(512\) 0 0
\(513\) 55.7707 2.46234
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 41.3090 1.81677
\(518\) 0 0
\(519\) 17.6093 0.772964
\(520\) 0 0
\(521\) 13.1300 0.575237 0.287618 0.957745i \(-0.407136\pi\)
0.287618 + 0.957745i \(0.407136\pi\)
\(522\) 0 0
\(523\) −23.8301 −1.04202 −0.521010 0.853551i \(-0.674444\pi\)
−0.521010 + 0.853551i \(0.674444\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.45350 0.193998
\(528\) 0 0
\(529\) −13.6023 −0.591404
\(530\) 0 0
\(531\) −22.9901 −0.997684
\(532\) 0 0
\(533\) 1.41500 0.0612904
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 26.2544 1.13296
\(538\) 0 0
\(539\) −38.8726 −1.67436
\(540\) 0 0
\(541\) 14.6995 0.631980 0.315990 0.948762i \(-0.397663\pi\)
0.315990 + 0.948762i \(0.397663\pi\)
\(542\) 0 0
\(543\) −29.9528 −1.28540
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −20.2209 −0.864584 −0.432292 0.901734i \(-0.642295\pi\)
−0.432292 + 0.901734i \(0.642295\pi\)
\(548\) 0 0
\(549\) 55.6084 2.37331
\(550\) 0 0
\(551\) −32.4406 −1.38202
\(552\) 0 0
\(553\) −12.2834 −0.522342
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 40.6784 1.72360 0.861799 0.507249i \(-0.169338\pi\)
0.861799 + 0.507249i \(0.169338\pi\)
\(558\) 0 0
\(559\) 7.56787 0.320087
\(560\) 0 0
\(561\) 79.1079 3.33994
\(562\) 0 0
\(563\) 19.4486 0.819661 0.409831 0.912162i \(-0.365588\pi\)
0.409831 + 0.912162i \(0.365588\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 21.2453 0.892217
\(568\) 0 0
\(569\) −31.1850 −1.30734 −0.653672 0.756778i \(-0.726773\pi\)
−0.653672 + 0.756778i \(0.726773\pi\)
\(570\) 0 0
\(571\) −0.190921 −0.00798981 −0.00399491 0.999992i \(-0.501272\pi\)
−0.00399491 + 0.999992i \(0.501272\pi\)
\(572\) 0 0
\(573\) 78.8623 3.29452
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 29.0278 1.20844 0.604222 0.796816i \(-0.293484\pi\)
0.604222 + 0.796816i \(0.293484\pi\)
\(578\) 0 0
\(579\) −42.9772 −1.78607
\(580\) 0 0
\(581\) 7.52441 0.312165
\(582\) 0 0
\(583\) −39.8106 −1.64879
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.5735 0.477690 0.238845 0.971058i \(-0.423231\pi\)
0.238845 + 0.971058i \(0.423231\pi\)
\(588\) 0 0
\(589\) 4.33118 0.178463
\(590\) 0 0
\(591\) 58.6869 2.41405
\(592\) 0 0
\(593\) −34.5557 −1.41903 −0.709517 0.704689i \(-0.751087\pi\)
−0.709517 + 0.704689i \(0.751087\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 64.0688 2.62216
\(598\) 0 0
\(599\) 26.9967 1.10305 0.551527 0.834157i \(-0.314045\pi\)
0.551527 + 0.834157i \(0.314045\pi\)
\(600\) 0 0
\(601\) 47.8534 1.95198 0.975990 0.217816i \(-0.0698932\pi\)
0.975990 + 0.217816i \(0.0698932\pi\)
\(602\) 0 0
\(603\) −13.4469 −0.547601
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −12.3761 −0.502332 −0.251166 0.967944i \(-0.580814\pi\)
−0.251166 + 0.967944i \(0.580814\pi\)
\(608\) 0 0
\(609\) −23.5946 −0.956100
\(610\) 0 0
\(611\) −9.41722 −0.380980
\(612\) 0 0
\(613\) −12.9061 −0.521274 −0.260637 0.965437i \(-0.583933\pi\)
−0.260637 + 0.965437i \(0.583933\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.5268 1.63155 0.815773 0.578372i \(-0.196312\pi\)
0.815773 + 0.578372i \(0.196312\pi\)
\(618\) 0 0
\(619\) −2.65889 −0.106870 −0.0534348 0.998571i \(-0.517017\pi\)
−0.0534348 + 0.998571i \(0.517017\pi\)
\(620\) 0 0
\(621\) −44.6944 −1.79353
\(622\) 0 0
\(623\) −6.77934 −0.271609
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 76.9351 3.07249
\(628\) 0 0
\(629\) −33.4310 −1.33298
\(630\) 0 0
\(631\) −0.139958 −0.00557165 −0.00278583 0.999996i \(-0.500887\pi\)
−0.00278583 + 0.999996i \(0.500887\pi\)
\(632\) 0 0
\(633\) 4.98757 0.198238
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8.86180 0.351117
\(638\) 0 0
\(639\) −22.6800 −0.897205
\(640\) 0 0
\(641\) 9.39675 0.371149 0.185575 0.982630i \(-0.440585\pi\)
0.185575 + 0.982630i \(0.440585\pi\)
\(642\) 0 0
\(643\) −6.02863 −0.237746 −0.118873 0.992909i \(-0.537928\pi\)
−0.118873 + 0.992909i \(0.537928\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.3861 −0.683517 −0.341758 0.939788i \(-0.611022\pi\)
−0.341758 + 0.939788i \(0.611022\pi\)
\(648\) 0 0
\(649\) −19.0278 −0.746907
\(650\) 0 0
\(651\) 3.15014 0.123464
\(652\) 0 0
\(653\) 8.02832 0.314173 0.157086 0.987585i \(-0.449790\pi\)
0.157086 + 0.987585i \(0.449790\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −4.74570 −0.185147
\(658\) 0 0
\(659\) −33.8809 −1.31981 −0.659907 0.751348i \(-0.729404\pi\)
−0.659907 + 0.751348i \(0.729404\pi\)
\(660\) 0 0
\(661\) 34.3840 1.33738 0.668691 0.743541i \(-0.266855\pi\)
0.668691 + 0.743541i \(0.266855\pi\)
\(662\) 0 0
\(663\) −18.0343 −0.700393
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 25.9978 1.00664
\(668\) 0 0
\(669\) 89.6191 3.46487
\(670\) 0 0
\(671\) 46.0245 1.77676
\(672\) 0 0
\(673\) −10.3689 −0.399693 −0.199847 0.979827i \(-0.564044\pi\)
−0.199847 + 0.979827i \(0.564044\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28.0616 −1.07850 −0.539248 0.842147i \(-0.681291\pi\)
−0.539248 + 0.842147i \(0.681291\pi\)
\(678\) 0 0
\(679\) −8.47175 −0.325116
\(680\) 0 0
\(681\) 5.82070 0.223050
\(682\) 0 0
\(683\) −12.2209 −0.467621 −0.233810 0.972282i \(-0.575119\pi\)
−0.233810 + 0.972282i \(0.575119\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 70.0317 2.67188
\(688\) 0 0
\(689\) 9.07565 0.345755
\(690\) 0 0
\(691\) 46.1797 1.75676 0.878379 0.477964i \(-0.158625\pi\)
0.878379 + 0.477964i \(0.158625\pi\)
\(692\) 0 0
\(693\) 39.9679 1.51825
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −3.93332 −0.148985
\(698\) 0 0
\(699\) 59.3983 2.24665
\(700\) 0 0
\(701\) −46.8161 −1.76822 −0.884110 0.467279i \(-0.845234\pi\)
−0.884110 + 0.467279i \(0.845234\pi\)
\(702\) 0 0
\(703\) −32.5128 −1.22624
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.87955 −0.145905
\(708\) 0 0
\(709\) 42.0840 1.58050 0.790248 0.612787i \(-0.209952\pi\)
0.790248 + 0.612787i \(0.209952\pi\)
\(710\) 0 0
\(711\) −107.286 −4.02354
\(712\) 0 0
\(713\) −3.47100 −0.129990
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 38.7494 1.44712
\(718\) 0 0
\(719\) 1.77685 0.0662653 0.0331327 0.999451i \(-0.489452\pi\)
0.0331327 + 0.999451i \(0.489452\pi\)
\(720\) 0 0
\(721\) 14.0934 0.524865
\(722\) 0 0
\(723\) 24.0267 0.893563
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.4346 0.646614 0.323307 0.946294i \(-0.395205\pi\)
0.323307 + 0.946294i \(0.395205\pi\)
\(728\) 0 0
\(729\) 43.8362 1.62356
\(730\) 0 0
\(731\) −21.0366 −0.778068
\(732\) 0 0
\(733\) 8.31827 0.307242 0.153621 0.988130i \(-0.450906\pi\)
0.153621 + 0.988130i \(0.450906\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.1294 −0.409957
\(738\) 0 0
\(739\) −0.139958 −0.00514845 −0.00257422 0.999997i \(-0.500819\pi\)
−0.00257422 + 0.999997i \(0.500819\pi\)
\(740\) 0 0
\(741\) −17.5389 −0.644309
\(742\) 0 0
\(743\) 3.92389 0.143954 0.0719768 0.997406i \(-0.477069\pi\)
0.0719768 + 0.997406i \(0.477069\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 65.7200 2.40457
\(748\) 0 0
\(749\) 13.7934 0.503998
\(750\) 0 0
\(751\) 38.2786 1.39681 0.698403 0.715705i \(-0.253894\pi\)
0.698403 + 0.715705i \(0.253894\pi\)
\(752\) 0 0
\(753\) −6.20538 −0.226137
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 31.0640 1.12904 0.564519 0.825420i \(-0.309062\pi\)
0.564519 + 0.825420i \(0.309062\pi\)
\(758\) 0 0
\(759\) −61.6556 −2.23795
\(760\) 0 0
\(761\) −2.83945 −0.102930 −0.0514649 0.998675i \(-0.516389\pi\)
−0.0514649 + 0.998675i \(0.516389\pi\)
\(762\) 0 0
\(763\) −4.81931 −0.174471
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.33778 0.156628
\(768\) 0 0
\(769\) 38.7888 1.39876 0.699379 0.714751i \(-0.253460\pi\)
0.699379 + 0.714751i \(0.253460\pi\)
\(770\) 0 0
\(771\) −9.50839 −0.342436
\(772\) 0 0
\(773\) −25.7150 −0.924905 −0.462453 0.886644i \(-0.653030\pi\)
−0.462453 + 0.886644i \(0.653030\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −23.6471 −0.848335
\(778\) 0 0
\(779\) −3.82529 −0.137055
\(780\) 0 0
\(781\) −18.7712 −0.671685
\(782\) 0 0
\(783\) −123.642 −4.41861
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −41.7817 −1.48936 −0.744679 0.667423i \(-0.767397\pi\)
−0.744679 + 0.667423i \(0.767397\pi\)
\(788\) 0 0
\(789\) 10.0673 0.358406
\(790\) 0 0
\(791\) −4.83552 −0.171931
\(792\) 0 0
\(793\) −10.4922 −0.372590
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −36.2818 −1.28517 −0.642583 0.766216i \(-0.722137\pi\)
−0.642583 + 0.766216i \(0.722137\pi\)
\(798\) 0 0
\(799\) 26.1774 0.926088
\(800\) 0 0
\(801\) −59.2124 −2.09217
\(802\) 0 0
\(803\) −3.92780 −0.138609
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −33.1967 −1.16858
\(808\) 0 0
\(809\) −37.8556 −1.33093 −0.665466 0.746428i \(-0.731767\pi\)
−0.665466 + 0.746428i \(0.731767\pi\)
\(810\) 0 0
\(811\) −15.5751 −0.546915 −0.273457 0.961884i \(-0.588167\pi\)
−0.273457 + 0.961884i \(0.588167\pi\)
\(812\) 0 0
\(813\) −36.2877 −1.27267
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −20.4588 −0.715764
\(818\) 0 0
\(819\) −9.11149 −0.318381
\(820\) 0 0
\(821\) −9.42283 −0.328859 −0.164430 0.986389i \(-0.552578\pi\)
−0.164430 + 0.986389i \(0.552578\pi\)
\(822\) 0 0
\(823\) 13.9636 0.486741 0.243371 0.969933i \(-0.421747\pi\)
0.243371 + 0.969933i \(0.421747\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19.6886 −0.684641 −0.342320 0.939583i \(-0.611213\pi\)
−0.342320 + 0.939583i \(0.611213\pi\)
\(828\) 0 0
\(829\) 52.9595 1.83936 0.919681 0.392668i \(-0.128448\pi\)
0.919681 + 0.392668i \(0.128448\pi\)
\(830\) 0 0
\(831\) −8.19266 −0.284200
\(832\) 0 0
\(833\) −24.6334 −0.853498
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 16.5076 0.570587
\(838\) 0 0
\(839\) −17.1392 −0.591709 −0.295855 0.955233i \(-0.595604\pi\)
−0.295855 + 0.955233i \(0.595604\pi\)
\(840\) 0 0
\(841\) 42.9201 1.48000
\(842\) 0 0
\(843\) −76.3594 −2.62996
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 23.6347 0.812097
\(848\) 0 0
\(849\) −29.1590 −1.00073
\(850\) 0 0
\(851\) 26.0556 0.893176
\(852\) 0 0
\(853\) 24.8256 0.850011 0.425005 0.905191i \(-0.360272\pi\)
0.425005 + 0.905191i \(0.360272\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.6584 −0.876474 −0.438237 0.898859i \(-0.644397\pi\)
−0.438237 + 0.898859i \(0.644397\pi\)
\(858\) 0 0
\(859\) 11.9818 0.408812 0.204406 0.978886i \(-0.434474\pi\)
0.204406 + 0.978886i \(0.434474\pi\)
\(860\) 0 0
\(861\) −2.78219 −0.0948169
\(862\) 0 0
\(863\) 33.9138 1.15444 0.577220 0.816589i \(-0.304138\pi\)
0.577220 + 0.816589i \(0.304138\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −4.95441 −0.168261
\(868\) 0 0
\(869\) −88.7956 −3.01219
\(870\) 0 0
\(871\) 2.53717 0.0859688
\(872\) 0 0
\(873\) −73.9943 −2.50433
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14.1871 0.479066 0.239533 0.970888i \(-0.423006\pi\)
0.239533 + 0.970888i \(0.423006\pi\)
\(878\) 0 0
\(879\) −10.2950 −0.347243
\(880\) 0 0
\(881\) 42.3201 1.42580 0.712901 0.701265i \(-0.247381\pi\)
0.712901 + 0.701265i \(0.247381\pi\)
\(882\) 0 0
\(883\) −51.7258 −1.74071 −0.870356 0.492422i \(-0.836112\pi\)
−0.870356 + 0.492422i \(0.836112\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.1270 −1.01157 −0.505783 0.862661i \(-0.668796\pi\)
−0.505783 + 0.862661i \(0.668796\pi\)
\(888\) 0 0
\(889\) −1.45773 −0.0488907
\(890\) 0 0
\(891\) 153.580 5.14514
\(892\) 0 0
\(893\) 25.4584 0.851932
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 14.0556 0.469304
\(898\) 0 0
\(899\) −9.60213 −0.320249
\(900\) 0 0
\(901\) −25.2279 −0.840462
\(902\) 0 0
\(903\) −14.8800 −0.495177
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.24848 0.141068 0.0705342 0.997509i \(-0.477530\pi\)
0.0705342 + 0.997509i \(0.477530\pi\)
\(908\) 0 0
\(909\) −33.8849 −1.12389
\(910\) 0 0
\(911\) −49.1395 −1.62806 −0.814031 0.580821i \(-0.802732\pi\)
−0.814031 + 0.580821i \(0.802732\pi\)
\(912\) 0 0
\(913\) 54.3934 1.80016
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.12988 −0.0703349
\(918\) 0 0
\(919\) 6.59412 0.217520 0.108760 0.994068i \(-0.465312\pi\)
0.108760 + 0.994068i \(0.465312\pi\)
\(920\) 0 0
\(921\) 56.9768 1.87745
\(922\) 0 0
\(923\) 4.27927 0.140854
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 123.095 4.04297
\(928\) 0 0
\(929\) 54.3833 1.78426 0.892130 0.451779i \(-0.149211\pi\)
0.892130 + 0.451779i \(0.149211\pi\)
\(930\) 0 0
\(931\) −23.9568 −0.785154
\(932\) 0 0
\(933\) 5.04669 0.165221
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 43.0888 1.40765 0.703825 0.710374i \(-0.251474\pi\)
0.703825 + 0.710374i \(0.251474\pi\)
\(938\) 0 0
\(939\) −66.5085 −2.17042
\(940\) 0 0
\(941\) 12.6966 0.413899 0.206949 0.978352i \(-0.433646\pi\)
0.206949 + 0.978352i \(0.433646\pi\)
\(942\) 0 0
\(943\) 3.06557 0.0998287
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −29.6867 −0.964688 −0.482344 0.875982i \(-0.660215\pi\)
−0.482344 + 0.875982i \(0.660215\pi\)
\(948\) 0 0
\(949\) 0.895422 0.0290666
\(950\) 0 0
\(951\) −84.6019 −2.74341
\(952\) 0 0
\(953\) −7.62947 −0.247143 −0.123571 0.992336i \(-0.539435\pi\)
−0.123571 + 0.992336i \(0.539435\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −170.563 −5.51353
\(958\) 0 0
\(959\) −2.37266 −0.0766171
\(960\) 0 0
\(961\) −29.7180 −0.958645
\(962\) 0 0
\(963\) 120.475 3.88224
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 37.0187 1.19044 0.595221 0.803562i \(-0.297065\pi\)
0.595221 + 0.803562i \(0.297065\pi\)
\(968\) 0 0
\(969\) 48.7535 1.56619
\(970\) 0 0
\(971\) −17.2425 −0.553338 −0.276669 0.960965i \(-0.589231\pi\)
−0.276669 + 0.960965i \(0.589231\pi\)
\(972\) 0 0
\(973\) 7.72668 0.247706
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 31.6112 1.01133 0.505666 0.862729i \(-0.331247\pi\)
0.505666 + 0.862729i \(0.331247\pi\)
\(978\) 0 0
\(979\) −49.0074 −1.56628
\(980\) 0 0
\(981\) −42.0930 −1.34393
\(982\) 0 0
\(983\) −51.8543 −1.65390 −0.826948 0.562278i \(-0.809925\pi\)
−0.826948 + 0.562278i \(0.809925\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 18.5163 0.589380
\(988\) 0 0
\(989\) 16.3956 0.521351
\(990\) 0 0
\(991\) −37.7209 −1.19824 −0.599121 0.800658i \(-0.704483\pi\)
−0.599121 + 0.800658i \(0.704483\pi\)
\(992\) 0 0
\(993\) 11.9522 0.379291
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 19.1882 0.607698 0.303849 0.952720i \(-0.401728\pi\)
0.303849 + 0.952720i \(0.401728\pi\)
\(998\) 0 0
\(999\) −123.917 −3.92058
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4100.2.a.c.1.4 4
5.2 odd 4 4100.2.d.c.1149.1 8
5.3 odd 4 4100.2.d.c.1149.8 8
5.4 even 2 164.2.a.a.1.1 4
15.14 odd 2 1476.2.a.g.1.2 4
20.19 odd 2 656.2.a.i.1.4 4
35.34 odd 2 8036.2.a.i.1.4 4
40.19 odd 2 2624.2.a.y.1.1 4
40.29 even 2 2624.2.a.v.1.4 4
60.59 even 2 5904.2.a.bp.1.2 4
205.204 even 2 6724.2.a.c.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
164.2.a.a.1.1 4 5.4 even 2
656.2.a.i.1.4 4 20.19 odd 2
1476.2.a.g.1.2 4 15.14 odd 2
2624.2.a.v.1.4 4 40.29 even 2
2624.2.a.y.1.1 4 40.19 odd 2
4100.2.a.c.1.4 4 1.1 even 1 trivial
4100.2.d.c.1149.1 8 5.2 odd 4
4100.2.d.c.1149.8 8 5.3 odd 4
5904.2.a.bp.1.2 4 60.59 even 2
6724.2.a.c.1.4 4 205.204 even 2
8036.2.a.i.1.4 4 35.34 odd 2