Defining parameters
Level: | \( N \) | \(=\) | \( 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 41.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(7\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(41))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4 | 4 | 0 |
Cusp forms | 3 | 3 | 0 |
Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(41\) | Dim. |
---|---|
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(41))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 41 | |||||||
41.2.a.a | \(3\) | \(0.327\) | 3.3.148.1 | None | \(-1\) | \(0\) | \(-2\) | \(6\) | \(-\) | \(q+(-\beta _{1}-\beta _{2})q^{2}+\beta _{2}q^{3}+(1+2\beta _{1}+\cdots)q^{4}+\cdots\) |