Properties

Label 4080.2.h.s
Level $4080$
Weight $2$
Character orbit 4080.h
Analytic conductor $32.579$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4080,2,Mod(3841,4080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4080.3841"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8,0,0,0,0,0,-8,0,-8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.11667456256.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 44x^{4} + 21x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 255)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + \beta_{2} q^{5} + ( - \beta_{6} + \beta_{2}) q^{7} - q^{9} + (\beta_{5} - \beta_{2}) q^{11} - 2 \beta_1 q^{13} - q^{15} + (\beta_{6} + \beta_1 - 1) q^{17} + ( - \beta_{3} + 1) q^{19}+ \cdots + ( - \beta_{5} + \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{15} - 8 q^{17} + 8 q^{19} - 4 q^{21} - 8 q^{25} + 8 q^{33} - 4 q^{35} - 52 q^{47} - 28 q^{49} - 4 q^{51} + 40 q^{53} + 8 q^{55} + 24 q^{59} + 32 q^{67} + 16 q^{69} - 8 q^{77} + 8 q^{81}+ \cdots + 16 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 13x^{6} + 44x^{4} + 21x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 14\nu^{4} + 50\nu^{2} + 15 ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{7} - 38\nu^{5} - 122\nu^{3} - 41\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} - 12\nu^{4} - 32\nu^{2} + 3 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} - 12\nu^{4} - 36\nu^{2} - 11 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{7} - 66\nu^{5} - 230\nu^{3} - 119\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 5\nu^{7} + 66\nu^{5} + 230\nu^{3} + 135\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -11\nu^{7} - 142\nu^{5} - 458\nu^{3} - 105\nu ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + \beta_{5} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{4} + \beta_{3} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} - 6\beta_{6} - 7\beta_{5} - 2\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 9\beta_{4} - 7\beta_{3} + 4\beta _1 + 45 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -10\beta_{7} + 41\beta_{6} + 45\beta_{5} + 30\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -38\beta_{4} + 24\beta_{3} - 24\beta _1 - 155 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 86\beta_{7} - 289\beta_{6} - 299\beta_{5} - 304\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1361\) \(3061\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3841.1
0.231361i
2.22001i
0.710287i
2.74108i
2.74108i
0.710287i
2.22001i
0.231361i
0 1.00000i 0 1.00000i 0 4.55361i 0 −1.00000 0
3841.2 0 1.00000i 0 1.00000i 0 2.67046i 0 −1.00000 0
3841.3 0 1.00000i 0 1.00000i 0 2.11817i 0 −1.00000 0
3841.4 0 1.00000i 0 1.00000i 0 3.10590i 0 −1.00000 0
3841.5 0 1.00000i 0 1.00000i 0 3.10590i 0 −1.00000 0
3841.6 0 1.00000i 0 1.00000i 0 2.11817i 0 −1.00000 0
3841.7 0 1.00000i 0 1.00000i 0 2.67046i 0 −1.00000 0
3841.8 0 1.00000i 0 1.00000i 0 4.55361i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3841.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4080.2.h.s 8
4.b odd 2 1 255.2.g.b 8
12.b even 2 1 765.2.g.c 8
17.b even 2 1 inner 4080.2.h.s 8
20.d odd 2 1 1275.2.g.d 8
20.e even 4 1 1275.2.d.g 8
20.e even 4 1 1275.2.d.h 8
68.d odd 2 1 255.2.g.b 8
68.f odd 4 1 4335.2.a.y 4
68.f odd 4 1 4335.2.a.ba 4
204.h even 2 1 765.2.g.c 8
340.d odd 2 1 1275.2.g.d 8
340.r even 4 1 1275.2.d.g 8
340.r even 4 1 1275.2.d.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
255.2.g.b 8 4.b odd 2 1
255.2.g.b 8 68.d odd 2 1
765.2.g.c 8 12.b even 2 1
765.2.g.c 8 204.h even 2 1
1275.2.d.g 8 20.e even 4 1
1275.2.d.g 8 340.r even 4 1
1275.2.d.h 8 20.e even 4 1
1275.2.d.h 8 340.r even 4 1
1275.2.g.d 8 20.d odd 2 1
1275.2.g.d 8 340.d odd 2 1
4080.2.h.s 8 1.a even 1 1 trivial
4080.2.h.s 8 17.b even 2 1 inner
4335.2.a.y 4 68.f odd 4 1
4335.2.a.ba 4 68.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4080, [\chi])\):

\( T_{7}^{8} + 42T_{7}^{6} + 585T_{7}^{4} + 3296T_{7}^{2} + 6400 \) Copy content Toggle raw display
\( T_{11}^{8} + 26T_{11}^{6} + 201T_{11}^{4} + 480T_{11}^{2} + 64 \) Copy content Toggle raw display
\( T_{13}^{4} - 44T_{13}^{2} + 16T_{13} + 320 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} + 42 T^{6} + \cdots + 6400 \) Copy content Toggle raw display
$11$ \( T^{8} + 26 T^{6} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( (T^{4} - 44 T^{2} + \cdots + 320)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 8 T^{7} + \cdots + 83521 \) Copy content Toggle raw display
$19$ \( (T^{4} - 4 T^{3} + \cdots + 368)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 104 T^{6} + \cdots + 16384 \) Copy content Toggle raw display
$29$ \( T^{8} + 154 T^{6} + \cdots + 404496 \) Copy content Toggle raw display
$31$ \( T^{8} + 160 T^{6} + \cdots + 719104 \) Copy content Toggle raw display
$37$ \( T^{8} + 130 T^{6} + \cdots + 291600 \) Copy content Toggle raw display
$41$ \( T^{8} + 66 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$43$ \( (T^{4} - 72 T^{2} + \cdots - 128)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 26 T^{3} + \cdots - 7036)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 20 T^{3} + \cdots - 2256)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 12 T^{3} + \cdots + 576)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + 104 T^{6} + \cdots + 16384 \) Copy content Toggle raw display
$67$ \( (T^{4} - 16 T^{3} + \cdots - 1920)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 320 T^{6} + \cdots + 1327104 \) Copy content Toggle raw display
$73$ \( T^{8} + 362 T^{6} + \cdots + 59536656 \) Copy content Toggle raw display
$79$ \( T^{8} + 288 T^{6} + \cdots + 7661824 \) Copy content Toggle raw display
$83$ \( (T^{4} - 16 T^{3} + \cdots - 192)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 12 T^{3} + \cdots - 4112)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 336 T^{6} + \cdots + 16908544 \) Copy content Toggle raw display
show more
show less