Properties

Label 4080.2.a.r.1.1
Level $4080$
Weight $2$
Character 4080.1
Self dual yes
Analytic conductor $32.579$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4080,2,Mod(1,4080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4080.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5789640247\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4080.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{7} +1.00000 q^{9} +4.00000 q^{13} -1.00000 q^{15} -1.00000 q^{17} -4.00000 q^{19} -2.00000 q^{21} -4.00000 q^{23} +1.00000 q^{25} +1.00000 q^{27} +2.00000 q^{29} +2.00000 q^{35} -2.00000 q^{37} +4.00000 q^{39} -4.00000 q^{41} -10.0000 q^{43} -1.00000 q^{45} +8.00000 q^{47} -3.00000 q^{49} -1.00000 q^{51} +2.00000 q^{53} -4.00000 q^{57} +2.00000 q^{59} -14.0000 q^{61} -2.00000 q^{63} -4.00000 q^{65} -2.00000 q^{67} -4.00000 q^{69} +6.00000 q^{71} -4.00000 q^{73} +1.00000 q^{75} +12.0000 q^{79} +1.00000 q^{81} -8.00000 q^{83} +1.00000 q^{85} +2.00000 q^{87} -10.0000 q^{89} -8.00000 q^{91} +4.00000 q^{95} +8.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 0 0
\(159\) 2.00000 0.158610
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) −24.0000 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) 2.00000 0.150329
\(178\) 0 0
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) −14.0000 −1.03491
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −8.00000 −0.575853 −0.287926 0.957653i \(-0.592966\pi\)
−0.287926 + 0.957653i \(0.592966\pi\)
\(194\) 0 0
\(195\) −4.00000 −0.286446
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) 0 0
\(203\) −4.00000 −0.280745
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 10.0000 0.681994
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) 12.0000 0.779484
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −30.0000 −1.93247 −0.966235 0.257663i \(-0.917048\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) −16.0000 −1.01806
\(248\) 0 0
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.00000 0.0626224
\(256\) 0 0
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) −10.0000 −0.611990
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 0 0
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) 8.00000 0.472225
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 0 0
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 0 0
\(295\) −2.00000 −0.116445
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.0000 −0.925304
\(300\) 0 0
\(301\) 20.0000 1.15278
\(302\) 0 0
\(303\) −4.00000 −0.229794
\(304\) 0 0
\(305\) 14.0000 0.801638
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 10.0000 0.567048 0.283524 0.958965i \(-0.408496\pi\)
0.283524 + 0.958965i \(0.408496\pi\)
\(312\) 0 0
\(313\) −16.0000 −0.904373 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(314\) 0 0
\(315\) 2.00000 0.112687
\(316\) 0 0
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) 6.00000 0.331801
\(328\) 0 0
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 16.0000 0.879440 0.439720 0.898135i \(-0.355078\pi\)
0.439720 + 0.898135i \(0.355078\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 2.00000 0.109272
\(336\) 0 0
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 4.00000 0.215353
\(346\) 0 0
\(347\) 20.0000 1.07366 0.536828 0.843692i \(-0.319622\pi\)
0.536828 + 0.843692i \(0.319622\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) 0 0
\(357\) 2.00000 0.105851
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) 2.00000 0.104399 0.0521996 0.998637i \(-0.483377\pi\)
0.0521996 + 0.998637i \(0.483377\pi\)
\(368\) 0 0
\(369\) −4.00000 −0.208232
\(370\) 0 0
\(371\) −4.00000 −0.207670
\(372\) 0 0
\(373\) 8.00000 0.414224 0.207112 0.978317i \(-0.433593\pi\)
0.207112 + 0.978317i \(0.433593\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.0000 −0.508329
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) −10.0000 −0.501886 −0.250943 0.968002i \(-0.580741\pi\)
−0.250943 + 0.968002i \(0.580741\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) −4.00000 −0.196827
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 28.0000 1.35501
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 34.0000 1.63772 0.818861 0.573992i \(-0.194606\pi\)
0.818861 + 0.573992i \(0.194606\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) −2.00000 −0.0958927
\(436\) 0 0
\(437\) 16.0000 0.765384
\(438\) 0 0
\(439\) 12.0000 0.572729 0.286364 0.958121i \(-0.407553\pi\)
0.286364 + 0.958121i \(0.407553\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) 10.0000 0.474045
\(446\) 0 0
\(447\) −12.0000 −0.567581
\(448\) 0 0
\(449\) 40.0000 1.88772 0.943858 0.330350i \(-0.107167\pi\)
0.943858 + 0.330350i \(0.107167\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −8.00000 −0.375873
\(454\) 0 0
\(455\) 8.00000 0.375046
\(456\) 0 0
\(457\) −34.0000 −1.59045 −0.795226 0.606313i \(-0.792648\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 2.00000 0.0915737
\(478\) 0 0
\(479\) −2.00000 −0.0913823 −0.0456912 0.998956i \(-0.514549\pi\)
−0.0456912 + 0.998956i \(0.514549\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) −8.00000 −0.363261
\(486\) 0 0
\(487\) 22.0000 0.996915 0.498458 0.866914i \(-0.333900\pi\)
0.498458 + 0.866914i \(0.333900\pi\)
\(488\) 0 0
\(489\) −24.0000 −1.08532
\(490\) 0 0
\(491\) 14.0000 0.631811 0.315906 0.948791i \(-0.397692\pi\)
0.315906 + 0.948791i \(0.397692\pi\)
\(492\) 0 0
\(493\) −2.00000 −0.0900755
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) −28.0000 −1.24846 −0.624229 0.781241i \(-0.714587\pi\)
−0.624229 + 0.781241i \(0.714587\pi\)
\(504\) 0 0
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) 3.00000 0.133235
\(508\) 0 0
\(509\) 4.00000 0.177297 0.0886484 0.996063i \(-0.471745\pi\)
0.0886484 + 0.996063i \(0.471745\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) 16.0000 0.700973 0.350486 0.936568i \(-0.386016\pi\)
0.350486 + 0.936568i \(0.386016\pi\)
\(522\) 0 0
\(523\) 18.0000 0.787085 0.393543 0.919306i \(-0.371249\pi\)
0.393543 + 0.919306i \(0.371249\pi\)
\(524\) 0 0
\(525\) −2.00000 −0.0872872
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 2.00000 0.0867926
\(532\) 0 0
\(533\) −16.0000 −0.693037
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) −18.0000 −0.776757
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) 0 0
\(549\) −14.0000 −0.597505
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) −24.0000 −1.02058
\(554\) 0 0
\(555\) 2.00000 0.0848953
\(556\) 0 0
\(557\) −46.0000 −1.94908 −0.974541 0.224208i \(-0.928020\pi\)
−0.974541 + 0.224208i \(0.928020\pi\)
\(558\) 0 0
\(559\) −40.0000 −1.69182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 32.0000 1.34864 0.674320 0.738440i \(-0.264437\pi\)
0.674320 + 0.738440i \(0.264437\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 0 0
\(579\) −8.00000 −0.332469
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) 0 0
\(597\) −16.0000 −0.654836
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 0 0
\(605\) 11.0000 0.447214
\(606\) 0 0
\(607\) 14.0000 0.568242 0.284121 0.958788i \(-0.408298\pi\)
0.284121 + 0.958788i \(0.408298\pi\)
\(608\) 0 0
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) 32.0000 1.29458
\(612\) 0 0
\(613\) 24.0000 0.969351 0.484675 0.874694i \(-0.338938\pi\)
0.484675 + 0.874694i \(0.338938\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) 20.0000 0.801283
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −12.0000 −0.475457
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) 40.0000 1.57991 0.789953 0.613168i \(-0.210105\pi\)
0.789953 + 0.613168i \(0.210105\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) 10.0000 0.393750
\(646\) 0 0
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 12.0000 0.468879
\(656\) 0 0
\(657\) −4.00000 −0.156055
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) −30.0000 −1.16686 −0.583432 0.812162i \(-0.698291\pi\)
−0.583432 + 0.812162i \(0.698291\pi\)
\(662\) 0 0
\(663\) −4.00000 −0.155347
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 38.0000 1.46046 0.730229 0.683202i \(-0.239413\pi\)
0.730229 + 0.683202i \(0.239413\pi\)
\(678\) 0 0
\(679\) −16.0000 −0.614024
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) −2.00000 −0.0763048
\(688\) 0 0
\(689\) 8.00000 0.304776
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) 4.00000 0.151511
\(698\) 0 0
\(699\) 14.0000 0.529529
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 8.00000 0.300871
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 24.0000 0.896296
\(718\) 0 0
\(719\) −26.0000 −0.969636 −0.484818 0.874615i \(-0.661114\pi\)
−0.484818 + 0.874615i \(0.661114\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) −30.0000 −1.11571
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) 24.0000 0.890111 0.445055 0.895503i \(-0.353184\pi\)
0.445055 + 0.895503i \(0.353184\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 10.0000 0.369863
\(732\) 0 0
\(733\) −16.0000 −0.590973 −0.295487 0.955347i \(-0.595482\pi\)
−0.295487 + 0.955347i \(0.595482\pi\)
\(734\) 0 0
\(735\) 3.00000 0.110657
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) −16.0000 −0.587775
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) 0 0
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) −24.0000 −0.876941
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 0 0
\(753\) 2.00000 0.0728841
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 52.0000 1.88997 0.944986 0.327111i \(-0.106075\pi\)
0.944986 + 0.327111i \(0.106075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −54.0000 −1.95750 −0.978749 0.205061i \(-0.934261\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 0 0
\(763\) −12.0000 −0.434429
\(764\) 0 0
\(765\) 1.00000 0.0361551
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) −14.0000 −0.504198
\(772\) 0 0
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) −4.00000 −0.142766
\(786\) 0 0
\(787\) −8.00000 −0.285169 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) −56.0000 −1.98862
\(794\) 0 0
\(795\) −2.00000 −0.0709327
\(796\) 0 0
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) 0 0
\(799\) −8.00000 −0.283020
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 0 0
\(807\) 10.0000 0.352017
\(808\) 0 0
\(809\) −28.0000 −0.984428 −0.492214 0.870474i \(-0.663812\pi\)
−0.492214 + 0.870474i \(0.663812\pi\)
\(810\) 0 0
\(811\) −52.0000 −1.82597 −0.912983 0.407997i \(-0.866228\pi\)
−0.912983 + 0.407997i \(0.866228\pi\)
\(812\) 0 0
\(813\) 8.00000 0.280572
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) 40.0000 1.39942
\(818\) 0 0
\(819\) −8.00000 −0.279543
\(820\) 0 0
\(821\) 30.0000 1.04701 0.523504 0.852023i \(-0.324625\pi\)
0.523504 + 0.852023i \(0.324625\pi\)
\(822\) 0 0
\(823\) 50.0000 1.74289 0.871445 0.490493i \(-0.163183\pi\)
0.871445 + 0.490493i \(0.163183\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −52.0000 −1.80822 −0.904109 0.427303i \(-0.859464\pi\)
−0.904109 + 0.427303i \(0.859464\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.0000 −0.483334 −0.241667 0.970359i \(-0.577694\pi\)
−0.241667 + 0.970359i \(0.577694\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 22.0000 0.757720
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 22.0000 0.755929
\(848\) 0 0
\(849\) 28.0000 0.960958
\(850\) 0 0
\(851\) 8.00000 0.274236
\(852\) 0 0
\(853\) 42.0000 1.43805 0.719026 0.694983i \(-0.244588\pi\)
0.719026 + 0.694983i \(0.244588\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) −24.0000 −0.818869 −0.409435 0.912339i \(-0.634274\pi\)
−0.409435 + 0.912339i \(0.634274\pi\)
\(860\) 0 0
\(861\) 8.00000 0.272639
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 8.00000 0.270759
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) 10.0000 0.337676 0.168838 0.985644i \(-0.445999\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(878\) 0 0
\(879\) 22.0000 0.742042
\(880\) 0 0
\(881\) 48.0000 1.61716 0.808581 0.588386i \(-0.200236\pi\)
0.808581 + 0.588386i \(0.200236\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) −2.00000 −0.0672293
\(886\) 0 0
\(887\) −20.0000 −0.671534 −0.335767 0.941945i \(-0.608996\pi\)
−0.335767 + 0.941945i \(0.608996\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.0000 −1.07084
\(894\) 0 0
\(895\) 18.0000 0.601674
\(896\) 0 0
\(897\) −16.0000 −0.534224
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −2.00000 −0.0666297
\(902\) 0 0
\(903\) 20.0000 0.665558
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) 0 0
\(909\) −4.00000 −0.132672
\(910\) 0 0
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 14.0000 0.462826
\(916\) 0 0
\(917\) 24.0000 0.792550
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) −10.0000 −0.329511
\(922\) 0 0
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −20.0000 −0.656179 −0.328089 0.944647i \(-0.606405\pi\)
−0.328089 + 0.944647i \(0.606405\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) 0 0
\(933\) 10.0000 0.327385
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 54.0000 1.76410 0.882052 0.471153i \(-0.156162\pi\)
0.882052 + 0.471153i \(0.156162\pi\)
\(938\) 0 0
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) −10.0000 −0.325991 −0.162995 0.986627i \(-0.552116\pi\)
−0.162995 + 0.986627i \(0.552116\pi\)
\(942\) 0 0
\(943\) 16.0000 0.521032
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) −16.0000 −0.519382
\(950\) 0 0
\(951\) 30.0000 0.972817
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.0000 1.16250
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) −20.0000 −0.643157 −0.321578 0.946883i \(-0.604213\pi\)
−0.321578 + 0.946883i \(0.604213\pi\)
\(968\) 0 0
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) 6.00000 0.192549 0.0962746 0.995355i \(-0.469307\pi\)
0.0962746 + 0.995355i \(0.469307\pi\)
\(972\) 0 0
\(973\) −24.0000 −0.769405
\(974\) 0 0
\(975\) 4.00000 0.128103
\(976\) 0 0
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 6.00000 0.191565
\(982\) 0 0
\(983\) −56.0000 −1.78612 −0.893061 0.449935i \(-0.851447\pi\)
−0.893061 + 0.449935i \(0.851447\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) −16.0000 −0.509286
\(988\) 0 0
\(989\) 40.0000 1.27193
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 16.0000 0.507745
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4080.2.a.r.1.1 1
4.3 odd 2 510.2.a.d.1.1 1
12.11 even 2 1530.2.a.h.1.1 1
20.3 even 4 2550.2.d.f.2449.1 2
20.7 even 4 2550.2.d.f.2449.2 2
20.19 odd 2 2550.2.a.i.1.1 1
60.59 even 2 7650.2.a.bn.1.1 1
68.67 odd 2 8670.2.a.y.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.d.1.1 1 4.3 odd 2
1530.2.a.h.1.1 1 12.11 even 2
2550.2.a.i.1.1 1 20.19 odd 2
2550.2.d.f.2449.1 2 20.3 even 4
2550.2.d.f.2449.2 2 20.7 even 4
4080.2.a.r.1.1 1 1.1 even 1 trivial
7650.2.a.bn.1.1 1 60.59 even 2
8670.2.a.y.1.1 1 68.67 odd 2