Properties

Label 4080.2.a.bp
Level $4080$
Weight $2$
Character orbit 4080.a
Self dual yes
Analytic conductor $32.579$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4080,2,Mod(1,4080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4080.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,2,0,0,0,2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 255)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + q^{5} - \beta q^{7} + q^{9} + ( - 2 \beta - 1) q^{11} + (\beta + 3) q^{13} + q^{15} - q^{17} + (\beta + 6) q^{19} - \beta q^{21} + (\beta - 5) q^{23} + q^{25} + q^{27} + (3 \beta - 2) q^{29} + \cdots + ( - 2 \beta - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + 2 q^{9} - 2 q^{11} + 6 q^{13} + 2 q^{15} - 2 q^{17} + 12 q^{19} - 10 q^{23} + 2 q^{25} + 2 q^{27} - 4 q^{29} + 10 q^{31} - 2 q^{33} + 10 q^{37} + 6 q^{39} + 12 q^{43} + 2 q^{45}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
0 1.00000 0 1.00000 0 −2.23607 0 1.00000 0
1.2 0 1.00000 0 1.00000 0 2.23607 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4080.2.a.bp 2
4.b odd 2 1 255.2.a.b 2
12.b even 2 1 765.2.a.d 2
20.d odd 2 1 1275.2.a.h 2
20.e even 4 2 1275.2.b.e 4
60.h even 2 1 3825.2.a.z 2
68.d odd 2 1 4335.2.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
255.2.a.b 2 4.b odd 2 1
765.2.a.d 2 12.b even 2 1
1275.2.a.h 2 20.d odd 2 1
1275.2.b.e 4 20.e even 4 2
3825.2.a.z 2 60.h even 2 1
4080.2.a.bp 2 1.a even 1 1 trivial
4335.2.a.m 2 68.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4080))\):

\( T_{7}^{2} - 5 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} - 19 \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} + 4 \) Copy content Toggle raw display
\( T_{19}^{2} - 12T_{19} + 31 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 19 \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 12T + 31 \) Copy content Toggle raw display
$23$ \( T^{2} + 10T + 20 \) Copy content Toggle raw display
$29$ \( T^{2} + 4T - 41 \) Copy content Toggle raw display
$31$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$37$ \( T^{2} - 10T + 5 \) Copy content Toggle raw display
$41$ \( T^{2} - 45 \) Copy content Toggle raw display
$43$ \( T^{2} - 12T + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 6T - 71 \) Copy content Toggle raw display
$53$ \( T^{2} - 20T + 95 \) Copy content Toggle raw display
$59$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$61$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
$67$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 176 \) Copy content Toggle raw display
$73$ \( T^{2} - 10T - 55 \) Copy content Toggle raw display
$79$ \( T^{2} - 180 \) Copy content Toggle raw display
$83$ \( T^{2} + 4T - 176 \) Copy content Toggle raw display
$89$ \( T^{2} - 18T + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 16T + 44 \) Copy content Toggle raw display
show more
show less