Properties

Label 4080.2.a.ba
Level $4080$
Weight $2$
Character orbit 4080.a
Self dual yes
Analytic conductor $32.579$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.5789640247\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} + q^{5} + q^{9} + O(q^{10}) \) \( q + q^{3} + q^{5} + q^{9} - 4q^{11} - 2q^{13} + q^{15} + q^{17} - 4q^{19} + q^{25} + q^{27} - 2q^{29} - 8q^{31} - 4q^{33} + 6q^{37} - 2q^{39} - 6q^{41} + 4q^{43} + q^{45} - 7q^{49} + q^{51} - 10q^{53} - 4q^{55} - 4q^{57} + 4q^{59} - 2q^{61} - 2q^{65} - 4q^{67} - 6q^{73} + q^{75} - 8q^{79} + q^{81} + 12q^{83} + q^{85} - 2q^{87} - 6q^{89} - 8q^{93} - 4q^{95} - 14q^{97} - 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 1.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(17\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4080.2.a.ba 1
4.b odd 2 1 510.2.a.e 1
12.b even 2 1 1530.2.a.b 1
20.d odd 2 1 2550.2.a.l 1
20.e even 4 2 2550.2.d.k 2
60.h even 2 1 7650.2.a.bx 1
68.d odd 2 1 8670.2.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.a.e 1 4.b odd 2 1
1530.2.a.b 1 12.b even 2 1
2550.2.a.l 1 20.d odd 2 1
2550.2.d.k 2 20.e even 4 2
4080.2.a.ba 1 1.a even 1 1 trivial
7650.2.a.bx 1 60.h even 2 1
8670.2.a.v 1 68.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4080))\):

\( T_{7} \)
\( T_{11} + 4 \)
\( T_{13} + 2 \)
\( T_{19} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -1 + T \)
$5$ \( -1 + T \)
$7$ \( T \)
$11$ \( 4 + T \)
$13$ \( 2 + T \)
$17$ \( -1 + T \)
$19$ \( 4 + T \)
$23$ \( T \)
$29$ \( 2 + T \)
$31$ \( 8 + T \)
$37$ \( -6 + T \)
$41$ \( 6 + T \)
$43$ \( -4 + T \)
$47$ \( T \)
$53$ \( 10 + T \)
$59$ \( -4 + T \)
$61$ \( 2 + T \)
$67$ \( 4 + T \)
$71$ \( T \)
$73$ \( 6 + T \)
$79$ \( 8 + T \)
$83$ \( -12 + T \)
$89$ \( 6 + T \)
$97$ \( 14 + T \)
show more
show less