Properties

Label 408.2.a.e.1.2
Level $408$
Weight $2$
Character 408.1
Self dual yes
Analytic conductor $3.258$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [408,2,Mod(1,408)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("408.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(408, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 408 = 2^{3} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 408.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.25789640247\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 408.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.56155 q^{5} -5.12311 q^{7} +1.00000 q^{9} -2.43845 q^{11} -3.56155 q^{13} -1.56155 q^{15} -1.00000 q^{17} +4.68466 q^{19} +5.12311 q^{21} -7.56155 q^{23} -2.56155 q^{25} -1.00000 q^{27} -7.12311 q^{29} +8.24621 q^{31} +2.43845 q^{33} -8.00000 q^{35} -4.00000 q^{37} +3.56155 q^{39} -2.68466 q^{41} -4.68466 q^{43} +1.56155 q^{45} -0.876894 q^{47} +19.2462 q^{49} +1.00000 q^{51} +6.00000 q^{53} -3.80776 q^{55} -4.68466 q^{57} -13.3693 q^{59} -4.00000 q^{61} -5.12311 q^{63} -5.56155 q^{65} +12.0000 q^{67} +7.56155 q^{69} +11.3693 q^{71} +8.24621 q^{73} +2.56155 q^{75} +12.4924 q^{77} +2.00000 q^{79} +1.00000 q^{81} +7.12311 q^{83} -1.56155 q^{85} +7.12311 q^{87} +9.12311 q^{89} +18.2462 q^{91} -8.24621 q^{93} +7.31534 q^{95} +1.12311 q^{97} -2.43845 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - q^{5} - 2 q^{7} + 2 q^{9} - 9 q^{11} - 3 q^{13} + q^{15} - 2 q^{17} - 3 q^{19} + 2 q^{21} - 11 q^{23} - q^{25} - 2 q^{27} - 6 q^{29} + 9 q^{33} - 16 q^{35} - 8 q^{37} + 3 q^{39} + 7 q^{41}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.56155 0.698348 0.349174 0.937058i \(-0.386462\pi\)
0.349174 + 0.937058i \(0.386462\pi\)
\(6\) 0 0
\(7\) −5.12311 −1.93635 −0.968176 0.250270i \(-0.919480\pi\)
−0.968176 + 0.250270i \(0.919480\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.43845 −0.735219 −0.367610 0.929980i \(-0.619824\pi\)
−0.367610 + 0.929980i \(0.619824\pi\)
\(12\) 0 0
\(13\) −3.56155 −0.987797 −0.493899 0.869520i \(-0.664429\pi\)
−0.493899 + 0.869520i \(0.664429\pi\)
\(14\) 0 0
\(15\) −1.56155 −0.403191
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 4.68466 1.07473 0.537367 0.843348i \(-0.319419\pi\)
0.537367 + 0.843348i \(0.319419\pi\)
\(20\) 0 0
\(21\) 5.12311 1.11795
\(22\) 0 0
\(23\) −7.56155 −1.57669 −0.788346 0.615232i \(-0.789062\pi\)
−0.788346 + 0.615232i \(0.789062\pi\)
\(24\) 0 0
\(25\) −2.56155 −0.512311
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −7.12311 −1.32273 −0.661364 0.750065i \(-0.730022\pi\)
−0.661364 + 0.750065i \(0.730022\pi\)
\(30\) 0 0
\(31\) 8.24621 1.48106 0.740532 0.672022i \(-0.234574\pi\)
0.740532 + 0.672022i \(0.234574\pi\)
\(32\) 0 0
\(33\) 2.43845 0.424479
\(34\) 0 0
\(35\) −8.00000 −1.35225
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 3.56155 0.570305
\(40\) 0 0
\(41\) −2.68466 −0.419273 −0.209637 0.977779i \(-0.567228\pi\)
−0.209637 + 0.977779i \(0.567228\pi\)
\(42\) 0 0
\(43\) −4.68466 −0.714404 −0.357202 0.934027i \(-0.616269\pi\)
−0.357202 + 0.934027i \(0.616269\pi\)
\(44\) 0 0
\(45\) 1.56155 0.232783
\(46\) 0 0
\(47\) −0.876894 −0.127908 −0.0639541 0.997953i \(-0.520371\pi\)
−0.0639541 + 0.997953i \(0.520371\pi\)
\(48\) 0 0
\(49\) 19.2462 2.74946
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −3.80776 −0.513439
\(56\) 0 0
\(57\) −4.68466 −0.620498
\(58\) 0 0
\(59\) −13.3693 −1.74054 −0.870268 0.492578i \(-0.836055\pi\)
−0.870268 + 0.492578i \(0.836055\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) −5.12311 −0.645451
\(64\) 0 0
\(65\) −5.56155 −0.689826
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 7.56155 0.910304
\(70\) 0 0
\(71\) 11.3693 1.34929 0.674645 0.738142i \(-0.264297\pi\)
0.674645 + 0.738142i \(0.264297\pi\)
\(72\) 0 0
\(73\) 8.24621 0.965146 0.482573 0.875856i \(-0.339702\pi\)
0.482573 + 0.875856i \(0.339702\pi\)
\(74\) 0 0
\(75\) 2.56155 0.295783
\(76\) 0 0
\(77\) 12.4924 1.42364
\(78\) 0 0
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.12311 0.781862 0.390931 0.920420i \(-0.372153\pi\)
0.390931 + 0.920420i \(0.372153\pi\)
\(84\) 0 0
\(85\) −1.56155 −0.169374
\(86\) 0 0
\(87\) 7.12311 0.763677
\(88\) 0 0
\(89\) 9.12311 0.967047 0.483524 0.875331i \(-0.339357\pi\)
0.483524 + 0.875331i \(0.339357\pi\)
\(90\) 0 0
\(91\) 18.2462 1.91272
\(92\) 0 0
\(93\) −8.24621 −0.855092
\(94\) 0 0
\(95\) 7.31534 0.750538
\(96\) 0 0
\(97\) 1.12311 0.114034 0.0570170 0.998373i \(-0.481841\pi\)
0.0570170 + 0.998373i \(0.481841\pi\)
\(98\) 0 0
\(99\) −2.43845 −0.245073
\(100\) 0 0
\(101\) −5.12311 −0.509768 −0.254884 0.966972i \(-0.582037\pi\)
−0.254884 + 0.966972i \(0.582037\pi\)
\(102\) 0 0
\(103\) −12.6847 −1.24986 −0.624928 0.780682i \(-0.714872\pi\)
−0.624928 + 0.780682i \(0.714872\pi\)
\(104\) 0 0
\(105\) 8.00000 0.780720
\(106\) 0 0
\(107\) −8.68466 −0.839578 −0.419789 0.907622i \(-0.637896\pi\)
−0.419789 + 0.907622i \(0.637896\pi\)
\(108\) 0 0
\(109\) −6.24621 −0.598279 −0.299139 0.954209i \(-0.596700\pi\)
−0.299139 + 0.954209i \(0.596700\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) 4.43845 0.417534 0.208767 0.977965i \(-0.433055\pi\)
0.208767 + 0.977965i \(0.433055\pi\)
\(114\) 0 0
\(115\) −11.8078 −1.10108
\(116\) 0 0
\(117\) −3.56155 −0.329266
\(118\) 0 0
\(119\) 5.12311 0.469634
\(120\) 0 0
\(121\) −5.05398 −0.459452
\(122\) 0 0
\(123\) 2.68466 0.242067
\(124\) 0 0
\(125\) −11.8078 −1.05612
\(126\) 0 0
\(127\) 14.9309 1.32490 0.662450 0.749106i \(-0.269517\pi\)
0.662450 + 0.749106i \(0.269517\pi\)
\(128\) 0 0
\(129\) 4.68466 0.412461
\(130\) 0 0
\(131\) −13.5616 −1.18488 −0.592439 0.805615i \(-0.701835\pi\)
−0.592439 + 0.805615i \(0.701835\pi\)
\(132\) 0 0
\(133\) −24.0000 −2.08106
\(134\) 0 0
\(135\) −1.56155 −0.134397
\(136\) 0 0
\(137\) 0.246211 0.0210352 0.0105176 0.999945i \(-0.496652\pi\)
0.0105176 + 0.999945i \(0.496652\pi\)
\(138\) 0 0
\(139\) −3.12311 −0.264898 −0.132449 0.991190i \(-0.542284\pi\)
−0.132449 + 0.991190i \(0.542284\pi\)
\(140\) 0 0
\(141\) 0.876894 0.0738478
\(142\) 0 0
\(143\) 8.68466 0.726248
\(144\) 0 0
\(145\) −11.1231 −0.923724
\(146\) 0 0
\(147\) −19.2462 −1.58740
\(148\) 0 0
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 12.8769 1.03430
\(156\) 0 0
\(157\) −7.56155 −0.603478 −0.301739 0.953391i \(-0.597567\pi\)
−0.301739 + 0.953391i \(0.597567\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 38.7386 3.05303
\(162\) 0 0
\(163\) 13.3693 1.04717 0.523583 0.851975i \(-0.324595\pi\)
0.523583 + 0.851975i \(0.324595\pi\)
\(164\) 0 0
\(165\) 3.80776 0.296434
\(166\) 0 0
\(167\) −21.8078 −1.68754 −0.843768 0.536709i \(-0.819667\pi\)
−0.843768 + 0.536709i \(0.819667\pi\)
\(168\) 0 0
\(169\) −0.315342 −0.0242570
\(170\) 0 0
\(171\) 4.68466 0.358245
\(172\) 0 0
\(173\) −4.68466 −0.356168 −0.178084 0.984015i \(-0.556990\pi\)
−0.178084 + 0.984015i \(0.556990\pi\)
\(174\) 0 0
\(175\) 13.1231 0.992014
\(176\) 0 0
\(177\) 13.3693 1.00490
\(178\) 0 0
\(179\) −15.1231 −1.13035 −0.565177 0.824970i \(-0.691192\pi\)
−0.565177 + 0.824970i \(0.691192\pi\)
\(180\) 0 0
\(181\) 7.12311 0.529456 0.264728 0.964323i \(-0.414718\pi\)
0.264728 + 0.964323i \(0.414718\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) −6.24621 −0.459231
\(186\) 0 0
\(187\) 2.43845 0.178317
\(188\) 0 0
\(189\) 5.12311 0.372651
\(190\) 0 0
\(191\) −5.36932 −0.388510 −0.194255 0.980951i \(-0.562229\pi\)
−0.194255 + 0.980951i \(0.562229\pi\)
\(192\) 0 0
\(193\) 12.2462 0.881502 0.440751 0.897630i \(-0.354712\pi\)
0.440751 + 0.897630i \(0.354712\pi\)
\(194\) 0 0
\(195\) 5.56155 0.398271
\(196\) 0 0
\(197\) −24.6847 −1.75871 −0.879355 0.476168i \(-0.842026\pi\)
−0.879355 + 0.476168i \(0.842026\pi\)
\(198\) 0 0
\(199\) −14.8769 −1.05460 −0.527298 0.849681i \(-0.676795\pi\)
−0.527298 + 0.849681i \(0.676795\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) 36.4924 2.56127
\(204\) 0 0
\(205\) −4.19224 −0.292798
\(206\) 0 0
\(207\) −7.56155 −0.525564
\(208\) 0 0
\(209\) −11.4233 −0.790166
\(210\) 0 0
\(211\) 19.1231 1.31649 0.658244 0.752804i \(-0.271299\pi\)
0.658244 + 0.752804i \(0.271299\pi\)
\(212\) 0 0
\(213\) −11.3693 −0.779013
\(214\) 0 0
\(215\) −7.31534 −0.498902
\(216\) 0 0
\(217\) −42.2462 −2.86786
\(218\) 0 0
\(219\) −8.24621 −0.557227
\(220\) 0 0
\(221\) 3.56155 0.239576
\(222\) 0 0
\(223\) −25.5616 −1.71173 −0.855864 0.517201i \(-0.826974\pi\)
−0.855864 + 0.517201i \(0.826974\pi\)
\(224\) 0 0
\(225\) −2.56155 −0.170770
\(226\) 0 0
\(227\) −3.31534 −0.220047 −0.110023 0.993929i \(-0.535093\pi\)
−0.110023 + 0.993929i \(0.535093\pi\)
\(228\) 0 0
\(229\) −18.0000 −1.18947 −0.594737 0.803921i \(-0.702744\pi\)
−0.594737 + 0.803921i \(0.702744\pi\)
\(230\) 0 0
\(231\) −12.4924 −0.821941
\(232\) 0 0
\(233\) 7.56155 0.495374 0.247687 0.968840i \(-0.420330\pi\)
0.247687 + 0.968840i \(0.420330\pi\)
\(234\) 0 0
\(235\) −1.36932 −0.0893244
\(236\) 0 0
\(237\) −2.00000 −0.129914
\(238\) 0 0
\(239\) 5.75379 0.372182 0.186091 0.982533i \(-0.440418\pi\)
0.186091 + 0.982533i \(0.440418\pi\)
\(240\) 0 0
\(241\) −19.3693 −1.24769 −0.623844 0.781549i \(-0.714430\pi\)
−0.623844 + 0.781549i \(0.714430\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 30.0540 1.92008
\(246\) 0 0
\(247\) −16.6847 −1.06162
\(248\) 0 0
\(249\) −7.12311 −0.451408
\(250\) 0 0
\(251\) 10.2462 0.646735 0.323368 0.946273i \(-0.395185\pi\)
0.323368 + 0.946273i \(0.395185\pi\)
\(252\) 0 0
\(253\) 18.4384 1.15922
\(254\) 0 0
\(255\) 1.56155 0.0977882
\(256\) 0 0
\(257\) 13.1231 0.818597 0.409298 0.912401i \(-0.365773\pi\)
0.409298 + 0.912401i \(0.365773\pi\)
\(258\) 0 0
\(259\) 20.4924 1.27334
\(260\) 0 0
\(261\) −7.12311 −0.440909
\(262\) 0 0
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) 9.36932 0.575553
\(266\) 0 0
\(267\) −9.12311 −0.558325
\(268\) 0 0
\(269\) −11.3153 −0.689909 −0.344954 0.938619i \(-0.612106\pi\)
−0.344954 + 0.938619i \(0.612106\pi\)
\(270\) 0 0
\(271\) −18.0540 −1.09670 −0.548350 0.836249i \(-0.684744\pi\)
−0.548350 + 0.836249i \(0.684744\pi\)
\(272\) 0 0
\(273\) −18.2462 −1.10431
\(274\) 0 0
\(275\) 6.24621 0.376661
\(276\) 0 0
\(277\) −12.8769 −0.773698 −0.386849 0.922143i \(-0.626436\pi\)
−0.386849 + 0.922143i \(0.626436\pi\)
\(278\) 0 0
\(279\) 8.24621 0.493688
\(280\) 0 0
\(281\) 2.87689 0.171621 0.0858106 0.996311i \(-0.472652\pi\)
0.0858106 + 0.996311i \(0.472652\pi\)
\(282\) 0 0
\(283\) 4.87689 0.289901 0.144951 0.989439i \(-0.453698\pi\)
0.144951 + 0.989439i \(0.453698\pi\)
\(284\) 0 0
\(285\) −7.31534 −0.433323
\(286\) 0 0
\(287\) 13.7538 0.811860
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −1.12311 −0.0658376
\(292\) 0 0
\(293\) 5.12311 0.299295 0.149648 0.988739i \(-0.452186\pi\)
0.149648 + 0.988739i \(0.452186\pi\)
\(294\) 0 0
\(295\) −20.8769 −1.21550
\(296\) 0 0
\(297\) 2.43845 0.141493
\(298\) 0 0
\(299\) 26.9309 1.55745
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) 5.12311 0.294315
\(304\) 0 0
\(305\) −6.24621 −0.357657
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 12.6847 0.721605
\(310\) 0 0
\(311\) 31.3693 1.77879 0.889395 0.457139i \(-0.151126\pi\)
0.889395 + 0.457139i \(0.151126\pi\)
\(312\) 0 0
\(313\) 29.6155 1.67397 0.836984 0.547227i \(-0.184317\pi\)
0.836984 + 0.547227i \(0.184317\pi\)
\(314\) 0 0
\(315\) −8.00000 −0.450749
\(316\) 0 0
\(317\) −19.1231 −1.07406 −0.537030 0.843563i \(-0.680454\pi\)
−0.537030 + 0.843563i \(0.680454\pi\)
\(318\) 0 0
\(319\) 17.3693 0.972495
\(320\) 0 0
\(321\) 8.68466 0.484730
\(322\) 0 0
\(323\) −4.68466 −0.260661
\(324\) 0 0
\(325\) 9.12311 0.506059
\(326\) 0 0
\(327\) 6.24621 0.345416
\(328\) 0 0
\(329\) 4.49242 0.247675
\(330\) 0 0
\(331\) −1.56155 −0.0858307 −0.0429154 0.999079i \(-0.513665\pi\)
−0.0429154 + 0.999079i \(0.513665\pi\)
\(332\) 0 0
\(333\) −4.00000 −0.219199
\(334\) 0 0
\(335\) 18.7386 1.02380
\(336\) 0 0
\(337\) −2.49242 −0.135771 −0.0678855 0.997693i \(-0.521625\pi\)
−0.0678855 + 0.997693i \(0.521625\pi\)
\(338\) 0 0
\(339\) −4.43845 −0.241063
\(340\) 0 0
\(341\) −20.1080 −1.08891
\(342\) 0 0
\(343\) −62.7386 −3.38757
\(344\) 0 0
\(345\) 11.8078 0.635709
\(346\) 0 0
\(347\) −16.4924 −0.885360 −0.442680 0.896680i \(-0.645972\pi\)
−0.442680 + 0.896680i \(0.645972\pi\)
\(348\) 0 0
\(349\) 15.5616 0.832991 0.416495 0.909138i \(-0.363258\pi\)
0.416495 + 0.909138i \(0.363258\pi\)
\(350\) 0 0
\(351\) 3.56155 0.190102
\(352\) 0 0
\(353\) −2.00000 −0.106449 −0.0532246 0.998583i \(-0.516950\pi\)
−0.0532246 + 0.998583i \(0.516950\pi\)
\(354\) 0 0
\(355\) 17.7538 0.942273
\(356\) 0 0
\(357\) −5.12311 −0.271144
\(358\) 0 0
\(359\) −28.4924 −1.50377 −0.751886 0.659293i \(-0.770856\pi\)
−0.751886 + 0.659293i \(0.770856\pi\)
\(360\) 0 0
\(361\) 2.94602 0.155054
\(362\) 0 0
\(363\) 5.05398 0.265265
\(364\) 0 0
\(365\) 12.8769 0.674007
\(366\) 0 0
\(367\) −2.87689 −0.150173 −0.0750863 0.997177i \(-0.523923\pi\)
−0.0750863 + 0.997177i \(0.523923\pi\)
\(368\) 0 0
\(369\) −2.68466 −0.139758
\(370\) 0 0
\(371\) −30.7386 −1.59587
\(372\) 0 0
\(373\) 30.4924 1.57884 0.789419 0.613855i \(-0.210382\pi\)
0.789419 + 0.613855i \(0.210382\pi\)
\(374\) 0 0
\(375\) 11.8078 0.609750
\(376\) 0 0
\(377\) 25.3693 1.30659
\(378\) 0 0
\(379\) −0.492423 −0.0252940 −0.0126470 0.999920i \(-0.504026\pi\)
−0.0126470 + 0.999920i \(0.504026\pi\)
\(380\) 0 0
\(381\) −14.9309 −0.764932
\(382\) 0 0
\(383\) 18.2462 0.932338 0.466169 0.884696i \(-0.345634\pi\)
0.466169 + 0.884696i \(0.345634\pi\)
\(384\) 0 0
\(385\) 19.5076 0.994198
\(386\) 0 0
\(387\) −4.68466 −0.238135
\(388\) 0 0
\(389\) 27.3693 1.38768 0.693840 0.720129i \(-0.255918\pi\)
0.693840 + 0.720129i \(0.255918\pi\)
\(390\) 0 0
\(391\) 7.56155 0.382404
\(392\) 0 0
\(393\) 13.5616 0.684090
\(394\) 0 0
\(395\) 3.12311 0.157140
\(396\) 0 0
\(397\) 10.2462 0.514243 0.257121 0.966379i \(-0.417226\pi\)
0.257121 + 0.966379i \(0.417226\pi\)
\(398\) 0 0
\(399\) 24.0000 1.20150
\(400\) 0 0
\(401\) −32.9309 −1.64449 −0.822245 0.569134i \(-0.807278\pi\)
−0.822245 + 0.569134i \(0.807278\pi\)
\(402\) 0 0
\(403\) −29.3693 −1.46299
\(404\) 0 0
\(405\) 1.56155 0.0775942
\(406\) 0 0
\(407\) 9.75379 0.483477
\(408\) 0 0
\(409\) −12.4384 −0.615042 −0.307521 0.951541i \(-0.599499\pi\)
−0.307521 + 0.951541i \(0.599499\pi\)
\(410\) 0 0
\(411\) −0.246211 −0.0121447
\(412\) 0 0
\(413\) 68.4924 3.37029
\(414\) 0 0
\(415\) 11.1231 0.546012
\(416\) 0 0
\(417\) 3.12311 0.152939
\(418\) 0 0
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) 29.4233 1.43400 0.717002 0.697071i \(-0.245514\pi\)
0.717002 + 0.697071i \(0.245514\pi\)
\(422\) 0 0
\(423\) −0.876894 −0.0426361
\(424\) 0 0
\(425\) 2.56155 0.124254
\(426\) 0 0
\(427\) 20.4924 0.991698
\(428\) 0 0
\(429\) −8.68466 −0.419299
\(430\) 0 0
\(431\) −25.6155 −1.23386 −0.616928 0.787019i \(-0.711623\pi\)
−0.616928 + 0.787019i \(0.711623\pi\)
\(432\) 0 0
\(433\) −12.0540 −0.579277 −0.289639 0.957136i \(-0.593535\pi\)
−0.289639 + 0.957136i \(0.593535\pi\)
\(434\) 0 0
\(435\) 11.1231 0.533312
\(436\) 0 0
\(437\) −35.4233 −1.69453
\(438\) 0 0
\(439\) 5.61553 0.268015 0.134007 0.990980i \(-0.457215\pi\)
0.134007 + 0.990980i \(0.457215\pi\)
\(440\) 0 0
\(441\) 19.2462 0.916486
\(442\) 0 0
\(443\) 5.36932 0.255104 0.127552 0.991832i \(-0.459288\pi\)
0.127552 + 0.991832i \(0.459288\pi\)
\(444\) 0 0
\(445\) 14.2462 0.675335
\(446\) 0 0
\(447\) 14.0000 0.662177
\(448\) 0 0
\(449\) −0.246211 −0.0116194 −0.00580971 0.999983i \(-0.501849\pi\)
−0.00580971 + 0.999983i \(0.501849\pi\)
\(450\) 0 0
\(451\) 6.54640 0.308258
\(452\) 0 0
\(453\) −16.0000 −0.751746
\(454\) 0 0
\(455\) 28.4924 1.33575
\(456\) 0 0
\(457\) −8.93087 −0.417768 −0.208884 0.977940i \(-0.566983\pi\)
−0.208884 + 0.977940i \(0.566983\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) 38.9848 1.81571 0.907853 0.419289i \(-0.137721\pi\)
0.907853 + 0.419289i \(0.137721\pi\)
\(462\) 0 0
\(463\) 26.2462 1.21976 0.609882 0.792492i \(-0.291217\pi\)
0.609882 + 0.792492i \(0.291217\pi\)
\(464\) 0 0
\(465\) −12.8769 −0.597152
\(466\) 0 0
\(467\) −0.876894 −0.0405778 −0.0202889 0.999794i \(-0.506459\pi\)
−0.0202889 + 0.999794i \(0.506459\pi\)
\(468\) 0 0
\(469\) −61.4773 −2.83876
\(470\) 0 0
\(471\) 7.56155 0.348418
\(472\) 0 0
\(473\) 11.4233 0.525244
\(474\) 0 0
\(475\) −12.0000 −0.550598
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −16.0540 −0.733525 −0.366762 0.930315i \(-0.619534\pi\)
−0.366762 + 0.930315i \(0.619534\pi\)
\(480\) 0 0
\(481\) 14.2462 0.649571
\(482\) 0 0
\(483\) −38.7386 −1.76267
\(484\) 0 0
\(485\) 1.75379 0.0796354
\(486\) 0 0
\(487\) 20.7386 0.939757 0.469879 0.882731i \(-0.344298\pi\)
0.469879 + 0.882731i \(0.344298\pi\)
\(488\) 0 0
\(489\) −13.3693 −0.604581
\(490\) 0 0
\(491\) 27.6155 1.24627 0.623136 0.782114i \(-0.285858\pi\)
0.623136 + 0.782114i \(0.285858\pi\)
\(492\) 0 0
\(493\) 7.12311 0.320809
\(494\) 0 0
\(495\) −3.80776 −0.171146
\(496\) 0 0
\(497\) −58.2462 −2.61270
\(498\) 0 0
\(499\) −36.1080 −1.61641 −0.808207 0.588899i \(-0.799562\pi\)
−0.808207 + 0.588899i \(0.799562\pi\)
\(500\) 0 0
\(501\) 21.8078 0.974299
\(502\) 0 0
\(503\) −2.68466 −0.119703 −0.0598515 0.998207i \(-0.519063\pi\)
−0.0598515 + 0.998207i \(0.519063\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) 0.315342 0.0140048
\(508\) 0 0
\(509\) −12.6307 −0.559845 −0.279923 0.960023i \(-0.590309\pi\)
−0.279923 + 0.960023i \(0.590309\pi\)
\(510\) 0 0
\(511\) −42.2462 −1.86886
\(512\) 0 0
\(513\) −4.68466 −0.206833
\(514\) 0 0
\(515\) −19.8078 −0.872834
\(516\) 0 0
\(517\) 2.13826 0.0940406
\(518\) 0 0
\(519\) 4.68466 0.205634
\(520\) 0 0
\(521\) 38.3002 1.67796 0.838981 0.544161i \(-0.183152\pi\)
0.838981 + 0.544161i \(0.183152\pi\)
\(522\) 0 0
\(523\) −8.49242 −0.371348 −0.185674 0.982611i \(-0.559447\pi\)
−0.185674 + 0.982611i \(0.559447\pi\)
\(524\) 0 0
\(525\) −13.1231 −0.572739
\(526\) 0 0
\(527\) −8.24621 −0.359211
\(528\) 0 0
\(529\) 34.1771 1.48596
\(530\) 0 0
\(531\) −13.3693 −0.580179
\(532\) 0 0
\(533\) 9.56155 0.414157
\(534\) 0 0
\(535\) −13.5616 −0.586317
\(536\) 0 0
\(537\) 15.1231 0.652610
\(538\) 0 0
\(539\) −46.9309 −2.02146
\(540\) 0 0
\(541\) 22.7386 0.977610 0.488805 0.872393i \(-0.337433\pi\)
0.488805 + 0.872393i \(0.337433\pi\)
\(542\) 0 0
\(543\) −7.12311 −0.305682
\(544\) 0 0
\(545\) −9.75379 −0.417806
\(546\) 0 0
\(547\) 26.7386 1.14326 0.571631 0.820511i \(-0.306311\pi\)
0.571631 + 0.820511i \(0.306311\pi\)
\(548\) 0 0
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) −33.3693 −1.42158
\(552\) 0 0
\(553\) −10.2462 −0.435713
\(554\) 0 0
\(555\) 6.24621 0.265137
\(556\) 0 0
\(557\) −28.7386 −1.21769 −0.608847 0.793287i \(-0.708368\pi\)
−0.608847 + 0.793287i \(0.708368\pi\)
\(558\) 0 0
\(559\) 16.6847 0.705686
\(560\) 0 0
\(561\) −2.43845 −0.102951
\(562\) 0 0
\(563\) 5.36932 0.226290 0.113145 0.993579i \(-0.463908\pi\)
0.113145 + 0.993579i \(0.463908\pi\)
\(564\) 0 0
\(565\) 6.93087 0.291584
\(566\) 0 0
\(567\) −5.12311 −0.215150
\(568\) 0 0
\(569\) −17.1231 −0.717838 −0.358919 0.933369i \(-0.616855\pi\)
−0.358919 + 0.933369i \(0.616855\pi\)
\(570\) 0 0
\(571\) −0.492423 −0.0206072 −0.0103036 0.999947i \(-0.503280\pi\)
−0.0103036 + 0.999947i \(0.503280\pi\)
\(572\) 0 0
\(573\) 5.36932 0.224306
\(574\) 0 0
\(575\) 19.3693 0.807756
\(576\) 0 0
\(577\) −3.94602 −0.164275 −0.0821376 0.996621i \(-0.526175\pi\)
−0.0821376 + 0.996621i \(0.526175\pi\)
\(578\) 0 0
\(579\) −12.2462 −0.508935
\(580\) 0 0
\(581\) −36.4924 −1.51396
\(582\) 0 0
\(583\) −14.6307 −0.605941
\(584\) 0 0
\(585\) −5.56155 −0.229942
\(586\) 0 0
\(587\) −7.50758 −0.309871 −0.154935 0.987925i \(-0.549517\pi\)
−0.154935 + 0.987925i \(0.549517\pi\)
\(588\) 0 0
\(589\) 38.6307 1.59175
\(590\) 0 0
\(591\) 24.6847 1.01539
\(592\) 0 0
\(593\) −42.4924 −1.74495 −0.872477 0.488655i \(-0.837488\pi\)
−0.872477 + 0.488655i \(0.837488\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) 0 0
\(597\) 14.8769 0.608871
\(598\) 0 0
\(599\) 33.3693 1.36343 0.681717 0.731616i \(-0.261234\pi\)
0.681717 + 0.731616i \(0.261234\pi\)
\(600\) 0 0
\(601\) −24.7386 −1.00911 −0.504555 0.863380i \(-0.668343\pi\)
−0.504555 + 0.863380i \(0.668343\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) −7.89205 −0.320857
\(606\) 0 0
\(607\) 11.7538 0.477072 0.238536 0.971134i \(-0.423333\pi\)
0.238536 + 0.971134i \(0.423333\pi\)
\(608\) 0 0
\(609\) −36.4924 −1.47875
\(610\) 0 0
\(611\) 3.12311 0.126347
\(612\) 0 0
\(613\) 16.4384 0.663943 0.331971 0.943289i \(-0.392286\pi\)
0.331971 + 0.943289i \(0.392286\pi\)
\(614\) 0 0
\(615\) 4.19224 0.169047
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −24.8769 −0.999887 −0.499943 0.866058i \(-0.666646\pi\)
−0.499943 + 0.866058i \(0.666646\pi\)
\(620\) 0 0
\(621\) 7.56155 0.303435
\(622\) 0 0
\(623\) −46.7386 −1.87254
\(624\) 0 0
\(625\) −5.63068 −0.225227
\(626\) 0 0
\(627\) 11.4233 0.456202
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −23.8078 −0.947772 −0.473886 0.880586i \(-0.657149\pi\)
−0.473886 + 0.880586i \(0.657149\pi\)
\(632\) 0 0
\(633\) −19.1231 −0.760075
\(634\) 0 0
\(635\) 23.3153 0.925241
\(636\) 0 0
\(637\) −68.5464 −2.71591
\(638\) 0 0
\(639\) 11.3693 0.449763
\(640\) 0 0
\(641\) 47.6695 1.88283 0.941416 0.337247i \(-0.109496\pi\)
0.941416 + 0.337247i \(0.109496\pi\)
\(642\) 0 0
\(643\) 16.4924 0.650398 0.325199 0.945646i \(-0.394569\pi\)
0.325199 + 0.945646i \(0.394569\pi\)
\(644\) 0 0
\(645\) 7.31534 0.288041
\(646\) 0 0
\(647\) −24.8769 −0.978012 −0.489006 0.872281i \(-0.662640\pi\)
−0.489006 + 0.872281i \(0.662640\pi\)
\(648\) 0 0
\(649\) 32.6004 1.27968
\(650\) 0 0
\(651\) 42.2462 1.65576
\(652\) 0 0
\(653\) −31.4233 −1.22969 −0.614844 0.788649i \(-0.710781\pi\)
−0.614844 + 0.788649i \(0.710781\pi\)
\(654\) 0 0
\(655\) −21.1771 −0.827457
\(656\) 0 0
\(657\) 8.24621 0.321715
\(658\) 0 0
\(659\) −3.61553 −0.140841 −0.0704205 0.997517i \(-0.522434\pi\)
−0.0704205 + 0.997517i \(0.522434\pi\)
\(660\) 0 0
\(661\) 9.31534 0.362325 0.181162 0.983453i \(-0.442014\pi\)
0.181162 + 0.983453i \(0.442014\pi\)
\(662\) 0 0
\(663\) −3.56155 −0.138319
\(664\) 0 0
\(665\) −37.4773 −1.45331
\(666\) 0 0
\(667\) 53.8617 2.08553
\(668\) 0 0
\(669\) 25.5616 0.988267
\(670\) 0 0
\(671\) 9.75379 0.376541
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) 2.56155 0.0985942
\(676\) 0 0
\(677\) −19.8078 −0.761274 −0.380637 0.924724i \(-0.624295\pi\)
−0.380637 + 0.924724i \(0.624295\pi\)
\(678\) 0 0
\(679\) −5.75379 −0.220810
\(680\) 0 0
\(681\) 3.31534 0.127044
\(682\) 0 0
\(683\) −7.80776 −0.298756 −0.149378 0.988780i \(-0.547727\pi\)
−0.149378 + 0.988780i \(0.547727\pi\)
\(684\) 0 0
\(685\) 0.384472 0.0146899
\(686\) 0 0
\(687\) 18.0000 0.686743
\(688\) 0 0
\(689\) −21.3693 −0.814106
\(690\) 0 0
\(691\) 9.75379 0.371052 0.185526 0.982639i \(-0.440601\pi\)
0.185526 + 0.982639i \(0.440601\pi\)
\(692\) 0 0
\(693\) 12.4924 0.474548
\(694\) 0 0
\(695\) −4.87689 −0.184991
\(696\) 0 0
\(697\) 2.68466 0.101689
\(698\) 0 0
\(699\) −7.56155 −0.286004
\(700\) 0 0
\(701\) −37.1231 −1.40212 −0.701060 0.713102i \(-0.747290\pi\)
−0.701060 + 0.713102i \(0.747290\pi\)
\(702\) 0 0
\(703\) −18.7386 −0.706741
\(704\) 0 0
\(705\) 1.36932 0.0515715
\(706\) 0 0
\(707\) 26.2462 0.987090
\(708\) 0 0
\(709\) −11.1231 −0.417737 −0.208869 0.977944i \(-0.566978\pi\)
−0.208869 + 0.977944i \(0.566978\pi\)
\(710\) 0 0
\(711\) 2.00000 0.0750059
\(712\) 0 0
\(713\) −62.3542 −2.33518
\(714\) 0 0
\(715\) 13.5616 0.507173
\(716\) 0 0
\(717\) −5.75379 −0.214879
\(718\) 0 0
\(719\) 38.7926 1.44672 0.723360 0.690471i \(-0.242597\pi\)
0.723360 + 0.690471i \(0.242597\pi\)
\(720\) 0 0
\(721\) 64.9848 2.42016
\(722\) 0 0
\(723\) 19.3693 0.720353
\(724\) 0 0
\(725\) 18.2462 0.677647
\(726\) 0 0
\(727\) 3.50758 0.130089 0.0650444 0.997882i \(-0.479281\pi\)
0.0650444 + 0.997882i \(0.479281\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 4.68466 0.173268
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 0 0
\(735\) −30.0540 −1.10856
\(736\) 0 0
\(737\) −29.2614 −1.07786
\(738\) 0 0
\(739\) −39.8078 −1.46435 −0.732176 0.681115i \(-0.761495\pi\)
−0.732176 + 0.681115i \(0.761495\pi\)
\(740\) 0 0
\(741\) 16.6847 0.612926
\(742\) 0 0
\(743\) −5.12311 −0.187949 −0.0939743 0.995575i \(-0.529957\pi\)
−0.0939743 + 0.995575i \(0.529957\pi\)
\(744\) 0 0
\(745\) −21.8617 −0.800952
\(746\) 0 0
\(747\) 7.12311 0.260621
\(748\) 0 0
\(749\) 44.4924 1.62572
\(750\) 0 0
\(751\) 14.9848 0.546805 0.273402 0.961900i \(-0.411851\pi\)
0.273402 + 0.961900i \(0.411851\pi\)
\(752\) 0 0
\(753\) −10.2462 −0.373393
\(754\) 0 0
\(755\) 24.9848 0.909292
\(756\) 0 0
\(757\) 14.3002 0.519749 0.259875 0.965642i \(-0.416319\pi\)
0.259875 + 0.965642i \(0.416319\pi\)
\(758\) 0 0
\(759\) −18.4384 −0.669273
\(760\) 0 0
\(761\) −28.2462 −1.02392 −0.511962 0.859008i \(-0.671081\pi\)
−0.511962 + 0.859008i \(0.671081\pi\)
\(762\) 0 0
\(763\) 32.0000 1.15848
\(764\) 0 0
\(765\) −1.56155 −0.0564581
\(766\) 0 0
\(767\) 47.6155 1.71930
\(768\) 0 0
\(769\) 52.0540 1.87711 0.938557 0.345124i \(-0.112163\pi\)
0.938557 + 0.345124i \(0.112163\pi\)
\(770\) 0 0
\(771\) −13.1231 −0.472617
\(772\) 0 0
\(773\) 22.8769 0.822825 0.411412 0.911449i \(-0.365036\pi\)
0.411412 + 0.911449i \(0.365036\pi\)
\(774\) 0 0
\(775\) −21.1231 −0.758764
\(776\) 0 0
\(777\) −20.4924 −0.735162
\(778\) 0 0
\(779\) −12.5767 −0.450607
\(780\) 0 0
\(781\) −27.7235 −0.992024
\(782\) 0 0
\(783\) 7.12311 0.254559
\(784\) 0 0
\(785\) −11.8078 −0.421437
\(786\) 0 0
\(787\) −47.2311 −1.68361 −0.841803 0.539785i \(-0.818505\pi\)
−0.841803 + 0.539785i \(0.818505\pi\)
\(788\) 0 0
\(789\) −4.00000 −0.142404
\(790\) 0 0
\(791\) −22.7386 −0.808493
\(792\) 0 0
\(793\) 14.2462 0.505898
\(794\) 0 0
\(795\) −9.36932 −0.332295
\(796\) 0 0
\(797\) 3.86174 0.136790 0.0683949 0.997658i \(-0.478212\pi\)
0.0683949 + 0.997658i \(0.478212\pi\)
\(798\) 0 0
\(799\) 0.876894 0.0310223
\(800\) 0 0
\(801\) 9.12311 0.322349
\(802\) 0 0
\(803\) −20.1080 −0.709594
\(804\) 0 0
\(805\) 60.4924 2.13208
\(806\) 0 0
\(807\) 11.3153 0.398319
\(808\) 0 0
\(809\) 41.8078 1.46988 0.734941 0.678131i \(-0.237210\pi\)
0.734941 + 0.678131i \(0.237210\pi\)
\(810\) 0 0
\(811\) 53.3693 1.87405 0.937025 0.349262i \(-0.113568\pi\)
0.937025 + 0.349262i \(0.113568\pi\)
\(812\) 0 0
\(813\) 18.0540 0.633181
\(814\) 0 0
\(815\) 20.8769 0.731286
\(816\) 0 0
\(817\) −21.9460 −0.767794
\(818\) 0 0
\(819\) 18.2462 0.637574
\(820\) 0 0
\(821\) 52.7926 1.84247 0.921237 0.389001i \(-0.127180\pi\)
0.921237 + 0.389001i \(0.127180\pi\)
\(822\) 0 0
\(823\) 27.3693 0.954034 0.477017 0.878894i \(-0.341718\pi\)
0.477017 + 0.878894i \(0.341718\pi\)
\(824\) 0 0
\(825\) −6.24621 −0.217465
\(826\) 0 0
\(827\) −13.5616 −0.471581 −0.235791 0.971804i \(-0.575768\pi\)
−0.235791 + 0.971804i \(0.575768\pi\)
\(828\) 0 0
\(829\) −22.4924 −0.781194 −0.390597 0.920562i \(-0.627731\pi\)
−0.390597 + 0.920562i \(0.627731\pi\)
\(830\) 0 0
\(831\) 12.8769 0.446695
\(832\) 0 0
\(833\) −19.2462 −0.666842
\(834\) 0 0
\(835\) −34.0540 −1.17849
\(836\) 0 0
\(837\) −8.24621 −0.285031
\(838\) 0 0
\(839\) −3.94602 −0.136232 −0.0681160 0.997677i \(-0.521699\pi\)
−0.0681160 + 0.997677i \(0.521699\pi\)
\(840\) 0 0
\(841\) 21.7386 0.749608
\(842\) 0 0
\(843\) −2.87689 −0.0990855
\(844\) 0 0
\(845\) −0.492423 −0.0169398
\(846\) 0 0
\(847\) 25.8920 0.889661
\(848\) 0 0
\(849\) −4.87689 −0.167375
\(850\) 0 0
\(851\) 30.2462 1.03683
\(852\) 0 0
\(853\) −7.61553 −0.260751 −0.130375 0.991465i \(-0.541618\pi\)
−0.130375 + 0.991465i \(0.541618\pi\)
\(854\) 0 0
\(855\) 7.31534 0.250179
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −16.4924 −0.562714 −0.281357 0.959603i \(-0.590785\pi\)
−0.281357 + 0.959603i \(0.590785\pi\)
\(860\) 0 0
\(861\) −13.7538 −0.468728
\(862\) 0 0
\(863\) −50.7386 −1.72716 −0.863582 0.504209i \(-0.831784\pi\)
−0.863582 + 0.504209i \(0.831784\pi\)
\(864\) 0 0
\(865\) −7.31534 −0.248729
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) −4.87689 −0.165437
\(870\) 0 0
\(871\) −42.7386 −1.44814
\(872\) 0 0
\(873\) 1.12311 0.0380114
\(874\) 0 0
\(875\) 60.4924 2.04502
\(876\) 0 0
\(877\) 34.3542 1.16006 0.580029 0.814596i \(-0.303041\pi\)
0.580029 + 0.814596i \(0.303041\pi\)
\(878\) 0 0
\(879\) −5.12311 −0.172798
\(880\) 0 0
\(881\) 34.0000 1.14549 0.572745 0.819734i \(-0.305879\pi\)
0.572745 + 0.819734i \(0.305879\pi\)
\(882\) 0 0
\(883\) −25.5616 −0.860215 −0.430107 0.902778i \(-0.641524\pi\)
−0.430107 + 0.902778i \(0.641524\pi\)
\(884\) 0 0
\(885\) 20.8769 0.701769
\(886\) 0 0
\(887\) 47.5616 1.59696 0.798480 0.602021i \(-0.205638\pi\)
0.798480 + 0.602021i \(0.205638\pi\)
\(888\) 0 0
\(889\) −76.4924 −2.56547
\(890\) 0 0
\(891\) −2.43845 −0.0816911
\(892\) 0 0
\(893\) −4.10795 −0.137467
\(894\) 0 0
\(895\) −23.6155 −0.789380
\(896\) 0 0
\(897\) −26.9309 −0.899196
\(898\) 0 0
\(899\) −58.7386 −1.95904
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) −24.0000 −0.798670
\(904\) 0 0
\(905\) 11.1231 0.369745
\(906\) 0 0
\(907\) 41.3693 1.37365 0.686823 0.726825i \(-0.259005\pi\)
0.686823 + 0.726825i \(0.259005\pi\)
\(908\) 0 0
\(909\) −5.12311 −0.169923
\(910\) 0 0
\(911\) 28.4384 0.942208 0.471104 0.882078i \(-0.343856\pi\)
0.471104 + 0.882078i \(0.343856\pi\)
\(912\) 0 0
\(913\) −17.3693 −0.574840
\(914\) 0 0
\(915\) 6.24621 0.206493
\(916\) 0 0
\(917\) 69.4773 2.29434
\(918\) 0 0
\(919\) 38.9309 1.28421 0.642105 0.766616i \(-0.278061\pi\)
0.642105 + 0.766616i \(0.278061\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) 0 0
\(923\) −40.4924 −1.33282
\(924\) 0 0
\(925\) 10.2462 0.336893
\(926\) 0 0
\(927\) −12.6847 −0.416619
\(928\) 0 0
\(929\) −30.7926 −1.01027 −0.505136 0.863040i \(-0.668558\pi\)
−0.505136 + 0.863040i \(0.668558\pi\)
\(930\) 0 0
\(931\) 90.1619 2.95494
\(932\) 0 0
\(933\) −31.3693 −1.02699
\(934\) 0 0
\(935\) 3.80776 0.124527
\(936\) 0 0
\(937\) 12.2462 0.400066 0.200033 0.979789i \(-0.435895\pi\)
0.200033 + 0.979789i \(0.435895\pi\)
\(938\) 0 0
\(939\) −29.6155 −0.966466
\(940\) 0 0
\(941\) −47.6155 −1.55222 −0.776111 0.630596i \(-0.782810\pi\)
−0.776111 + 0.630596i \(0.782810\pi\)
\(942\) 0 0
\(943\) 20.3002 0.661065
\(944\) 0 0
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) 14.2462 0.462940 0.231470 0.972842i \(-0.425647\pi\)
0.231470 + 0.972842i \(0.425647\pi\)
\(948\) 0 0
\(949\) −29.3693 −0.953368
\(950\) 0 0
\(951\) 19.1231 0.620109
\(952\) 0 0
\(953\) 42.1080 1.36401 0.682005 0.731347i \(-0.261108\pi\)
0.682005 + 0.731347i \(0.261108\pi\)
\(954\) 0 0
\(955\) −8.38447 −0.271315
\(956\) 0 0
\(957\) −17.3693 −0.561470
\(958\) 0 0
\(959\) −1.26137 −0.0407316
\(960\) 0 0
\(961\) 37.0000 1.19355
\(962\) 0 0
\(963\) −8.68466 −0.279859
\(964\) 0 0
\(965\) 19.1231 0.615595
\(966\) 0 0
\(967\) 9.56155 0.307479 0.153739 0.988111i \(-0.450868\pi\)
0.153739 + 0.988111i \(0.450868\pi\)
\(968\) 0 0
\(969\) 4.68466 0.150493
\(970\) 0 0
\(971\) −46.3542 −1.48758 −0.743788 0.668416i \(-0.766973\pi\)
−0.743788 + 0.668416i \(0.766973\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) 0 0
\(975\) −9.12311 −0.292173
\(976\) 0 0
\(977\) 5.50758 0.176203 0.0881015 0.996112i \(-0.471920\pi\)
0.0881015 + 0.996112i \(0.471920\pi\)
\(978\) 0 0
\(979\) −22.2462 −0.710992
\(980\) 0 0
\(981\) −6.24621 −0.199426
\(982\) 0 0
\(983\) 55.5616 1.77214 0.886069 0.463553i \(-0.153426\pi\)
0.886069 + 0.463553i \(0.153426\pi\)
\(984\) 0 0
\(985\) −38.5464 −1.22819
\(986\) 0 0
\(987\) −4.49242 −0.142995
\(988\) 0 0
\(989\) 35.4233 1.12640
\(990\) 0 0
\(991\) −24.6307 −0.782419 −0.391210 0.920302i \(-0.627943\pi\)
−0.391210 + 0.920302i \(0.627943\pi\)
\(992\) 0 0
\(993\) 1.56155 0.0495544
\(994\) 0 0
\(995\) −23.2311 −0.736474
\(996\) 0 0
\(997\) 13.3693 0.423411 0.211705 0.977334i \(-0.432098\pi\)
0.211705 + 0.977334i \(0.432098\pi\)
\(998\) 0 0
\(999\) 4.00000 0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 408.2.a.e.1.2 2
3.2 odd 2 1224.2.a.j.1.1 2
4.3 odd 2 816.2.a.l.1.2 2
8.3 odd 2 3264.2.a.bi.1.1 2
8.5 even 2 3264.2.a.bo.1.1 2
12.11 even 2 2448.2.a.ba.1.1 2
17.16 even 2 6936.2.a.y.1.1 2
24.5 odd 2 9792.2.a.cm.1.2 2
24.11 even 2 9792.2.a.cn.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.a.e.1.2 2 1.1 even 1 trivial
816.2.a.l.1.2 2 4.3 odd 2
1224.2.a.j.1.1 2 3.2 odd 2
2448.2.a.ba.1.1 2 12.11 even 2
3264.2.a.bi.1.1 2 8.3 odd 2
3264.2.a.bo.1.1 2 8.5 even 2
6936.2.a.y.1.1 2 17.16 even 2
9792.2.a.cm.1.2 2 24.5 odd 2
9792.2.a.cn.1.2 2 24.11 even 2