Properties

Label 4056.2.c.k.337.4
Level $4056$
Weight $2$
Character 4056.337
Analytic conductor $32.387$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4056,2,Mod(337,4056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4056.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,0,0,4,0,0,0,0,0,0,0,8,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.4
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 4056.337
Dual form 4056.2.c.k.337.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.73205i q^{5} -0.732051i q^{7} +1.00000 q^{9} -0.732051i q^{11} -1.73205i q^{15} +3.73205 q^{17} +1.26795i q^{19} +0.732051i q^{21} +2.19615 q^{23} +2.00000 q^{25} -1.00000 q^{27} -5.92820 q^{29} -5.46410i q^{31} +0.732051i q^{33} +1.26795 q^{35} +8.46410i q^{37} -5.00000i q^{41} -1.80385 q^{43} +1.73205i q^{45} -6.73205i q^{47} +6.46410 q^{49} -3.73205 q^{51} +5.92820 q^{53} +1.26795 q^{55} -1.26795i q^{57} -9.73205 q^{61} -0.732051i q^{63} -5.26795i q^{67} -2.19615 q^{69} +8.19615i q^{71} -1.19615i q^{73} -2.00000 q^{75} -0.535898 q^{77} +12.3923 q^{79} +1.00000 q^{81} -15.6603i q^{83} +6.46410i q^{85} +5.92820 q^{87} -2.53590i q^{89} +5.46410i q^{93} -2.19615 q^{95} +10.0000i q^{97} -0.732051i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{9} + 8 q^{17} - 12 q^{23} + 8 q^{25} - 4 q^{27} + 4 q^{29} + 12 q^{35} - 28 q^{43} + 12 q^{49} - 8 q^{51} - 4 q^{53} + 12 q^{55} - 32 q^{61} + 12 q^{69} - 8 q^{75} - 16 q^{77} + 8 q^{79}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4056\mathbb{Z}\right)^\times\).

\(n\) \(1015\) \(2029\) \(2705\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.73205i 0.774597i 0.921954 + 0.387298i \(0.126592\pi\)
−0.921954 + 0.387298i \(0.873408\pi\)
\(6\) 0 0
\(7\) − 0.732051i − 0.276689i −0.990384 0.138345i \(-0.955822\pi\)
0.990384 0.138345i \(-0.0441781\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) − 0.732051i − 0.220722i −0.993892 0.110361i \(-0.964799\pi\)
0.993892 0.110361i \(-0.0352006\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 1.73205i − 0.447214i
\(16\) 0 0
\(17\) 3.73205 0.905155 0.452578 0.891725i \(-0.350505\pi\)
0.452578 + 0.891725i \(0.350505\pi\)
\(18\) 0 0
\(19\) 1.26795i 0.290887i 0.989367 + 0.145444i \(0.0464610\pi\)
−0.989367 + 0.145444i \(0.953539\pi\)
\(20\) 0 0
\(21\) 0.732051i 0.159747i
\(22\) 0 0
\(23\) 2.19615 0.457929 0.228965 0.973435i \(-0.426466\pi\)
0.228965 + 0.973435i \(0.426466\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.92820 −1.10084 −0.550420 0.834888i \(-0.685532\pi\)
−0.550420 + 0.834888i \(0.685532\pi\)
\(30\) 0 0
\(31\) − 5.46410i − 0.981382i −0.871334 0.490691i \(-0.836744\pi\)
0.871334 0.490691i \(-0.163256\pi\)
\(32\) 0 0
\(33\) 0.732051i 0.127434i
\(34\) 0 0
\(35\) 1.26795 0.214323
\(36\) 0 0
\(37\) 8.46410i 1.39149i 0.718289 + 0.695745i \(0.244926\pi\)
−0.718289 + 0.695745i \(0.755074\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.00000i − 0.780869i −0.920631 0.390434i \(-0.872325\pi\)
0.920631 0.390434i \(-0.127675\pi\)
\(42\) 0 0
\(43\) −1.80385 −0.275084 −0.137542 0.990496i \(-0.543920\pi\)
−0.137542 + 0.990496i \(0.543920\pi\)
\(44\) 0 0
\(45\) 1.73205i 0.258199i
\(46\) 0 0
\(47\) − 6.73205i − 0.981971i −0.871168 0.490985i \(-0.836637\pi\)
0.871168 0.490985i \(-0.163363\pi\)
\(48\) 0 0
\(49\) 6.46410 0.923443
\(50\) 0 0
\(51\) −3.73205 −0.522592
\(52\) 0 0
\(53\) 5.92820 0.814301 0.407151 0.913361i \(-0.366522\pi\)
0.407151 + 0.913361i \(0.366522\pi\)
\(54\) 0 0
\(55\) 1.26795 0.170970
\(56\) 0 0
\(57\) − 1.26795i − 0.167944i
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −9.73205 −1.24606 −0.623031 0.782197i \(-0.714099\pi\)
−0.623031 + 0.782197i \(0.714099\pi\)
\(62\) 0 0
\(63\) − 0.732051i − 0.0922297i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 5.26795i − 0.643582i −0.946811 0.321791i \(-0.895715\pi\)
0.946811 0.321791i \(-0.104285\pi\)
\(68\) 0 0
\(69\) −2.19615 −0.264386
\(70\) 0 0
\(71\) 8.19615i 0.972704i 0.873763 + 0.486352i \(0.161673\pi\)
−0.873763 + 0.486352i \(0.838327\pi\)
\(72\) 0 0
\(73\) − 1.19615i − 0.139999i −0.997547 0.0699995i \(-0.977700\pi\)
0.997547 0.0699995i \(-0.0222998\pi\)
\(74\) 0 0
\(75\) −2.00000 −0.230940
\(76\) 0 0
\(77\) −0.535898 −0.0610713
\(78\) 0 0
\(79\) 12.3923 1.39424 0.697122 0.716953i \(-0.254464\pi\)
0.697122 + 0.716953i \(0.254464\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 15.6603i − 1.71894i −0.511189 0.859468i \(-0.670795\pi\)
0.511189 0.859468i \(-0.329205\pi\)
\(84\) 0 0
\(85\) 6.46410i 0.701130i
\(86\) 0 0
\(87\) 5.92820 0.635570
\(88\) 0 0
\(89\) − 2.53590i − 0.268805i −0.990927 0.134402i \(-0.957089\pi\)
0.990927 0.134402i \(-0.0429115\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.46410i 0.566601i
\(94\) 0 0
\(95\) −2.19615 −0.225320
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 0 0
\(99\) − 0.732051i − 0.0735739i
\(100\) 0 0
\(101\) 14.4641 1.43923 0.719616 0.694372i \(-0.244318\pi\)
0.719616 + 0.694372i \(0.244318\pi\)
\(102\) 0 0
\(103\) 2.73205 0.269197 0.134598 0.990900i \(-0.457026\pi\)
0.134598 + 0.990900i \(0.457026\pi\)
\(104\) 0 0
\(105\) −1.26795 −0.123739
\(106\) 0 0
\(107\) −15.1244 −1.46213 −0.731063 0.682310i \(-0.760976\pi\)
−0.731063 + 0.682310i \(0.760976\pi\)
\(108\) 0 0
\(109\) 0.392305i 0.0375760i 0.999823 + 0.0187880i \(0.00598076\pi\)
−0.999823 + 0.0187880i \(0.994019\pi\)
\(110\) 0 0
\(111\) − 8.46410i − 0.803377i
\(112\) 0 0
\(113\) 4.66025 0.438400 0.219200 0.975680i \(-0.429655\pi\)
0.219200 + 0.975680i \(0.429655\pi\)
\(114\) 0 0
\(115\) 3.80385i 0.354711i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 2.73205i − 0.250447i
\(120\) 0 0
\(121\) 10.4641 0.951282
\(122\) 0 0
\(123\) 5.00000i 0.450835i
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 1.80385 0.158820
\(130\) 0 0
\(131\) 19.3205 1.68804 0.844020 0.536311i \(-0.180183\pi\)
0.844020 + 0.536311i \(0.180183\pi\)
\(132\) 0 0
\(133\) 0.928203 0.0804854
\(134\) 0 0
\(135\) − 1.73205i − 0.149071i
\(136\) 0 0
\(137\) 12.4641i 1.06488i 0.846468 + 0.532440i \(0.178725\pi\)
−0.846468 + 0.532440i \(0.821275\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 6.73205i 0.566941i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 10.2679i − 0.852707i
\(146\) 0 0
\(147\) −6.46410 −0.533150
\(148\) 0 0
\(149\) − 9.58846i − 0.785517i −0.919642 0.392759i \(-0.871521\pi\)
0.919642 0.392759i \(-0.128479\pi\)
\(150\) 0 0
\(151\) 20.7321i 1.68715i 0.537011 + 0.843575i \(0.319553\pi\)
−0.537011 + 0.843575i \(0.680447\pi\)
\(152\) 0 0
\(153\) 3.73205 0.301718
\(154\) 0 0
\(155\) 9.46410 0.760175
\(156\) 0 0
\(157\) 15.0526 1.20132 0.600662 0.799503i \(-0.294904\pi\)
0.600662 + 0.799503i \(0.294904\pi\)
\(158\) 0 0
\(159\) −5.92820 −0.470137
\(160\) 0 0
\(161\) − 1.60770i − 0.126704i
\(162\) 0 0
\(163\) 6.53590i 0.511931i 0.966686 + 0.255966i \(0.0823934\pi\)
−0.966686 + 0.255966i \(0.917607\pi\)
\(164\) 0 0
\(165\) −1.26795 −0.0987097
\(166\) 0 0
\(167\) − 5.46410i − 0.422825i −0.977397 0.211412i \(-0.932194\pi\)
0.977397 0.211412i \(-0.0678063\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 1.26795i 0.0969625i
\(172\) 0 0
\(173\) −10.5359 −0.801030 −0.400515 0.916290i \(-0.631169\pi\)
−0.400515 + 0.916290i \(0.631169\pi\)
\(174\) 0 0
\(175\) − 1.46410i − 0.110676i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.2679 −1.29067 −0.645334 0.763901i \(-0.723282\pi\)
−0.645334 + 0.763901i \(0.723282\pi\)
\(180\) 0 0
\(181\) −8.80385 −0.654385 −0.327192 0.944958i \(-0.606103\pi\)
−0.327192 + 0.944958i \(0.606103\pi\)
\(182\) 0 0
\(183\) 9.73205 0.719414
\(184\) 0 0
\(185\) −14.6603 −1.07784
\(186\) 0 0
\(187\) − 2.73205i − 0.199787i
\(188\) 0 0
\(189\) 0.732051i 0.0532489i
\(190\) 0 0
\(191\) −1.07180 −0.0775525 −0.0387762 0.999248i \(-0.512346\pi\)
−0.0387762 + 0.999248i \(0.512346\pi\)
\(192\) 0 0
\(193\) 8.26795i 0.595140i 0.954700 + 0.297570i \(0.0961762\pi\)
−0.954700 + 0.297570i \(0.903824\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.9282i 1.06359i 0.846873 + 0.531795i \(0.178482\pi\)
−0.846873 + 0.531795i \(0.821518\pi\)
\(198\) 0 0
\(199\) 17.6603 1.25190 0.625951 0.779862i \(-0.284711\pi\)
0.625951 + 0.779862i \(0.284711\pi\)
\(200\) 0 0
\(201\) 5.26795i 0.371572i
\(202\) 0 0
\(203\) 4.33975i 0.304590i
\(204\) 0 0
\(205\) 8.66025 0.604858
\(206\) 0 0
\(207\) 2.19615 0.152643
\(208\) 0 0
\(209\) 0.928203 0.0642052
\(210\) 0 0
\(211\) 23.3205 1.60545 0.802725 0.596349i \(-0.203383\pi\)
0.802725 + 0.596349i \(0.203383\pi\)
\(212\) 0 0
\(213\) − 8.19615i − 0.561591i
\(214\) 0 0
\(215\) − 3.12436i − 0.213079i
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) 1.19615i 0.0808285i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 24.7846i − 1.65970i −0.557986 0.829850i \(-0.688426\pi\)
0.557986 0.829850i \(-0.311574\pi\)
\(224\) 0 0
\(225\) 2.00000 0.133333
\(226\) 0 0
\(227\) 16.0526i 1.06545i 0.846290 + 0.532723i \(0.178831\pi\)
−0.846290 + 0.532723i \(0.821169\pi\)
\(228\) 0 0
\(229\) 27.8564i 1.84080i 0.390974 + 0.920402i \(0.372138\pi\)
−0.390974 + 0.920402i \(0.627862\pi\)
\(230\) 0 0
\(231\) 0.535898 0.0352595
\(232\) 0 0
\(233\) 2.00000 0.131024 0.0655122 0.997852i \(-0.479132\pi\)
0.0655122 + 0.997852i \(0.479132\pi\)
\(234\) 0 0
\(235\) 11.6603 0.760631
\(236\) 0 0
\(237\) −12.3923 −0.804967
\(238\) 0 0
\(239\) − 26.7321i − 1.72915i −0.502502 0.864576i \(-0.667587\pi\)
0.502502 0.864576i \(-0.332413\pi\)
\(240\) 0 0
\(241\) 22.6603i 1.45968i 0.683621 + 0.729838i \(0.260404\pi\)
−0.683621 + 0.729838i \(0.739596\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 11.1962i 0.715296i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 15.6603i 0.992428i
\(250\) 0 0
\(251\) 9.46410 0.597369 0.298684 0.954352i \(-0.403452\pi\)
0.298684 + 0.954352i \(0.403452\pi\)
\(252\) 0 0
\(253\) − 1.60770i − 0.101075i
\(254\) 0 0
\(255\) − 6.46410i − 0.404798i
\(256\) 0 0
\(257\) 17.7321 1.10609 0.553047 0.833150i \(-0.313465\pi\)
0.553047 + 0.833150i \(0.313465\pi\)
\(258\) 0 0
\(259\) 6.19615 0.385010
\(260\) 0 0
\(261\) −5.92820 −0.366947
\(262\) 0 0
\(263\) 12.3397 0.760901 0.380451 0.924801i \(-0.375769\pi\)
0.380451 + 0.924801i \(0.375769\pi\)
\(264\) 0 0
\(265\) 10.2679i 0.630755i
\(266\) 0 0
\(267\) 2.53590i 0.155194i
\(268\) 0 0
\(269\) 9.46410 0.577036 0.288518 0.957474i \(-0.406837\pi\)
0.288518 + 0.957474i \(0.406837\pi\)
\(270\) 0 0
\(271\) 16.0000i 0.971931i 0.873978 + 0.485965i \(0.161532\pi\)
−0.873978 + 0.485965i \(0.838468\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.46410i − 0.0882886i
\(276\) 0 0
\(277\) 8.12436 0.488145 0.244073 0.969757i \(-0.421516\pi\)
0.244073 + 0.969757i \(0.421516\pi\)
\(278\) 0 0
\(279\) − 5.46410i − 0.327127i
\(280\) 0 0
\(281\) − 24.7128i − 1.47424i −0.675760 0.737121i \(-0.736185\pi\)
0.675760 0.737121i \(-0.263815\pi\)
\(282\) 0 0
\(283\) 21.5167 1.27903 0.639516 0.768777i \(-0.279135\pi\)
0.639516 + 0.768777i \(0.279135\pi\)
\(284\) 0 0
\(285\) 2.19615 0.130089
\(286\) 0 0
\(287\) −3.66025 −0.216058
\(288\) 0 0
\(289\) −3.07180 −0.180694
\(290\) 0 0
\(291\) − 10.0000i − 0.586210i
\(292\) 0 0
\(293\) 2.12436i 0.124106i 0.998073 + 0.0620531i \(0.0197648\pi\)
−0.998073 + 0.0620531i \(0.980235\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0.732051i 0.0424779i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.32051i 0.0761128i
\(302\) 0 0
\(303\) −14.4641 −0.830941
\(304\) 0 0
\(305\) − 16.8564i − 0.965195i
\(306\) 0 0
\(307\) − 10.7321i − 0.612510i −0.951949 0.306255i \(-0.900924\pi\)
0.951949 0.306255i \(-0.0990761\pi\)
\(308\) 0 0
\(309\) −2.73205 −0.155421
\(310\) 0 0
\(311\) 4.33975 0.246084 0.123042 0.992401i \(-0.460735\pi\)
0.123042 + 0.992401i \(0.460735\pi\)
\(312\) 0 0
\(313\) 3.32051 0.187686 0.0938431 0.995587i \(-0.470085\pi\)
0.0938431 + 0.995587i \(0.470085\pi\)
\(314\) 0 0
\(315\) 1.26795 0.0714408
\(316\) 0 0
\(317\) − 11.1962i − 0.628839i −0.949284 0.314419i \(-0.898190\pi\)
0.949284 0.314419i \(-0.101810\pi\)
\(318\) 0 0
\(319\) 4.33975i 0.242979i
\(320\) 0 0
\(321\) 15.1244 0.844159
\(322\) 0 0
\(323\) 4.73205i 0.263298i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 0.392305i − 0.0216945i
\(328\) 0 0
\(329\) −4.92820 −0.271701
\(330\) 0 0
\(331\) − 12.0000i − 0.659580i −0.944054 0.329790i \(-0.893022\pi\)
0.944054 0.329790i \(-0.106978\pi\)
\(332\) 0 0
\(333\) 8.46410i 0.463830i
\(334\) 0 0
\(335\) 9.12436 0.498517
\(336\) 0 0
\(337\) 17.9282 0.976611 0.488306 0.872673i \(-0.337615\pi\)
0.488306 + 0.872673i \(0.337615\pi\)
\(338\) 0 0
\(339\) −4.66025 −0.253110
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) − 9.85641i − 0.532196i
\(344\) 0 0
\(345\) − 3.80385i − 0.204792i
\(346\) 0 0
\(347\) 27.5167 1.47717 0.738586 0.674159i \(-0.235494\pi\)
0.738586 + 0.674159i \(0.235494\pi\)
\(348\) 0 0
\(349\) − 8.39230i − 0.449230i −0.974448 0.224615i \(-0.927888\pi\)
0.974448 0.224615i \(-0.0721124\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.4641i 1.30209i 0.759038 + 0.651046i \(0.225670\pi\)
−0.759038 + 0.651046i \(0.774330\pi\)
\(354\) 0 0
\(355\) −14.1962 −0.753454
\(356\) 0 0
\(357\) 2.73205i 0.144595i
\(358\) 0 0
\(359\) 19.5167i 1.03005i 0.857175 + 0.515025i \(0.172217\pi\)
−0.857175 + 0.515025i \(0.827783\pi\)
\(360\) 0 0
\(361\) 17.3923 0.915384
\(362\) 0 0
\(363\) −10.4641 −0.549223
\(364\) 0 0
\(365\) 2.07180 0.108443
\(366\) 0 0
\(367\) 23.1244 1.20708 0.603541 0.797332i \(-0.293756\pi\)
0.603541 + 0.797332i \(0.293756\pi\)
\(368\) 0 0
\(369\) − 5.00000i − 0.260290i
\(370\) 0 0
\(371\) − 4.33975i − 0.225308i
\(372\) 0 0
\(373\) −15.3397 −0.794262 −0.397131 0.917762i \(-0.629994\pi\)
−0.397131 + 0.917762i \(0.629994\pi\)
\(374\) 0 0
\(375\) − 12.1244i − 0.626099i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 36.3923i − 1.86935i −0.355507 0.934674i \(-0.615692\pi\)
0.355507 0.934674i \(-0.384308\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 0 0
\(383\) 35.3205i 1.80479i 0.430906 + 0.902397i \(0.358194\pi\)
−0.430906 + 0.902397i \(0.641806\pi\)
\(384\) 0 0
\(385\) − 0.928203i − 0.0473056i
\(386\) 0 0
\(387\) −1.80385 −0.0916947
\(388\) 0 0
\(389\) −24.4641 −1.24038 −0.620190 0.784452i \(-0.712944\pi\)
−0.620190 + 0.784452i \(0.712944\pi\)
\(390\) 0 0
\(391\) 8.19615 0.414497
\(392\) 0 0
\(393\) −19.3205 −0.974591
\(394\) 0 0
\(395\) 21.4641i 1.07998i
\(396\) 0 0
\(397\) 10.5359i 0.528782i 0.964416 + 0.264391i \(0.0851709\pi\)
−0.964416 + 0.264391i \(0.914829\pi\)
\(398\) 0 0
\(399\) −0.928203 −0.0464683
\(400\) 0 0
\(401\) 15.5359i 0.775826i 0.921696 + 0.387913i \(0.126804\pi\)
−0.921696 + 0.387913i \(0.873196\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.73205i 0.0860663i
\(406\) 0 0
\(407\) 6.19615 0.307132
\(408\) 0 0
\(409\) − 22.8038i − 1.12758i −0.825919 0.563789i \(-0.809343\pi\)
0.825919 0.563789i \(-0.190657\pi\)
\(410\) 0 0
\(411\) − 12.4641i − 0.614809i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 27.1244 1.33148
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) −32.3923 −1.58247 −0.791234 0.611514i \(-0.790561\pi\)
−0.791234 + 0.611514i \(0.790561\pi\)
\(420\) 0 0
\(421\) 5.00000i 0.243685i 0.992549 + 0.121843i \(0.0388803\pi\)
−0.992549 + 0.121843i \(0.961120\pi\)
\(422\) 0 0
\(423\) − 6.73205i − 0.327324i
\(424\) 0 0
\(425\) 7.46410 0.362062
\(426\) 0 0
\(427\) 7.12436i 0.344772i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 10.0526i − 0.484215i −0.970249 0.242107i \(-0.922161\pi\)
0.970249 0.242107i \(-0.0778386\pi\)
\(432\) 0 0
\(433\) 30.8564 1.48286 0.741432 0.671028i \(-0.234147\pi\)
0.741432 + 0.671028i \(0.234147\pi\)
\(434\) 0 0
\(435\) 10.2679i 0.492310i
\(436\) 0 0
\(437\) 2.78461i 0.133206i
\(438\) 0 0
\(439\) −20.1962 −0.963910 −0.481955 0.876196i \(-0.660073\pi\)
−0.481955 + 0.876196i \(0.660073\pi\)
\(440\) 0 0
\(441\) 6.46410 0.307814
\(442\) 0 0
\(443\) −15.3205 −0.727899 −0.363950 0.931419i \(-0.618572\pi\)
−0.363950 + 0.931419i \(0.618572\pi\)
\(444\) 0 0
\(445\) 4.39230 0.208215
\(446\) 0 0
\(447\) 9.58846i 0.453518i
\(448\) 0 0
\(449\) − 31.3205i − 1.47811i −0.673647 0.739053i \(-0.735273\pi\)
0.673647 0.739053i \(-0.264727\pi\)
\(450\) 0 0
\(451\) −3.66025 −0.172355
\(452\) 0 0
\(453\) − 20.7321i − 0.974077i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.4449i 0.909592i 0.890596 + 0.454796i \(0.150288\pi\)
−0.890596 + 0.454796i \(0.849712\pi\)
\(458\) 0 0
\(459\) −3.73205 −0.174197
\(460\) 0 0
\(461\) 2.41154i 0.112317i 0.998422 + 0.0561584i \(0.0178852\pi\)
−0.998422 + 0.0561584i \(0.982115\pi\)
\(462\) 0 0
\(463\) − 23.6603i − 1.09959i −0.835301 0.549793i \(-0.814707\pi\)
0.835301 0.549793i \(-0.185293\pi\)
\(464\) 0 0
\(465\) −9.46410 −0.438887
\(466\) 0 0
\(467\) 5.66025 0.261925 0.130963 0.991387i \(-0.458193\pi\)
0.130963 + 0.991387i \(0.458193\pi\)
\(468\) 0 0
\(469\) −3.85641 −0.178072
\(470\) 0 0
\(471\) −15.0526 −0.693585
\(472\) 0 0
\(473\) 1.32051i 0.0607170i
\(474\) 0 0
\(475\) 2.53590i 0.116355i
\(476\) 0 0
\(477\) 5.92820 0.271434
\(478\) 0 0
\(479\) 5.46410i 0.249661i 0.992178 + 0.124831i \(0.0398387\pi\)
−0.992178 + 0.124831i \(0.960161\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.60770i 0.0731527i
\(484\) 0 0
\(485\) −17.3205 −0.786484
\(486\) 0 0
\(487\) − 30.5885i − 1.38610i −0.720892 0.693048i \(-0.756268\pi\)
0.720892 0.693048i \(-0.243732\pi\)
\(488\) 0 0
\(489\) − 6.53590i − 0.295564i
\(490\) 0 0
\(491\) −39.9090 −1.80107 −0.900533 0.434787i \(-0.856824\pi\)
−0.900533 + 0.434787i \(0.856824\pi\)
\(492\) 0 0
\(493\) −22.1244 −0.996431
\(494\) 0 0
\(495\) 1.26795 0.0569901
\(496\) 0 0
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) 13.8564i 0.620298i 0.950688 + 0.310149i \(0.100379\pi\)
−0.950688 + 0.310149i \(0.899621\pi\)
\(500\) 0 0
\(501\) 5.46410i 0.244118i
\(502\) 0 0
\(503\) 12.7321 0.567694 0.283847 0.958870i \(-0.408389\pi\)
0.283847 + 0.958870i \(0.408389\pi\)
\(504\) 0 0
\(505\) 25.0526i 1.11482i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.58846i 0.0704071i 0.999380 + 0.0352036i \(0.0112080\pi\)
−0.999380 + 0.0352036i \(0.988792\pi\)
\(510\) 0 0
\(511\) −0.875644 −0.0387362
\(512\) 0 0
\(513\) − 1.26795i − 0.0559813i
\(514\) 0 0
\(515\) 4.73205i 0.208519i
\(516\) 0 0
\(517\) −4.92820 −0.216742
\(518\) 0 0
\(519\) 10.5359 0.462475
\(520\) 0 0
\(521\) −31.9808 −1.40110 −0.700551 0.713602i \(-0.747063\pi\)
−0.700551 + 0.713602i \(0.747063\pi\)
\(522\) 0 0
\(523\) 22.5885 0.987724 0.493862 0.869540i \(-0.335585\pi\)
0.493862 + 0.869540i \(0.335585\pi\)
\(524\) 0 0
\(525\) 1.46410i 0.0638986i
\(526\) 0 0
\(527\) − 20.3923i − 0.888303i
\(528\) 0 0
\(529\) −18.1769 −0.790301
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 26.1962i − 1.13256i
\(536\) 0 0
\(537\) 17.2679 0.745167
\(538\) 0 0
\(539\) − 4.73205i − 0.203824i
\(540\) 0 0
\(541\) 3.39230i 0.145847i 0.997338 + 0.0729233i \(0.0232328\pi\)
−0.997338 + 0.0729233i \(0.976767\pi\)
\(542\) 0 0
\(543\) 8.80385 0.377809
\(544\) 0 0
\(545\) −0.679492 −0.0291062
\(546\) 0 0
\(547\) 36.0526 1.54150 0.770748 0.637140i \(-0.219883\pi\)
0.770748 + 0.637140i \(0.219883\pi\)
\(548\) 0 0
\(549\) −9.73205 −0.415354
\(550\) 0 0
\(551\) − 7.51666i − 0.320221i
\(552\) 0 0
\(553\) − 9.07180i − 0.385772i
\(554\) 0 0
\(555\) 14.6603 0.622293
\(556\) 0 0
\(557\) − 31.5885i − 1.33845i −0.743062 0.669223i \(-0.766627\pi\)
0.743062 0.669223i \(-0.233373\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 2.73205i 0.115347i
\(562\) 0 0
\(563\) 5.07180 0.213751 0.106875 0.994272i \(-0.465915\pi\)
0.106875 + 0.994272i \(0.465915\pi\)
\(564\) 0 0
\(565\) 8.07180i 0.339583i
\(566\) 0 0
\(567\) − 0.732051i − 0.0307432i
\(568\) 0 0
\(569\) 16.0000 0.670755 0.335377 0.942084i \(-0.391136\pi\)
0.335377 + 0.942084i \(0.391136\pi\)
\(570\) 0 0
\(571\) −3.66025 −0.153177 −0.0765884 0.997063i \(-0.524403\pi\)
−0.0765884 + 0.997063i \(0.524403\pi\)
\(572\) 0 0
\(573\) 1.07180 0.0447750
\(574\) 0 0
\(575\) 4.39230 0.183172
\(576\) 0 0
\(577\) − 5.58846i − 0.232651i −0.993211 0.116325i \(-0.962889\pi\)
0.993211 0.116325i \(-0.0371115\pi\)
\(578\) 0 0
\(579\) − 8.26795i − 0.343604i
\(580\) 0 0
\(581\) −11.4641 −0.475611
\(582\) 0 0
\(583\) − 4.33975i − 0.179734i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.14359i 0.0884756i 0.999021 + 0.0442378i \(0.0140859\pi\)
−0.999021 + 0.0442378i \(0.985914\pi\)
\(588\) 0 0
\(589\) 6.92820 0.285472
\(590\) 0 0
\(591\) − 14.9282i − 0.614064i
\(592\) 0 0
\(593\) − 34.1769i − 1.40348i −0.712434 0.701739i \(-0.752407\pi\)
0.712434 0.701739i \(-0.247593\pi\)
\(594\) 0 0
\(595\) 4.73205 0.193995
\(596\) 0 0
\(597\) −17.6603 −0.722786
\(598\) 0 0
\(599\) −33.4641 −1.36731 −0.683653 0.729807i \(-0.739610\pi\)
−0.683653 + 0.729807i \(0.739610\pi\)
\(600\) 0 0
\(601\) 27.6410 1.12750 0.563750 0.825945i \(-0.309358\pi\)
0.563750 + 0.825945i \(0.309358\pi\)
\(602\) 0 0
\(603\) − 5.26795i − 0.214527i
\(604\) 0 0
\(605\) 18.1244i 0.736860i
\(606\) 0 0
\(607\) −40.7846 −1.65540 −0.827698 0.561174i \(-0.810350\pi\)
−0.827698 + 0.561174i \(0.810350\pi\)
\(608\) 0 0
\(609\) − 4.33975i − 0.175855i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 1.67949i − 0.0678340i −0.999425 0.0339170i \(-0.989202\pi\)
0.999425 0.0339170i \(-0.0107982\pi\)
\(614\) 0 0
\(615\) −8.66025 −0.349215
\(616\) 0 0
\(617\) − 3.78461i − 0.152363i −0.997094 0.0761813i \(-0.975727\pi\)
0.997094 0.0761813i \(-0.0242728\pi\)
\(618\) 0 0
\(619\) 23.6077i 0.948873i 0.880290 + 0.474437i \(0.157348\pi\)
−0.880290 + 0.474437i \(0.842652\pi\)
\(620\) 0 0
\(621\) −2.19615 −0.0881286
\(622\) 0 0
\(623\) −1.85641 −0.0743754
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) −0.928203 −0.0370689
\(628\) 0 0
\(629\) 31.5885i 1.25951i
\(630\) 0 0
\(631\) − 6.14359i − 0.244573i −0.992495 0.122286i \(-0.960977\pi\)
0.992495 0.122286i \(-0.0390226\pi\)
\(632\) 0 0
\(633\) −23.3205 −0.926907
\(634\) 0 0
\(635\) − 6.92820i − 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.19615i 0.324235i
\(640\) 0 0
\(641\) −32.5167 −1.28433 −0.642165 0.766566i \(-0.721964\pi\)
−0.642165 + 0.766566i \(0.721964\pi\)
\(642\) 0 0
\(643\) 27.7128i 1.09289i 0.837496 + 0.546443i \(0.184019\pi\)
−0.837496 + 0.546443i \(0.815981\pi\)
\(644\) 0 0
\(645\) 3.12436i 0.123021i
\(646\) 0 0
\(647\) −34.2487 −1.34646 −0.673228 0.739435i \(-0.735093\pi\)
−0.673228 + 0.739435i \(0.735093\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) 26.5359 1.03843 0.519215 0.854644i \(-0.326224\pi\)
0.519215 + 0.854644i \(0.326224\pi\)
\(654\) 0 0
\(655\) 33.4641i 1.30755i
\(656\) 0 0
\(657\) − 1.19615i − 0.0466664i
\(658\) 0 0
\(659\) −43.3205 −1.68753 −0.843764 0.536715i \(-0.819665\pi\)
−0.843764 + 0.536715i \(0.819665\pi\)
\(660\) 0 0
\(661\) − 15.3923i − 0.598691i −0.954145 0.299346i \(-0.903232\pi\)
0.954145 0.299346i \(-0.0967684\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.60770i 0.0623437i
\(666\) 0 0
\(667\) −13.0192 −0.504107
\(668\) 0 0
\(669\) 24.7846i 0.958228i
\(670\) 0 0
\(671\) 7.12436i 0.275033i
\(672\) 0 0
\(673\) 6.21539 0.239586 0.119793 0.992799i \(-0.461777\pi\)
0.119793 + 0.992799i \(0.461777\pi\)
\(674\) 0 0
\(675\) −2.00000 −0.0769800
\(676\) 0 0
\(677\) 14.5359 0.558660 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(678\) 0 0
\(679\) 7.32051 0.280935
\(680\) 0 0
\(681\) − 16.0526i − 0.615135i
\(682\) 0 0
\(683\) − 10.1436i − 0.388134i −0.980988 0.194067i \(-0.937832\pi\)
0.980988 0.194067i \(-0.0621679\pi\)
\(684\) 0 0
\(685\) −21.5885 −0.824853
\(686\) 0 0
\(687\) − 27.8564i − 1.06279i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 10.3397i 0.393342i 0.980469 + 0.196671i \(0.0630132\pi\)
−0.980469 + 0.196671i \(0.936987\pi\)
\(692\) 0 0
\(693\) −0.535898 −0.0203571
\(694\) 0 0
\(695\) 34.6410i 1.31401i
\(696\) 0 0
\(697\) − 18.6603i − 0.706808i
\(698\) 0 0
\(699\) −2.00000 −0.0756469
\(700\) 0 0
\(701\) −32.1051 −1.21259 −0.606297 0.795238i \(-0.707346\pi\)
−0.606297 + 0.795238i \(0.707346\pi\)
\(702\) 0 0
\(703\) −10.7321 −0.404767
\(704\) 0 0
\(705\) −11.6603 −0.439151
\(706\) 0 0
\(707\) − 10.5885i − 0.398220i
\(708\) 0 0
\(709\) 34.8564i 1.30906i 0.756036 + 0.654530i \(0.227133\pi\)
−0.756036 + 0.654530i \(0.772867\pi\)
\(710\) 0 0
\(711\) 12.3923 0.464748
\(712\) 0 0
\(713\) − 12.0000i − 0.449404i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 26.7321i 0.998327i
\(718\) 0 0
\(719\) −37.1769 −1.38646 −0.693232 0.720714i \(-0.743814\pi\)
−0.693232 + 0.720714i \(0.743814\pi\)
\(720\) 0 0
\(721\) − 2.00000i − 0.0744839i
\(722\) 0 0
\(723\) − 22.6603i − 0.842744i
\(724\) 0 0
\(725\) −11.8564 −0.440336
\(726\) 0 0
\(727\) −1.26795 −0.0470256 −0.0235128 0.999724i \(-0.507485\pi\)
−0.0235128 + 0.999724i \(0.507485\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −6.73205 −0.248994
\(732\) 0 0
\(733\) 35.0000i 1.29275i 0.763018 + 0.646377i \(0.223717\pi\)
−0.763018 + 0.646377i \(0.776283\pi\)
\(734\) 0 0
\(735\) − 11.1962i − 0.412976i
\(736\) 0 0
\(737\) −3.85641 −0.142053
\(738\) 0 0
\(739\) − 24.7846i − 0.911717i −0.890052 0.455858i \(-0.849332\pi\)
0.890052 0.455858i \(-0.150668\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 32.1051i 1.17782i 0.808198 + 0.588911i \(0.200443\pi\)
−0.808198 + 0.588911i \(0.799557\pi\)
\(744\) 0 0
\(745\) 16.6077 0.608459
\(746\) 0 0
\(747\) − 15.6603i − 0.572979i
\(748\) 0 0
\(749\) 11.0718i 0.404555i
\(750\) 0 0
\(751\) 1.66025 0.0605835 0.0302918 0.999541i \(-0.490356\pi\)
0.0302918 + 0.999541i \(0.490356\pi\)
\(752\) 0 0
\(753\) −9.46410 −0.344891
\(754\) 0 0
\(755\) −35.9090 −1.30686
\(756\) 0 0
\(757\) 34.7846 1.26427 0.632134 0.774859i \(-0.282179\pi\)
0.632134 + 0.774859i \(0.282179\pi\)
\(758\) 0 0
\(759\) 1.60770i 0.0583556i
\(760\) 0 0
\(761\) − 9.46410i − 0.343073i −0.985178 0.171537i \(-0.945127\pi\)
0.985178 0.171537i \(-0.0548732\pi\)
\(762\) 0 0
\(763\) 0.287187 0.0103969
\(764\) 0 0
\(765\) 6.46410i 0.233710i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 39.5692i − 1.42690i −0.700705 0.713451i \(-0.747131\pi\)
0.700705 0.713451i \(-0.252869\pi\)
\(770\) 0 0
\(771\) −17.7321 −0.638604
\(772\) 0 0
\(773\) − 46.7846i − 1.68273i −0.540471 0.841363i \(-0.681754\pi\)
0.540471 0.841363i \(-0.318246\pi\)
\(774\) 0 0
\(775\) − 10.9282i − 0.392553i
\(776\) 0 0
\(777\) −6.19615 −0.222286
\(778\) 0 0
\(779\) 6.33975 0.227145
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 0 0
\(783\) 5.92820 0.211857
\(784\) 0 0
\(785\) 26.0718i 0.930542i
\(786\) 0 0
\(787\) 8.67949i 0.309390i 0.987962 + 0.154695i \(0.0494396\pi\)
−0.987962 + 0.154695i \(0.950560\pi\)
\(788\) 0 0
\(789\) −12.3397 −0.439307
\(790\) 0 0
\(791\) − 3.41154i − 0.121300i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 10.2679i − 0.364167i
\(796\) 0 0
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) − 25.1244i − 0.888836i
\(800\) 0 0
\(801\) − 2.53590i − 0.0896016i
\(802\) 0 0
\(803\) −0.875644 −0.0309008
\(804\) 0 0
\(805\) 2.78461 0.0981446
\(806\) 0 0
\(807\) −9.46410 −0.333152
\(808\) 0 0
\(809\) 2.26795 0.0797368 0.0398684 0.999205i \(-0.487306\pi\)
0.0398684 + 0.999205i \(0.487306\pi\)
\(810\) 0 0
\(811\) 50.2487i 1.76447i 0.470808 + 0.882235i \(0.343962\pi\)
−0.470808 + 0.882235i \(0.656038\pi\)
\(812\) 0 0
\(813\) − 16.0000i − 0.561144i
\(814\) 0 0
\(815\) −11.3205 −0.396540
\(816\) 0 0
\(817\) − 2.28719i − 0.0800185i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.9282i 1.00960i 0.863236 + 0.504801i \(0.168434\pi\)
−0.863236 + 0.504801i \(0.831566\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 1.46410i 0.0509735i
\(826\) 0 0
\(827\) − 35.6077i − 1.23820i −0.785312 0.619100i \(-0.787497\pi\)
0.785312 0.619100i \(-0.212503\pi\)
\(828\) 0 0
\(829\) −22.2679 −0.773398 −0.386699 0.922206i \(-0.626385\pi\)
−0.386699 + 0.922206i \(0.626385\pi\)
\(830\) 0 0
\(831\) −8.12436 −0.281831
\(832\) 0 0
\(833\) 24.1244 0.835859
\(834\) 0 0
\(835\) 9.46410 0.327519
\(836\) 0 0
\(837\) 5.46410i 0.188867i
\(838\) 0 0
\(839\) − 9.85641i − 0.340281i −0.985420 0.170140i \(-0.945578\pi\)
0.985420 0.170140i \(-0.0544221\pi\)
\(840\) 0 0
\(841\) 6.14359 0.211848
\(842\) 0 0
\(843\) 24.7128i 0.851154i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 7.66025i − 0.263209i
\(848\) 0 0
\(849\) −21.5167 −0.738450
\(850\) 0 0
\(851\) 18.5885i 0.637204i
\(852\) 0 0
\(853\) 56.0333i 1.91854i 0.282483 + 0.959272i \(0.408842\pi\)
−0.282483 + 0.959272i \(0.591158\pi\)
\(854\) 0 0
\(855\) −2.19615 −0.0751068
\(856\) 0 0
\(857\) −10.5167 −0.359242 −0.179621 0.983736i \(-0.557487\pi\)
−0.179621 + 0.983736i \(0.557487\pi\)
\(858\) 0 0
\(859\) −24.4449 −0.834048 −0.417024 0.908895i \(-0.636927\pi\)
−0.417024 + 0.908895i \(0.636927\pi\)
\(860\) 0 0
\(861\) 3.66025 0.124741
\(862\) 0 0
\(863\) 10.3397i 0.351969i 0.984393 + 0.175985i \(0.0563109\pi\)
−0.984393 + 0.175985i \(0.943689\pi\)
\(864\) 0 0
\(865\) − 18.2487i − 0.620475i
\(866\) 0 0
\(867\) 3.07180 0.104324
\(868\) 0 0
\(869\) − 9.07180i − 0.307740i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 10.0000i 0.338449i
\(874\) 0 0
\(875\) 8.87564 0.300052
\(876\) 0 0
\(877\) − 19.0000i − 0.641584i −0.947150 0.320792i \(-0.896051\pi\)
0.947150 0.320792i \(-0.103949\pi\)
\(878\) 0 0
\(879\) − 2.12436i − 0.0716527i
\(880\) 0 0
\(881\) −20.5167 −0.691224 −0.345612 0.938378i \(-0.612329\pi\)
−0.345612 + 0.938378i \(0.612329\pi\)
\(882\) 0 0
\(883\) −32.7846 −1.10329 −0.551645 0.834079i \(-0.686000\pi\)
−0.551645 + 0.834079i \(0.686000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.14359 −0.0719748 −0.0359874 0.999352i \(-0.511458\pi\)
−0.0359874 + 0.999352i \(0.511458\pi\)
\(888\) 0 0
\(889\) 2.92820i 0.0982088i
\(890\) 0 0
\(891\) − 0.732051i − 0.0245246i
\(892\) 0 0
\(893\) 8.53590 0.285643
\(894\) 0 0
\(895\) − 29.9090i − 0.999746i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 32.3923i 1.08034i
\(900\) 0 0
\(901\) 22.1244 0.737069
\(902\) 0 0
\(903\) − 1.32051i − 0.0439438i
\(904\) 0 0
\(905\) − 15.2487i − 0.506884i
\(906\) 0 0
\(907\) −39.0333 −1.29608 −0.648040 0.761606i \(-0.724411\pi\)
−0.648040 + 0.761606i \(0.724411\pi\)
\(908\) 0 0
\(909\) 14.4641 0.479744
\(910\) 0 0
\(911\) −9.46410 −0.313560 −0.156780 0.987634i \(-0.550111\pi\)
−0.156780 + 0.987634i \(0.550111\pi\)
\(912\) 0 0
\(913\) −11.4641 −0.379406
\(914\) 0 0
\(915\) 16.8564i 0.557256i
\(916\) 0 0
\(917\) − 14.1436i − 0.467063i
\(918\) 0 0
\(919\) −8.39230 −0.276837 −0.138418 0.990374i \(-0.544202\pi\)
−0.138418 + 0.990374i \(0.544202\pi\)
\(920\) 0 0
\(921\) 10.7321i 0.353633i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 16.9282i 0.556596i
\(926\) 0 0
\(927\) 2.73205 0.0897323
\(928\) 0 0
\(929\) − 26.0718i − 0.855388i −0.903924 0.427694i \(-0.859326\pi\)
0.903924 0.427694i \(-0.140674\pi\)
\(930\) 0 0
\(931\) 8.19615i 0.268618i
\(932\) 0 0
\(933\) −4.33975 −0.142077
\(934\) 0 0
\(935\) 4.73205 0.154755
\(936\) 0 0
\(937\) −54.3205 −1.77457 −0.887287 0.461218i \(-0.847413\pi\)
−0.887287 + 0.461218i \(0.847413\pi\)
\(938\) 0 0
\(939\) −3.32051 −0.108361
\(940\) 0 0
\(941\) 14.7846i 0.481965i 0.970530 + 0.240982i \(0.0774696\pi\)
−0.970530 + 0.240982i \(0.922530\pi\)
\(942\) 0 0
\(943\) − 10.9808i − 0.357583i
\(944\) 0 0
\(945\) −1.26795 −0.0412464
\(946\) 0 0
\(947\) − 13.0718i − 0.424776i −0.977185 0.212388i \(-0.931876\pi\)
0.977185 0.212388i \(-0.0681241\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 11.1962i 0.363060i
\(952\) 0 0
\(953\) 8.78461 0.284561 0.142281 0.989826i \(-0.454556\pi\)
0.142281 + 0.989826i \(0.454556\pi\)
\(954\) 0 0
\(955\) − 1.85641i − 0.0600719i
\(956\) 0 0
\(957\) − 4.33975i − 0.140284i
\(958\) 0 0
\(959\) 9.12436 0.294641
\(960\) 0 0
\(961\) 1.14359 0.0368901
\(962\) 0 0
\(963\) −15.1244 −0.487376
\(964\) 0 0
\(965\) −14.3205 −0.460993
\(966\) 0 0
\(967\) − 0.732051i − 0.0235412i −0.999931 0.0117706i \(-0.996253\pi\)
0.999931 0.0117706i \(-0.00374678\pi\)
\(968\) 0 0
\(969\) − 4.73205i − 0.152015i
\(970\) 0 0
\(971\) −20.3923 −0.654420 −0.327210 0.944952i \(-0.606108\pi\)
−0.327210 + 0.944952i \(0.606108\pi\)
\(972\) 0 0
\(973\) − 14.6410i − 0.469369i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 54.9615i − 1.75837i −0.476476 0.879187i \(-0.658086\pi\)
0.476476 0.879187i \(-0.341914\pi\)
\(978\) 0 0
\(979\) −1.85641 −0.0593310
\(980\) 0 0
\(981\) 0.392305i 0.0125253i
\(982\) 0 0
\(983\) 26.6410i 0.849716i 0.905260 + 0.424858i \(0.139676\pi\)
−0.905260 + 0.424858i \(0.860324\pi\)
\(984\) 0 0
\(985\) −25.8564 −0.823854
\(986\) 0 0
\(987\) 4.92820 0.156866
\(988\) 0 0
\(989\) −3.96152 −0.125969
\(990\) 0 0
\(991\) −12.8756 −0.409008 −0.204504 0.978866i \(-0.565558\pi\)
−0.204504 + 0.978866i \(0.565558\pi\)
\(992\) 0 0
\(993\) 12.0000i 0.380808i
\(994\) 0 0
\(995\) 30.5885i 0.969719i
\(996\) 0 0
\(997\) −31.9808 −1.01284 −0.506420 0.862287i \(-0.669032\pi\)
−0.506420 + 0.862287i \(0.669032\pi\)
\(998\) 0 0
\(999\) − 8.46410i − 0.267792i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.c.k.337.4 4
13.5 odd 4 4056.2.a.t.1.2 2
13.8 odd 4 4056.2.a.u.1.1 2
13.9 even 3 312.2.bf.a.49.1 4
13.10 even 6 312.2.bf.a.121.1 yes 4
13.12 even 2 inner 4056.2.c.k.337.1 4
39.23 odd 6 936.2.bi.a.433.1 4
39.35 odd 6 936.2.bi.a.361.1 4
52.23 odd 6 624.2.bv.c.433.2 4
52.31 even 4 8112.2.a.bw.1.2 2
52.35 odd 6 624.2.bv.c.49.2 4
52.47 even 4 8112.2.a.br.1.1 2
156.23 even 6 1872.2.by.g.433.2 4
156.35 even 6 1872.2.by.g.1297.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.a.49.1 4 13.9 even 3
312.2.bf.a.121.1 yes 4 13.10 even 6
624.2.bv.c.49.2 4 52.35 odd 6
624.2.bv.c.433.2 4 52.23 odd 6
936.2.bi.a.361.1 4 39.35 odd 6
936.2.bi.a.433.1 4 39.23 odd 6
1872.2.by.g.433.2 4 156.23 even 6
1872.2.by.g.1297.2 4 156.35 even 6
4056.2.a.t.1.2 2 13.5 odd 4
4056.2.a.u.1.1 2 13.8 odd 4
4056.2.c.k.337.1 4 13.12 even 2 inner
4056.2.c.k.337.4 4 1.1 even 1 trivial
8112.2.a.br.1.1 2 52.47 even 4
8112.2.a.bw.1.2 2 52.31 even 4