Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4056,2,Mod(337,4056)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4056, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4056.337");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4056.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(32.3873230598\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 24) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 337.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 4056.337 |
Dual form | 4056.2.c.e.337.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4056\mathbb{Z}\right)^\times\).
\(n\) | \(1015\) | \(2029\) | \(2705\) | \(3889\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | −1.00000 | −0.577350 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 2.00000i | 0.894427i | 0.894427 | + | 0.447214i | \(0.147584\pi\) | ||||
−0.894427 | + | 0.447214i | \(0.852416\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 1.00000 | 0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 4.00000i | 1.20605i | 0.797724 | + | 0.603023i | \(0.206037\pi\) | ||||
−0.797724 | + | 0.603023i | \(0.793963\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | − 2.00000i | − 0.516398i | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.00000 | −0.485071 | −0.242536 | − | 0.970143i | \(-0.577979\pi\) | ||||
−0.242536 | + | 0.970143i | \(0.577979\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000i | 0.917663i | 0.888523 | + | 0.458831i | \(0.151732\pi\) | ||||
−0.888523 | + | 0.458831i | \(0.848268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 8.00000 | 1.66812 | 0.834058 | − | 0.551677i | \(-0.186012\pi\) | ||||
0.834058 | + | 0.551677i | \(0.186012\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | −1.00000 | −0.192450 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | − 8.00000i | − 1.43684i | −0.695608 | − | 0.718421i | \(-0.744865\pi\) | ||||
0.695608 | − | 0.718421i | \(-0.255135\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | − 4.00000i | − 0.696311i | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 6.00000i | 0.986394i | 0.869918 | + | 0.493197i | \(0.164172\pi\) | ||||
−0.869918 | + | 0.493197i | \(0.835828\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000i | 0.937043i | 0.883452 | + | 0.468521i | \(0.155213\pi\) | ||||
−0.883452 | + | 0.468521i | \(0.844787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 2.00000i | 0.298142i | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.00000 | 1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 2.00000 | 0.280056 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −2.00000 | −0.274721 | −0.137361 | − | 0.990521i | \(-0.543862\pi\) | ||||
−0.137361 | + | 0.990521i | \(0.543862\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −8.00000 | −1.07872 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | − 4.00000i | − 0.529813i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 4.00000i | 0.520756i | 0.965507 | + | 0.260378i | \(0.0838471\pi\) | ||||
−0.965507 | + | 0.260378i | \(0.916153\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −2.00000 | −0.256074 | −0.128037 | − | 0.991769i | \(-0.540868\pi\) | ||||
−0.128037 | + | 0.991769i | \(0.540868\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 4.00000i | 0.488678i | 0.969690 | + | 0.244339i | \(0.0785709\pi\) | ||||
−0.969690 | + | 0.244339i | \(0.921429\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −8.00000 | −0.963087 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | − 8.00000i | − 0.949425i | −0.880141 | − | 0.474713i | \(-0.842552\pi\) | ||||
0.880141 | − | 0.474713i | \(-0.157448\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 10.0000i | 1.17041i | 0.810885 | + | 0.585206i | \(0.198986\pi\) | ||||
−0.810885 | + | 0.585206i | \(0.801014\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | −1.00000 | −0.115470 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 4.00000i | 0.439057i | 0.975606 | + | 0.219529i | \(0.0704519\pi\) | ||||
−0.975606 | + | 0.219529i | \(0.929548\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | − 4.00000i | − 0.433861i | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | −6.00000 | −0.643268 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 6.00000i | − 0.635999i | −0.948091 | − | 0.317999i | \(-0.896989\pi\) | ||||
0.948091 | − | 0.317999i | \(-0.103011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 8.00000i | 0.829561i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −8.00000 | −0.820783 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 4.00000i | 0.402015i | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 18.0000 | 1.79107 | 0.895533 | − | 0.444994i | \(-0.146794\pi\) | ||||
0.895533 | + | 0.444994i | \(0.146794\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −16.0000 | −1.57653 | −0.788263 | − | 0.615338i | \(-0.789020\pi\) | ||||
−0.788263 | + | 0.615338i | \(0.789020\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −12.0000 | −1.16008 | −0.580042 | − | 0.814587i | \(-0.696964\pi\) | ||||
−0.580042 | + | 0.814587i | \(0.696964\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.00000i | 0.191565i | 0.995402 | + | 0.0957826i | \(0.0305354\pi\) | ||||
−0.995402 | + | 0.0957826i | \(0.969465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | − 6.00000i | − 0.569495i | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 18.0000 | 1.69330 | 0.846649 | − | 0.532152i | \(-0.178617\pi\) | ||||
0.846649 | + | 0.532152i | \(0.178617\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 16.0000i | 1.49201i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −5.00000 | −0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | − 6.00000i | − 0.541002i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 12.0000i | 1.07331i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000 | 0.709885 | 0.354943 | − | 0.934888i | \(-0.384500\pi\) | ||||
0.354943 | + | 0.934888i | \(0.384500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 4.00000 | 0.352180 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −4.00000 | −0.349482 | −0.174741 | − | 0.984614i | \(-0.555909\pi\) | ||||
−0.174741 | + | 0.984614i | \(0.555909\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | − 2.00000i | − 0.172133i | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 6.00000i | − 0.512615i | −0.966595 | − | 0.256307i | \(-0.917494\pi\) | ||||
0.966595 | − | 0.256307i | \(-0.0825059\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −12.0000 | −1.01783 | −0.508913 | − | 0.860818i | \(-0.669953\pi\) | ||||
−0.508913 | + | 0.860818i | \(0.669953\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 12.0000i | 0.996546i | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | −7.00000 | −0.577350 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 14.0000i | − 1.14692i | −0.819232 | − | 0.573462i | \(-0.805600\pi\) | ||||
0.819232 | − | 0.573462i | \(-0.194400\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | − 16.0000i | − 1.30206i | −0.759051 | − | 0.651031i | \(-0.774337\pi\) | ||||
0.759051 | − | 0.651031i | \(-0.225663\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | −2.00000 | −0.161690 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 16.0000 | 1.28515 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −2.00000 | −0.159617 | −0.0798087 | − | 0.996810i | \(-0.525431\pi\) | ||||
−0.0798087 | + | 0.996810i | \(0.525431\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 2.00000 | 0.158610 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 12.0000i | 0.939913i | 0.882690 | + | 0.469956i | \(0.155730\pi\) | ||||
−0.882690 | + | 0.469956i | \(0.844270\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 8.00000 | 0.622799 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 24.0000i | 1.85718i | 0.371113 | + | 0.928588i | \(0.378976\pi\) | ||||
−0.371113 | + | 0.928588i | \(0.621024\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 0 | 0 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 4.00000i | 0.305888i | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −6.00000 | −0.456172 | −0.228086 | − | 0.973641i | \(-0.573247\pi\) | ||||
−0.228086 | + | 0.973641i | \(0.573247\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | − 4.00000i | − 0.300658i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −6.00000 | −0.445976 | −0.222988 | − | 0.974821i | \(-0.571581\pi\) | ||||
−0.222988 | + | 0.974821i | \(0.571581\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 2.00000 | 0.147844 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −12.0000 | −0.882258 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 8.00000i | − 0.585018i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 2.00000i | 0.143963i | 0.997406 | + | 0.0719816i | \(0.0229323\pi\) | ||||
−0.997406 | + | 0.0719816i | \(0.977068\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 18.0000i | 1.28245i | 0.767354 | + | 0.641223i | \(0.221573\pi\) | ||||
−0.767354 | + | 0.641223i | \(0.778427\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | − 4.00000i | − 0.282138i | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −12.0000 | −0.838116 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 8.00000 | 0.556038 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −16.0000 | −1.10674 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −20.0000 | −1.37686 | −0.688428 | − | 0.725304i | \(-0.741699\pi\) | ||||
−0.688428 | + | 0.725304i | \(0.741699\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 8.00000i | 0.548151i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | − 8.00000i | − 0.545595i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | − 10.0000i | − 0.675737i | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 8.00000i | 0.535720i | 0.963458 | + | 0.267860i | \(0.0863164\pi\) | ||||
−0.963458 | + | 0.267860i | \(0.913684\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 1.00000 | 0.0666667 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 12.0000i | − 0.796468i | −0.917284 | − | 0.398234i | \(-0.869623\pi\) | ||||
0.917284 | − | 0.398234i | \(-0.130377\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 22.0000i | 1.45380i | 0.686743 | + | 0.726900i | \(0.259040\pi\) | ||||
−0.686743 | + | 0.726900i | \(0.740960\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −10.0000 | −0.655122 | −0.327561 | − | 0.944830i | \(-0.606227\pi\) | ||||
−0.327561 | + | 0.944830i | \(0.606227\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 8.00000 | 0.519656 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 16.0000i | 1.03495i | 0.855697 | + | 0.517477i | \(0.173129\pi\) | ||||
−0.855697 | + | 0.517477i | \(0.826871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 18.0000i | 1.15948i | 0.814801 | + | 0.579741i | \(0.196846\pi\) | ||||
−0.814801 | + | 0.579741i | \(0.803154\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | −1.00000 | −0.0641500 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 14.0000i | 0.894427i | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | − 4.00000i | − 0.253490i | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −20.0000 | −1.26239 | −0.631194 | − | 0.775625i | \(-0.717435\pi\) | ||||
−0.631194 | + | 0.775625i | \(0.717435\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 32.0000i | 2.01182i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 4.00000i | 0.250490i | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −2.00000 | −0.124757 | −0.0623783 | − | 0.998053i | \(-0.519869\pi\) | ||||
−0.0623783 | + | 0.998053i | \(0.519869\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 6.00000 | 0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −8.00000 | −0.493301 | −0.246651 | − | 0.969104i | \(-0.579330\pi\) | ||||
−0.246651 | + | 0.969104i | \(0.579330\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | − 4.00000i | − 0.245718i | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 6.00000i | 0.367194i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −10.0000 | −0.609711 | −0.304855 | − | 0.952399i | \(-0.598608\pi\) | ||||
−0.304855 | + | 0.952399i | \(0.598608\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000i | 0.485965i | 0.970031 | + | 0.242983i | \(0.0781258\pi\) | ||||
−0.970031 | + | 0.242983i | \(0.921874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 4.00000i | 0.241209i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 26.0000 | 1.56219 | 0.781094 | − | 0.624413i | \(-0.214662\pi\) | ||||
0.781094 | + | 0.624413i | \(0.214662\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | − 8.00000i | − 0.478947i | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 26.0000i | 1.55103i | 0.631329 | + | 0.775515i | \(0.282510\pi\) | ||||
−0.631329 | + | 0.775515i | \(0.717490\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 28.0000 | 1.66443 | 0.832214 | − | 0.554455i | \(-0.187073\pi\) | ||||
0.832214 | + | 0.554455i | \(0.187073\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 8.00000 | 0.473879 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 2.00000i | 0.117242i | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 18.0000i | − 1.05157i | −0.850617 | − | 0.525786i | \(-0.823771\pi\) | ||||
0.850617 | − | 0.525786i | \(-0.176229\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −8.00000 | −0.465778 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | − 4.00000i | − 0.232104i | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | −18.0000 | −1.03407 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | − 4.00000i | − 0.229039i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 12.0000i | 0.684876i | 0.939540 | + | 0.342438i | \(0.111253\pi\) | ||||
−0.939540 | + | 0.342438i | \(0.888747\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 16.0000 | 0.910208 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 24.0000 | 1.36092 | 0.680458 | − | 0.732787i | \(-0.261781\pi\) | ||||
0.680458 | + | 0.732787i | \(0.261781\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −6.00000 | −0.339140 | −0.169570 | − | 0.985518i | \(-0.554238\pi\) | ||||
−0.169570 | + | 0.985518i | \(0.554238\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 6.00000i | − 0.336994i | −0.985702 | − | 0.168497i | \(-0.946109\pi\) | ||||
0.985702 | − | 0.168497i | \(-0.0538913\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 24.0000i | 1.34374i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 12.0000 | 0.669775 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 8.00000i | − 0.445132i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 2.00000i | − 0.110600i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | − 20.0000i | − 1.09930i | −0.835395 | − | 0.549650i | \(-0.814761\pi\) | ||||
0.835395 | − | 0.549650i | \(-0.185239\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 6.00000i | 0.328798i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −8.00000 | −0.437087 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −18.0000 | −0.980522 | −0.490261 | − | 0.871576i | \(-0.663099\pi\) | ||||
−0.490261 | + | 0.871576i | \(0.663099\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −18.0000 | −0.977626 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 32.0000 | 1.73290 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | − 16.0000i | − 0.861411i | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −12.0000 | −0.644194 | −0.322097 | − | 0.946707i | \(-0.604388\pi\) | ||||
−0.322097 | + | 0.946707i | \(0.604388\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 30.0000i | 1.60586i | 0.596071 | + | 0.802932i | \(0.296728\pi\) | ||||
−0.596071 | + | 0.802932i | \(0.703272\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 2.00000i | − 0.106449i | −0.998583 | − | 0.0532246i | \(-0.983050\pi\) | ||||
0.998583 | − | 0.0532246i | \(-0.0169499\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 16.0000 | 0.849192 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | − 24.0000i | − 1.26667i | −0.773877 | − | 0.633336i | \(-0.781685\pi\) | ||||
0.773877 | − | 0.633336i | \(-0.218315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 3.00000 | 0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 5.00000 | 0.262432 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −20.0000 | −1.04685 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −8.00000 | −0.417597 | −0.208798 | − | 0.977959i | \(-0.566955\pi\) | ||||
−0.208798 | + | 0.977959i | \(0.566955\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 6.00000i | 0.312348i | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −10.0000 | −0.517780 | −0.258890 | − | 0.965907i | \(-0.583357\pi\) | ||||
−0.258890 | + | 0.965907i | \(0.583357\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | − 12.0000i | − 0.619677i | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 20.0000i | − 1.02733i | −0.857991 | − | 0.513665i | \(-0.828287\pi\) | ||||
0.857991 | − | 0.513665i | \(-0.171713\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −8.00000 | −0.409852 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | −4.00000 | −0.203331 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 2.00000 | 0.101404 | 0.0507020 | − | 0.998714i | \(-0.483854\pi\) | ||||
0.0507020 | + | 0.998714i | \(0.483854\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −16.0000 | −0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 4.00000 | 0.201773 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | − 16.0000i | − 0.805047i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 14.0000i | 0.702640i | 0.936255 | + | 0.351320i | \(0.114267\pi\) | ||||
−0.936255 | + | 0.351320i | \(0.885733\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | − 30.0000i | − 1.49813i | −0.662497 | − | 0.749064i | \(-0.730503\pi\) | ||||
0.662497 | − | 0.749064i | \(-0.269497\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 2.00000i | 0.0993808i | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −24.0000 | −1.18964 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 6.00000i | 0.296681i | 0.988936 | + | 0.148340i | \(0.0473931\pi\) | ||||
−0.988936 | + | 0.148340i | \(0.952607\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 6.00000i | 0.295958i | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −8.00000 | −0.392705 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 12.0000 | 0.587643 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 12.0000 | 0.586238 | 0.293119 | − | 0.956076i | \(-0.405307\pi\) | ||||
0.293119 | + | 0.956076i | \(0.405307\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 10.0000i | 0.487370i | 0.969854 | + | 0.243685i | \(0.0783563\pi\) | ||||
−0.969854 | + | 0.243685i | \(0.921644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −2.00000 | −0.0970143 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | − 32.0000i | − 1.54139i | −0.637207 | − | 0.770693i | \(-0.719910\pi\) | ||||
0.637207 | − | 0.770693i | \(-0.280090\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 14.0000 | 0.672797 | 0.336399 | − | 0.941720i | \(-0.390791\pi\) | ||||
0.336399 | + | 0.941720i | \(0.390791\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | − 12.0000i | − 0.575356i | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 32.0000i | 1.53077i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 7.00000 | 0.333333 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 20.0000 | 0.950229 | 0.475114 | − | 0.879924i | \(-0.342407\pi\) | ||||
0.475114 | + | 0.879924i | \(0.342407\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 12.0000 | 0.568855 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 14.0000i | 0.662177i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − 14.0000i | − 0.660701i | −0.943858 | − | 0.330350i | \(-0.892833\pi\) | ||||
0.943858 | − | 0.330350i | \(-0.107167\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −24.0000 | −1.13012 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 16.0000i | 0.751746i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 22.0000i | 1.02912i | 0.857455 | + | 0.514558i | \(0.172044\pi\) | ||||
−0.857455 | + | 0.514558i | \(0.827956\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 2.00000 | 0.0933520 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 26.0000i | 1.21094i | 0.795868 | + | 0.605470i | \(0.207015\pi\) | ||||
−0.795868 | + | 0.605470i | \(0.792985\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 8.00000i | 0.371792i | 0.982569 | + | 0.185896i | \(0.0595187\pi\) | ||||
−0.982569 | + | 0.185896i | \(0.940481\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | −16.0000 | −0.741982 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 36.0000 | 1.66588 | 0.832941 | − | 0.553362i | \(-0.186655\pi\) | ||||
0.832941 | + | 0.553362i | \(0.186655\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 2.00000 | 0.0921551 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 16.0000i | − 0.735681i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 4.00000i | 0.183533i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −2.00000 | −0.0915737 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − 16.0000i | − 0.731059i | −0.930800 | − | 0.365529i | \(-0.880888\pi\) | ||||
0.930800 | − | 0.365529i | \(-0.119112\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 4.00000 | 0.181631 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 32.0000i | 1.45006i | 0.688718 | + | 0.725029i | \(0.258174\pi\) | ||||
−0.688718 | + | 0.725029i | \(0.741826\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | − 12.0000i | − 0.542659i | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −12.0000 | −0.540453 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | −8.00000 | −0.359573 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 12.0000i | − 0.537194i | −0.963253 | − | 0.268597i | \(-0.913440\pi\) | ||||
0.963253 | − | 0.268597i | \(-0.0865599\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | − 24.0000i | − 1.07224i | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 24.0000 | 1.07011 | 0.535054 | − | 0.844818i | \(-0.320291\pi\) | ||||
0.535054 | + | 0.844818i | \(0.320291\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 36.0000i | 1.60198i | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 6.00000i | − 0.265945i | −0.991120 | − | 0.132973i | \(-0.957548\pi\) | ||||
0.991120 | − | 0.132973i | \(-0.0424523\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | − 4.00000i | − 0.176604i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 32.0000i | − 1.41009i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 6.00000 | 0.263371 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 26.0000 | 1.13908 | 0.569540 | − | 0.821963i | \(-0.307121\pi\) | ||||
0.569540 | + | 0.821963i | \(0.307121\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 4.00000 | 0.174908 | 0.0874539 | − | 0.996169i | \(-0.472127\pi\) | ||||
0.0874539 | + | 0.996169i | \(0.472127\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 16.0000i | 0.696971i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 41.0000 | 1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 4.00000i | 0.173585i | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | − 24.0000i | − 1.03761i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 12.0000 | 0.517838 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 28.0000i | 1.20605i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | − 18.0000i | − 0.773880i | −0.922105 | − | 0.386940i | \(-0.873532\pi\) | ||||
0.922105 | − | 0.386940i | \(-0.126468\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 6.00000 | 0.257485 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −4.00000 | −0.171341 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 44.0000 | 1.88130 | 0.940652 | − | 0.339372i | \(-0.110215\pi\) | ||||
0.940652 | + | 0.339372i | \(0.110215\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −2.00000 | −0.0853579 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 24.0000i | 1.02243i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 12.0000 | 0.509372 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 26.0000i | − 1.10166i | −0.834619 | − | 0.550828i | \(-0.814312\pi\) | ||||
0.834619 | − | 0.550828i | \(-0.185688\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 8.00000i | 0.337760i | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −28.0000 | −1.18006 | −0.590030 | − | 0.807382i | \(-0.700884\pi\) | ||||
−0.590030 | + | 0.807382i | \(0.700884\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 36.0000i | 1.51453i | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −10.0000 | −0.419222 | −0.209611 | − | 0.977785i | \(-0.567220\pi\) | ||||
−0.209611 | + | 0.977785i | \(0.567220\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −36.0000 | −1.50655 | −0.753277 | − | 0.657704i | \(-0.771528\pi\) | ||||
−0.753277 | + | 0.657704i | \(0.771528\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 8.00000 | 0.333623 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 2.00000i | − 0.0832611i | −0.999133 | − | 0.0416305i | \(-0.986745\pi\) | ||||
0.999133 | − | 0.0416305i | \(-0.0132552\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | − 2.00000i | − 0.0831172i | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 8.00000i | − 0.331326i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 44.0000i | 1.81607i | 0.418890 | + | 0.908037i | \(0.362419\pi\) | ||||
−0.418890 | + | 0.908037i | \(0.637581\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 32.0000 | 1.31854 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | − 18.0000i | − 0.740421i | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 14.0000i | − 0.574911i | −0.957794 | − | 0.287456i | \(-0.907191\pi\) | ||||
0.957794 | − | 0.287456i | \(-0.0928094\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 16.0000 | 0.654836 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 24.0000 | 0.980613 | 0.490307 | − | 0.871550i | \(-0.336885\pi\) | ||||
0.490307 | + | 0.871550i | \(0.336885\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −38.0000 | −1.55005 | −0.775026 | − | 0.631929i | \(-0.782263\pi\) | ||||
−0.775026 | + | 0.631929i | \(0.782263\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 4.00000i | 0.162893i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | − 10.0000i | − 0.406558i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −40.0000 | −1.62355 | −0.811775 | − | 0.583970i | \(-0.801498\pi\) | ||||
−0.811775 | + | 0.583970i | \(0.801498\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 38.0000i | − 1.53481i | −0.641165 | − | 0.767403i | \(-0.721549\pi\) | ||||
0.641165 | − | 0.767403i | \(-0.278451\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 12.0000 | 0.483887 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 42.0000i | − 1.69086i | −0.534089 | − | 0.845428i | \(-0.679345\pi\) | ||||
0.534089 | − | 0.845428i | \(-0.320655\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − 44.0000i | − 1.76851i | −0.467005 | − | 0.884255i | \(-0.654667\pi\) | ||||
0.467005 | − | 0.884255i | \(-0.345333\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −8.00000 | −0.321029 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 16.0000 | 0.638978 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − 12.0000i | − 0.478471i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 16.0000i | 0.636950i | 0.947931 | + | 0.318475i | \(0.103171\pi\) | ||||
−0.947931 | + | 0.318475i | \(0.896829\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 20.0000 | 0.794929 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 16.0000i | 0.634941i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | − 8.00000i | − 0.316475i | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 14.0000 | 0.552967 | 0.276483 | − | 0.961019i | \(-0.410831\pi\) | ||||
0.276483 | + | 0.961019i | \(0.410831\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 12.0000i | − 0.473234i | −0.971603 | − | 0.236617i | \(-0.923961\pi\) | ||||
0.971603 | − | 0.236617i | \(-0.0760386\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 8.00000i | 0.315000i | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −8.00000 | −0.314512 | −0.157256 | − | 0.987558i | \(-0.550265\pi\) | ||||
−0.157256 | + | 0.987558i | \(0.550265\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −16.0000 | −0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 6.00000 | 0.234798 | 0.117399 | − | 0.993085i | \(-0.462544\pi\) | ||||
0.117399 | + | 0.993085i | \(0.462544\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | − 8.00000i | − 0.312586i | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 10.0000i | 0.390137i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 12.0000 | 0.467454 | 0.233727 | − | 0.972302i | \(-0.424908\pi\) | ||||
0.233727 | + | 0.972302i | \(0.424908\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | − 10.0000i | − 0.388955i | −0.980907 | − | 0.194477i | \(-0.937699\pi\) | ||||
0.980907 | − | 0.194477i | \(-0.0623011\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 48.0000 | 1.85857 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | − 8.00000i | − 0.309298i | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | − 8.00000i | − 0.308837i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −34.0000 | −1.31060 | −0.655302 | − | 0.755367i | \(-0.727459\pi\) | ||||
−0.655302 | + | 0.755367i | \(0.727459\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | −1.00000 | −0.0384900 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −2.00000 | −0.0768662 | −0.0384331 | − | 0.999261i | \(-0.512237\pi\) | ||||
−0.0384331 | + | 0.999261i | \(0.512237\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 12.0000i | 0.459841i | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 4.00000i | 0.153056i | 0.997067 | + | 0.0765279i | \(0.0243834\pi\) | ||||
−0.997067 | + | 0.0765279i | \(0.975617\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 12.0000 | 0.458496 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | − 22.0000i | − 0.839352i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 4.00000i | 0.152167i | 0.997101 | + | 0.0760836i | \(0.0242416\pi\) | ||||
−0.997101 | + | 0.0760836i | \(0.975758\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | − 24.0000i | − 0.910372i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 12.0000i | − 0.454532i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 10.0000 | 0.378235 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −6.00000 | −0.226617 | −0.113308 | − | 0.993560i | \(-0.536145\pi\) | ||||
−0.113308 | + | 0.993560i | \(0.536145\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −24.0000 | −0.905177 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − 10.0000i | − 0.375558i | −0.982211 | − | 0.187779i | \(-0.939871\pi\) | ||||
0.982211 | − | 0.187779i | \(-0.0601289\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −8.00000 | −0.300023 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 64.0000i | − 2.39682i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | − 16.0000i | − 0.597531i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 32.0000 | 1.19340 | 0.596699 | − | 0.802465i | \(-0.296479\pi\) | ||||
0.596699 | + | 0.802465i | \(0.296479\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | − 18.0000i | − 0.669427i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 6.00000 | 0.222834 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −48.0000 | −1.78022 | −0.890111 | − | 0.455744i | \(-0.849373\pi\) | ||||
−0.890111 | + | 0.455744i | \(0.849373\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 1.00000 | 0.0370370 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 8.00000 | 0.295891 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 14.0000i | − 0.517102i | −0.965998 | − | 0.258551i | \(-0.916755\pi\) | ||||
0.965998 | − | 0.258551i | \(-0.0832450\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | − 14.0000i | − 0.516398i | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −16.0000 | −0.589368 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − 4.00000i | − 0.147142i | −0.997290 | − | 0.0735712i | \(-0.976560\pi\) | ||||
0.997290 | − | 0.0735712i | \(-0.0234396\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 8.00000i | 0.293492i | 0.989174 | + | 0.146746i | \(0.0468799\pi\) | ||||
−0.989174 | + | 0.146746i | \(0.953120\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 28.0000 | 1.02584 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 4.00000i | 0.146352i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −24.0000 | −0.875772 | −0.437886 | − | 0.899030i | \(-0.644273\pi\) | ||||
−0.437886 | + | 0.899030i | \(0.644273\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 20.0000 | 0.728841 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 32.0000 | 1.16460 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 38.0000 | 1.38113 | 0.690567 | − | 0.723269i | \(-0.257361\pi\) | ||||
0.690567 | + | 0.723269i | \(0.257361\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | − 32.0000i | − 1.16153i | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | − 22.0000i | − 0.797499i | −0.917060 | − | 0.398750i | \(-0.869444\pi\) | ||||
0.917060 | − | 0.398750i | \(-0.130556\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | − 4.00000i | − 0.144620i | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | − 2.00000i | − 0.0721218i | −0.999350 | − | 0.0360609i | \(-0.988519\pi\) | ||||
0.999350 | − | 0.0360609i | \(-0.0114810\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 2.00000 | 0.0720282 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 18.0000i | 0.647415i | 0.946157 | + | 0.323708i | \(0.104929\pi\) | ||||
−0.946157 | + | 0.323708i | \(0.895071\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | − 8.00000i | − 0.287368i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −24.0000 | −0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 32.0000 | 1.14505 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | −6.00000 | −0.214423 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − 4.00000i | − 0.142766i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 28.0000i | 0.998092i | 0.866575 | + | 0.499046i | \(0.166316\pi\) | ||||
−0.866575 | + | 0.499046i | \(0.833684\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 8.00000 | 0.284808 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 4.00000i | 0.141865i | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −22.0000 | −0.779280 | −0.389640 | − | 0.920967i | \(-0.627401\pi\) | ||||
−0.389640 | + | 0.920967i | \(0.627401\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | − 6.00000i | − 0.212000i | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −40.0000 | −1.41157 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 10.0000 | 0.352017 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 26.0000 | 0.914111 | 0.457056 | − | 0.889438i | \(-0.348904\pi\) | ||||
0.457056 | + | 0.889438i | \(0.348904\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 4.00000i | − 0.140459i | −0.997531 | − | 0.0702295i | \(-0.977627\pi\) | ||||
0.997531 | − | 0.0702295i | \(-0.0223732\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | − 8.00000i | − 0.280572i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −24.0000 | −0.840683 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 16.0000i | − 0.559769i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − 30.0000i | − 1.04701i | −0.852023 | − | 0.523504i | \(-0.824625\pi\) | ||||
0.852023 | − | 0.523504i | \(-0.175375\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 16.0000 | 0.557725 | 0.278862 | − | 0.960331i | \(-0.410043\pi\) | ||||
0.278862 | + | 0.960331i | \(0.410043\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | − 4.00000i | − 0.139262i | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 28.0000i | − 0.973655i | −0.873498 | − | 0.486828i | \(-0.838154\pi\) | ||||
0.873498 | − | 0.486828i | \(-0.161846\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 50.0000 | 1.73657 | 0.868286 | − | 0.496064i | \(-0.165222\pi\) | ||||
0.868286 | + | 0.496064i | \(0.165222\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −26.0000 | −0.901930 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −14.0000 | −0.485071 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −48.0000 | −1.66111 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 8.00000i | 0.276520i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − 24.0000i | − 0.828572i | −0.910147 | − | 0.414286i | \(-0.864031\pi\) | ||||
0.910147 | − | 0.414286i | \(-0.135969\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | − 26.0000i | − 0.895488i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | −28.0000 | −0.960958 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 48.0000i | 1.64542i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 10.0000i | − 0.342393i | −0.985237 | − | 0.171197i | \(-0.945237\pi\) | ||||
0.985237 | − | 0.171197i | \(-0.0547634\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | −8.00000 | −0.273594 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −42.0000 | −1.43469 | −0.717346 | − | 0.696717i | \(-0.754643\pi\) | ||||
−0.717346 | + | 0.696717i | \(0.754643\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −12.0000 | −0.409435 | −0.204717 | − | 0.978821i | \(-0.565628\pi\) | ||||
−0.204717 | + | 0.978821i | \(0.565628\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 32.0000i | 1.08929i | 0.838666 | + | 0.544646i | \(0.183336\pi\) | ||||
−0.838666 | + | 0.544646i | \(0.816664\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | − 12.0000i | − 0.408012i | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 13.0000 | 0.441503 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 32.0000i | − 1.08553i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | − 2.00000i | − 0.0676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 18.0000i | 0.607817i | 0.952701 | + | 0.303908i | \(0.0982917\pi\) | ||||
−0.952701 | + | 0.303908i | \(0.901708\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 18.0000i | 0.607125i | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −50.0000 | −1.68454 | −0.842271 | − | 0.539054i | \(-0.818782\pi\) | ||||
−0.842271 | + | 0.539054i | \(0.818782\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 4.00000 | 0.134611 | 0.0673054 | − | 0.997732i | \(-0.478560\pi\) | ||||
0.0673054 | + | 0.997732i | \(0.478560\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 8.00000 | 0.268917 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 8.00000 | 0.268614 | 0.134307 | − | 0.990940i | \(-0.457119\pi\) | ||||
0.134307 | + | 0.990940i | \(0.457119\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 4.00000i | 0.134005i | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | − 24.0000i | − 0.802232i | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 48.0000i | − 1.60089i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 4.00000 | 0.133259 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | − 12.0000i | − 0.398893i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −4.00000 | −0.132818 | −0.0664089 | − | 0.997792i | \(-0.521154\pi\) | ||||
−0.0664089 | + | 0.997792i | \(0.521154\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 18.0000 | 0.597022 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 16.0000 | 0.530104 | 0.265052 | − | 0.964234i | \(-0.414611\pi\) | ||||
0.265052 | + | 0.964234i | \(0.414611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −16.0000 | −0.529523 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 4.00000i | 0.132236i | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 16.0000 | 0.527791 | 0.263896 | − | 0.964551i | \(-0.414993\pi\) | ||||
0.263896 | + | 0.964551i | \(0.414993\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | − 12.0000i | − 0.395413i | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 6.00000i | 0.197279i | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | −16.0000 | −0.525509 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − 50.0000i | − 1.64045i | −0.572043 | − | 0.820223i | \(-0.693849\pi\) | ||||
0.572043 | − | 0.820223i | \(-0.306151\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 28.0000i | 0.917663i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | −24.0000 | −0.785725 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 16.0000 | 0.523256 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 42.0000 | 1.37208 | 0.686040 | − | 0.727564i | \(-0.259347\pi\) | ||||
0.686040 | + | 0.727564i | \(0.259347\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 6.00000 | 0.195803 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 6.00000i | − 0.195594i | −0.995206 | − | 0.0977972i | \(-0.968820\pi\) | ||||
0.995206 | − | 0.0977972i | \(-0.0311797\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 48.0000i | 1.56310i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 12.0000i | 0.389948i | 0.980808 | + | 0.194974i | \(0.0624622\pi\) | ||||
−0.980808 | + | 0.194974i | \(0.937538\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 6.00000i | 0.194563i | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 54.0000 | 1.74923 | 0.874616 | − | 0.484817i | \(-0.161114\pi\) | ||||
0.874616 | + | 0.484817i | \(0.161114\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | − 24.0000i | − 0.775810i | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −33.0000 | −1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | −12.0000 | −0.386695 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −4.00000 | −0.128765 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 16.0000i | 0.514525i | 0.966342 | + | 0.257263i | \(0.0828206\pi\) | ||||
−0.966342 | + | 0.257263i | \(0.917179\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 8.00000i | 0.256997i | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 36.0000 | 1.15529 | 0.577647 | − | 0.816286i | \(-0.303971\pi\) | ||||
0.577647 | + | 0.816286i | \(0.303971\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 30.0000i | 0.959785i | 0.877327 | + | 0.479893i | \(0.159324\pi\) | ||||
−0.877327 | + | 0.479893i | \(0.840676\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 24.0000 | 0.767043 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 2.00000i | 0.0638551i | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 24.0000i | − 0.765481i | −0.923856 | − | 0.382741i | \(-0.874980\pi\) | ||||
0.923856 | − | 0.382741i | \(-0.125020\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −36.0000 | −1.14706 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −32.0000 | −1.01754 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 40.0000 | 1.27064 | 0.635321 | − | 0.772248i | \(-0.280868\pi\) | ||||
0.635321 | + | 0.772248i | \(0.280868\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 20.0000i | 0.634681i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | − 32.0000i | − 1.01447i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −26.0000 | −0.823428 | −0.411714 | − | 0.911313i | \(-0.635070\pi\) | ||||
−0.411714 | + | 0.911313i | \(0.635070\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | − 6.00000i | − 0.189832i |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))