Properties

Label 4050.2.a.x.1.1
Level $4050$
Weight $2$
Character 4050.1
Self dual yes
Analytic conductor $32.339$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4050,2,Mod(1,4050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4050.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3394128186\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{7} +1.00000 q^{8} -2.00000 q^{11} -6.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} +6.00000 q^{19} -2.00000 q^{22} +1.00000 q^{23} -6.00000 q^{26} -1.00000 q^{28} +9.00000 q^{29} -2.00000 q^{31} +1.00000 q^{32} -2.00000 q^{34} +2.00000 q^{37} +6.00000 q^{38} -11.0000 q^{41} -4.00000 q^{43} -2.00000 q^{44} +1.00000 q^{46} -7.00000 q^{47} -6.00000 q^{49} -6.00000 q^{52} -1.00000 q^{56} +9.00000 q^{58} -4.00000 q^{59} -7.00000 q^{61} -2.00000 q^{62} +1.00000 q^{64} -11.0000 q^{67} -2.00000 q^{68} -6.00000 q^{71} -4.00000 q^{73} +2.00000 q^{74} +6.00000 q^{76} +2.00000 q^{77} -12.0000 q^{79} -11.0000 q^{82} -11.0000 q^{83} -4.00000 q^{86} -2.00000 q^{88} +1.00000 q^{89} +6.00000 q^{91} +1.00000 q^{92} -7.00000 q^{94} -8.00000 q^{97} -6.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 1.00000 0.208514 0.104257 0.994550i \(-0.466753\pi\)
0.104257 + 0.994550i \(0.466753\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 6.00000 0.973329
\(39\) 0 0
\(40\) 0 0
\(41\) −11.0000 −1.71791 −0.858956 0.512050i \(-0.828886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −7.00000 −1.02105 −0.510527 0.859861i \(-0.670550\pi\)
−0.510527 + 0.859861i \(0.670550\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) −6.00000 −0.832050
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 9.00000 1.18176
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −11.0000 −1.34386 −0.671932 0.740613i \(-0.734535\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) 6.00000 0.688247
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −11.0000 −1.21475
\(83\) −11.0000 −1.20741 −0.603703 0.797209i \(-0.706309\pi\)
−0.603703 + 0.797209i \(0.706309\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) −2.00000 −0.213201
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 1.00000 0.104257
\(93\) 0 0
\(94\) −7.00000 −0.721995
\(95\) 0 0
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) −6.00000 −0.606092
\(99\) 0 0
\(100\) 0 0
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) 0 0
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) 12.0000 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 9.00000 0.835629
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −7.00000 −0.633750
\(123\) 0 0
\(124\) −2.00000 −0.179605
\(125\) 0 0
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) −11.0000 −0.950255
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 12.0000 1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −1.00000 −0.0819232 −0.0409616 0.999161i \(-0.513042\pi\)
−0.0409616 + 0.999161i \(0.513042\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 6.00000 0.486664
\(153\) 0 0
\(154\) 2.00000 0.161165
\(155\) 0 0
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) −12.0000 −0.954669
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −11.0000 −0.858956
\(165\) 0 0
\(166\) −11.0000 −0.853766
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −4.00000 −0.304114 −0.152057 0.988372i \(-0.548590\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 1.00000 0.0749532
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) 6.00000 0.444750
\(183\) 0 0
\(184\) 1.00000 0.0737210
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) −7.00000 −0.510527
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) −10.0000 −0.719816 −0.359908 0.932988i \(-0.617192\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 0 0
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.00000 0.140720
\(203\) −9.00000 −0.631676
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −6.00000 −0.416025
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 18.0000 1.23917 0.619586 0.784929i \(-0.287301\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 3.00000 0.205076
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 7.00000 0.474100
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 23.0000 1.54019 0.770097 0.637927i \(-0.220208\pi\)
0.770097 + 0.637927i \(0.220208\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) −8.00000 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(228\) 0 0
\(229\) −7.00000 −0.462573 −0.231287 0.972886i \(-0.574293\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 9.00000 0.590879
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 28.0000 1.81117 0.905585 0.424165i \(-0.139432\pi\)
0.905585 + 0.424165i \(0.139432\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) −7.00000 −0.448129
\(245\) 0 0
\(246\) 0 0
\(247\) −36.0000 −2.29063
\(248\) −2.00000 −0.127000
\(249\) 0 0
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) −19.0000 −1.19217
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) −11.0000 −0.671932
\(269\) 3.00000 0.182913 0.0914566 0.995809i \(-0.470848\pi\)
0.0914566 + 0.995809i \(0.470848\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) 16.0000 0.959616
\(279\) 0 0
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) 1.00000 0.0594438 0.0297219 0.999558i \(-0.490538\pi\)
0.0297219 + 0.999558i \(0.490538\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) 12.0000 0.709575
\(287\) 11.0000 0.649309
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) −4.00000 −0.234082
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) −1.00000 −0.0579284
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 10.0000 0.575435
\(303\) 0 0
\(304\) 6.00000 0.344124
\(305\) 0 0
\(306\) 0 0
\(307\) −9.00000 −0.513657 −0.256829 0.966457i \(-0.582678\pi\)
−0.256829 + 0.966457i \(0.582678\pi\)
\(308\) 2.00000 0.113961
\(309\) 0 0
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 0 0
\(322\) −1.00000 −0.0557278
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) −11.0000 −0.607373
\(329\) 7.00000 0.385922
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) −11.0000 −0.603703
\(333\) 0 0
\(334\) −3.00000 −0.164153
\(335\) 0 0
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 23.0000 1.25104
\(339\) 0 0
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −4.00000 −0.215041
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −11.0000 −0.588817 −0.294408 0.955680i \(-0.595123\pi\)
−0.294408 + 0.955680i \(0.595123\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.00000 0.0529999
\(357\) 0 0
\(358\) 2.00000 0.105703
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) −13.0000 −0.683265
\(363\) 0 0
\(364\) 6.00000 0.314485
\(365\) 0 0
\(366\) 0 0
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) 1.00000 0.0521286
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.0000 0.621336 0.310668 0.950518i \(-0.399447\pi\)
0.310668 + 0.950518i \(0.399447\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) −7.00000 −0.360997
\(377\) −54.0000 −2.78114
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6.00000 0.306987
\(383\) 32.0000 1.63512 0.817562 0.575841i \(-0.195325\pi\)
0.817562 + 0.575841i \(0.195325\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10.0000 −0.508987
\(387\) 0 0
\(388\) −8.00000 −0.406138
\(389\) 19.0000 0.963338 0.481669 0.876353i \(-0.340031\pi\)
0.481669 + 0.876353i \(0.340031\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) −6.00000 −0.303046
\(393\) 0 0
\(394\) 8.00000 0.403034
\(395\) 0 0
\(396\) 0 0
\(397\) −4.00000 −0.200754 −0.100377 0.994949i \(-0.532005\pi\)
−0.100377 + 0.994949i \(0.532005\pi\)
\(398\) −18.0000 −0.902258
\(399\) 0 0
\(400\) 0 0
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 12.0000 0.597763
\(404\) 2.00000 0.0995037
\(405\) 0 0
\(406\) −9.00000 −0.446663
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8.00000 −0.394132
\(413\) 4.00000 0.196827
\(414\) 0 0
\(415\) 0 0
\(416\) −6.00000 −0.294174
\(417\) 0 0
\(418\) −12.0000 −0.586939
\(419\) 34.0000 1.66101 0.830504 0.557012i \(-0.188052\pi\)
0.830504 + 0.557012i \(0.188052\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 18.0000 0.876226
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.00000 0.338754
\(428\) 3.00000 0.145010
\(429\) 0 0
\(430\) 0 0
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 2.00000 0.0960031
\(435\) 0 0
\(436\) 7.00000 0.335239
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 12.0000 0.570782
\(443\) −9.00000 −0.427603 −0.213801 0.976877i \(-0.568585\pi\)
−0.213801 + 0.976877i \(0.568585\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 23.0000 1.08908
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 22.0000 1.03594
\(452\) 12.0000 0.564433
\(453\) 0 0
\(454\) −8.00000 −0.375459
\(455\) 0 0
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) −7.00000 −0.327089
\(459\) 0 0
\(460\) 0 0
\(461\) −21.0000 −0.978068 −0.489034 0.872265i \(-0.662651\pi\)
−0.489034 + 0.872265i \(0.662651\pi\)
\(462\) 0 0
\(463\) 36.0000 1.67306 0.836531 0.547920i \(-0.184580\pi\)
0.836531 + 0.547920i \(0.184580\pi\)
\(464\) 9.00000 0.417815
\(465\) 0 0
\(466\) −10.0000 −0.463241
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) −4.00000 −0.184115
\(473\) 8.00000 0.367840
\(474\) 0 0
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 28.0000 1.28069
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 1.00000 0.0455488
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) −7.00000 −0.316875
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −18.0000 −0.810679
\(494\) −36.0000 −1.61972
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 6.00000 0.269137
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 18.0000 0.803379
\(503\) 27.0000 1.20387 0.601935 0.798545i \(-0.294397\pi\)
0.601935 + 0.798545i \(0.294397\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2.00000 −0.0889108
\(507\) 0 0
\(508\) −19.0000 −0.842989
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) 0 0
\(516\) 0 0
\(517\) 14.0000 0.615719
\(518\) −2.00000 −0.0878750
\(519\) 0 0
\(520\) 0 0
\(521\) −37.0000 −1.62100 −0.810500 0.585739i \(-0.800804\pi\)
−0.810500 + 0.585739i \(0.800804\pi\)
\(522\) 0 0
\(523\) −29.0000 −1.26808 −0.634041 0.773300i \(-0.718605\pi\)
−0.634041 + 0.773300i \(0.718605\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) 4.00000 0.174243
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) −6.00000 −0.260133
\(533\) 66.0000 2.85878
\(534\) 0 0
\(535\) 0 0
\(536\) −11.0000 −0.475128
\(537\) 0 0
\(538\) 3.00000 0.129339
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) −14.0000 −0.601351
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 0 0
\(546\) 0 0
\(547\) 35.0000 1.49649 0.748246 0.663421i \(-0.230896\pi\)
0.748246 + 0.663421i \(0.230896\pi\)
\(548\) 12.0000 0.512615
\(549\) 0 0
\(550\) 0 0
\(551\) 54.0000 2.30048
\(552\) 0 0
\(553\) 12.0000 0.510292
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) 16.0000 0.678551
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) −3.00000 −0.126547
\(563\) −37.0000 −1.55936 −0.779682 0.626176i \(-0.784619\pi\)
−0.779682 + 0.626176i \(0.784619\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.00000 0.0420331
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) −2.00000 −0.0838444 −0.0419222 0.999121i \(-0.513348\pi\)
−0.0419222 + 0.999121i \(0.513348\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 12.0000 0.501745
\(573\) 0 0
\(574\) 11.0000 0.459131
\(575\) 0 0
\(576\) 0 0
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) 0 0
\(581\) 11.0000 0.456357
\(582\) 0 0
\(583\) 0 0
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 3.00000 0.123823 0.0619116 0.998082i \(-0.480280\pi\)
0.0619116 + 0.998082i \(0.480280\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.00000 −0.0409616
\(597\) 0 0
\(598\) −6.00000 −0.245358
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) 1.00000 0.0405887 0.0202944 0.999794i \(-0.493540\pi\)
0.0202944 + 0.999794i \(0.493540\pi\)
\(608\) 6.00000 0.243332
\(609\) 0 0
\(610\) 0 0
\(611\) 42.0000 1.69914
\(612\) 0 0
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) −9.00000 −0.363210
\(615\) 0 0
\(616\) 2.00000 0.0805823
\(617\) −32.0000 −1.28827 −0.644136 0.764911i \(-0.722783\pi\)
−0.644136 + 0.764911i \(0.722783\pi\)
\(618\) 0 0
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 6.00000 0.240578
\(623\) −1.00000 −0.0400642
\(624\) 0 0
\(625\) 0 0
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) 4.00000 0.159617
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −12.0000 −0.477334
\(633\) 0 0
\(634\) −2.00000 −0.0794301
\(635\) 0 0
\(636\) 0 0
\(637\) 36.0000 1.42637
\(638\) −18.0000 −0.712627
\(639\) 0 0
\(640\) 0 0
\(641\) 13.0000 0.513469 0.256735 0.966482i \(-0.417353\pi\)
0.256735 + 0.966482i \(0.417353\pi\)
\(642\) 0 0
\(643\) −33.0000 −1.30139 −0.650696 0.759338i \(-0.725523\pi\)
−0.650696 + 0.759338i \(0.725523\pi\)
\(644\) −1.00000 −0.0394055
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) 33.0000 1.29736 0.648682 0.761060i \(-0.275321\pi\)
0.648682 + 0.761060i \(0.275321\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) −26.0000 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −11.0000 −0.429478
\(657\) 0 0
\(658\) 7.00000 0.272888
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) −11.0000 −0.426883
\(665\) 0 0
\(666\) 0 0
\(667\) 9.00000 0.348481
\(668\) −3.00000 −0.116073
\(669\) 0 0
\(670\) 0 0
\(671\) 14.0000 0.540464
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) 0 0
\(679\) 8.00000 0.307012
\(680\) 0 0
\(681\) 0 0
\(682\) 4.00000 0.153168
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 13.0000 0.496342
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) 0 0
\(690\) 0 0
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) −4.00000 −0.152057
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 22.0000 0.833309
\(698\) −11.0000 −0.416356
\(699\) 0 0
\(700\) 0 0
\(701\) 13.0000 0.491003 0.245502 0.969396i \(-0.421047\pi\)
0.245502 + 0.969396i \(0.421047\pi\)
\(702\) 0 0
\(703\) 12.0000 0.452589
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −16.0000 −0.602168
\(707\) −2.00000 −0.0752177
\(708\) 0 0
\(709\) −27.0000 −1.01401 −0.507003 0.861944i \(-0.669247\pi\)
−0.507003 + 0.861944i \(0.669247\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.00000 0.0374766
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) 0 0
\(716\) 2.00000 0.0747435
\(717\) 0 0
\(718\) 30.0000 1.11959
\(719\) −44.0000 −1.64092 −0.820462 0.571702i \(-0.806283\pi\)
−0.820462 + 0.571702i \(0.806283\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 17.0000 0.632674
\(723\) 0 0
\(724\) −13.0000 −0.483141
\(725\) 0 0
\(726\) 0 0
\(727\) 21.0000 0.778847 0.389423 0.921059i \(-0.372674\pi\)
0.389423 + 0.921059i \(0.372674\pi\)
\(728\) 6.00000 0.222375
\(729\) 0 0
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) −16.0000 −0.590571
\(735\) 0 0
\(736\) 1.00000 0.0368605
\(737\) 22.0000 0.810380
\(738\) 0 0
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15.0000 −0.550297 −0.275148 0.961402i \(-0.588727\pi\)
−0.275148 + 0.961402i \(0.588727\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 12.0000 0.439351
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) −3.00000 −0.109618
\(750\) 0 0
\(751\) 26.0000 0.948753 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(752\) −7.00000 −0.255264
\(753\) 0 0
\(754\) −54.0000 −1.96656
\(755\) 0 0
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) −16.0000 −0.581146
\(759\) 0 0
\(760\) 0 0
\(761\) −9.00000 −0.326250 −0.163125 0.986605i \(-0.552157\pi\)
−0.163125 + 0.986605i \(0.552157\pi\)
\(762\) 0 0
\(763\) −7.00000 −0.253417
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) −15.0000 −0.540914 −0.270457 0.962732i \(-0.587175\pi\)
−0.270457 + 0.962732i \(0.587175\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.0000 −0.359908
\(773\) 12.0000 0.431610 0.215805 0.976436i \(-0.430762\pi\)
0.215805 + 0.976436i \(0.430762\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −8.00000 −0.287183
\(777\) 0 0
\(778\) 19.0000 0.681183
\(779\) −66.0000 −2.36470
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) −2.00000 −0.0715199
\(783\) 0 0
\(784\) −6.00000 −0.214286
\(785\) 0 0
\(786\) 0 0
\(787\) 44.0000 1.56843 0.784215 0.620489i \(-0.213066\pi\)
0.784215 + 0.620489i \(0.213066\pi\)
\(788\) 8.00000 0.284988
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 42.0000 1.49146
\(794\) −4.00000 −0.141955
\(795\) 0 0
\(796\) −18.0000 −0.637993
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 14.0000 0.495284
\(800\) 0 0
\(801\) 0 0
\(802\) −10.0000 −0.353112
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) 12.0000 0.422682
\(807\) 0 0
\(808\) 2.00000 0.0703598
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) −9.00000 −0.315838
\(813\) 0 0
\(814\) −4.00000 −0.140200
\(815\) 0 0
\(816\) 0 0
\(817\) −24.0000 −0.839654
\(818\) 38.0000 1.32864
\(819\) 0 0
\(820\) 0 0
\(821\) −31.0000 −1.08191 −0.540954 0.841052i \(-0.681937\pi\)
−0.540954 + 0.841052i \(0.681937\pi\)
\(822\) 0 0
\(823\) 15.0000 0.522867 0.261434 0.965221i \(-0.415805\pi\)
0.261434 + 0.965221i \(0.415805\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 4.00000 0.139178
\(827\) −35.0000 −1.21707 −0.608535 0.793527i \(-0.708242\pi\)
−0.608535 + 0.793527i \(0.708242\pi\)
\(828\) 0 0
\(829\) 15.0000 0.520972 0.260486 0.965478i \(-0.416117\pi\)
0.260486 + 0.965478i \(0.416117\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −6.00000 −0.208013
\(833\) 12.0000 0.415775
\(834\) 0 0
\(835\) 0 0
\(836\) −12.0000 −0.415029
\(837\) 0 0
\(838\) 34.0000 1.17451
\(839\) 38.0000 1.31191 0.655953 0.754802i \(-0.272267\pi\)
0.655953 + 0.754802i \(0.272267\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 22.0000 0.758170
\(843\) 0 0
\(844\) 18.0000 0.619586
\(845\) 0 0
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 7.00000 0.239535
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 16.0000 0.544962
\(863\) −45.0000 −1.53182 −0.765909 0.642949i \(-0.777711\pi\)
−0.765909 + 0.642949i \(0.777711\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.00000 0.0679628
\(867\) 0 0
\(868\) 2.00000 0.0678844
\(869\) 24.0000 0.814144
\(870\) 0 0
\(871\) 66.0000 2.23632
\(872\) 7.00000 0.237050
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) 0 0
\(876\) 0 0
\(877\) 46.0000 1.55331 0.776655 0.629926i \(-0.216915\pi\)
0.776655 + 0.629926i \(0.216915\pi\)
\(878\) 24.0000 0.809961
\(879\) 0 0
\(880\) 0 0
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) 0 0
\(883\) 3.00000 0.100958 0.0504790 0.998725i \(-0.483925\pi\)
0.0504790 + 0.998725i \(0.483925\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) −9.00000 −0.302361
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 19.0000 0.637240
\(890\) 0 0
\(891\) 0 0
\(892\) 23.0000 0.770097
\(893\) −42.0000 −1.40548
\(894\) 0 0
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 18.0000 0.600668
\(899\) −18.0000 −0.600334
\(900\) 0 0
\(901\) 0 0
\(902\) 22.0000 0.732520
\(903\) 0 0
\(904\) 12.0000 0.399114
\(905\) 0 0
\(906\) 0 0
\(907\) 33.0000 1.09575 0.547874 0.836561i \(-0.315438\pi\)
0.547874 + 0.836561i \(0.315438\pi\)
\(908\) −8.00000 −0.265489
\(909\) 0 0
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 22.0000 0.728094
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) −7.00000 −0.231287
\(917\) −12.0000 −0.396275
\(918\) 0 0
\(919\) −36.0000 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −21.0000 −0.691598
\(923\) 36.0000 1.18495
\(924\) 0 0
\(925\) 0 0
\(926\) 36.0000 1.18303
\(927\) 0 0
\(928\) 9.00000 0.295439
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) −10.0000 −0.327561
\(933\) 0 0
\(934\) 36.0000 1.17796
\(935\) 0 0
\(936\) 0 0
\(937\) 52.0000 1.69877 0.849383 0.527777i \(-0.176974\pi\)
0.849383 + 0.527777i \(0.176974\pi\)
\(938\) 11.0000 0.359163
\(939\) 0 0
\(940\) 0 0
\(941\) −41.0000 −1.33656 −0.668281 0.743909i \(-0.732970\pi\)
−0.668281 + 0.743909i \(0.732970\pi\)
\(942\) 0 0
\(943\) −11.0000 −0.358209
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 8.00000 0.260102
\(947\) −51.0000 −1.65728 −0.828639 0.559784i \(-0.810884\pi\)
−0.828639 + 0.559784i \(0.810884\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 0 0
\(951\) 0 0
\(952\) 2.00000 0.0648204
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 28.0000 0.905585
\(957\) 0 0
\(958\) 28.0000 0.904639
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −12.0000 −0.386896
\(963\) 0 0
\(964\) 1.00000 0.0322078
\(965\) 0 0
\(966\) 0 0
\(967\) −17.0000 −0.546683 −0.273342 0.961917i \(-0.588129\pi\)
−0.273342 + 0.961917i \(0.588129\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 0 0
\(973\) −16.0000 −0.512936
\(974\) −12.0000 −0.384505
\(975\) 0 0
\(976\) −7.00000 −0.224065
\(977\) 54.0000 1.72761 0.863807 0.503824i \(-0.168074\pi\)
0.863807 + 0.503824i \(0.168074\pi\)
\(978\) 0 0
\(979\) −2.00000 −0.0639203
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −19.0000 −0.606006 −0.303003 0.952990i \(-0.597989\pi\)
−0.303003 + 0.952990i \(0.597989\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −18.0000 −0.573237
\(987\) 0 0
\(988\) −36.0000 −1.14531
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −24.0000 −0.759707
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.a.x.1.1 1
3.2 odd 2 4050.2.a.g.1.1 1
5.2 odd 4 810.2.c.b.649.2 2
5.3 odd 4 810.2.c.b.649.1 2
5.4 even 2 4050.2.a.j.1.1 1
9.2 odd 6 1350.2.e.i.901.1 2
9.4 even 3 450.2.e.b.151.1 2
9.5 odd 6 1350.2.e.i.451.1 2
9.7 even 3 450.2.e.b.301.1 2
15.2 even 4 810.2.c.c.649.1 2
15.8 even 4 810.2.c.c.649.2 2
15.14 odd 2 4050.2.a.be.1.1 1
45.2 even 12 270.2.i.a.199.1 4
45.4 even 6 450.2.e.g.151.1 2
45.7 odd 12 90.2.i.a.49.2 yes 4
45.13 odd 12 90.2.i.a.79.2 yes 4
45.14 odd 6 1350.2.e.a.451.1 2
45.22 odd 12 90.2.i.a.79.1 yes 4
45.23 even 12 270.2.i.a.19.1 4
45.29 odd 6 1350.2.e.a.901.1 2
45.32 even 12 270.2.i.a.19.2 4
45.34 even 6 450.2.e.g.301.1 2
45.38 even 12 270.2.i.a.199.2 4
45.43 odd 12 90.2.i.a.49.1 4
180.7 even 12 720.2.by.a.49.2 4
180.23 odd 12 2160.2.by.b.289.1 4
180.43 even 12 720.2.by.a.49.1 4
180.47 odd 12 2160.2.by.b.1009.1 4
180.67 even 12 720.2.by.a.529.1 4
180.83 odd 12 2160.2.by.b.1009.2 4
180.103 even 12 720.2.by.a.529.2 4
180.167 odd 12 2160.2.by.b.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.a.49.1 4 45.43 odd 12
90.2.i.a.49.2 yes 4 45.7 odd 12
90.2.i.a.79.1 yes 4 45.22 odd 12
90.2.i.a.79.2 yes 4 45.13 odd 12
270.2.i.a.19.1 4 45.23 even 12
270.2.i.a.19.2 4 45.32 even 12
270.2.i.a.199.1 4 45.2 even 12
270.2.i.a.199.2 4 45.38 even 12
450.2.e.b.151.1 2 9.4 even 3
450.2.e.b.301.1 2 9.7 even 3
450.2.e.g.151.1 2 45.4 even 6
450.2.e.g.301.1 2 45.34 even 6
720.2.by.a.49.1 4 180.43 even 12
720.2.by.a.49.2 4 180.7 even 12
720.2.by.a.529.1 4 180.67 even 12
720.2.by.a.529.2 4 180.103 even 12
810.2.c.b.649.1 2 5.3 odd 4
810.2.c.b.649.2 2 5.2 odd 4
810.2.c.c.649.1 2 15.2 even 4
810.2.c.c.649.2 2 15.8 even 4
1350.2.e.a.451.1 2 45.14 odd 6
1350.2.e.a.901.1 2 45.29 odd 6
1350.2.e.i.451.1 2 9.5 odd 6
1350.2.e.i.901.1 2 9.2 odd 6
2160.2.by.b.289.1 4 180.23 odd 12
2160.2.by.b.289.2 4 180.167 odd 12
2160.2.by.b.1009.1 4 180.47 odd 12
2160.2.by.b.1009.2 4 180.83 odd 12
4050.2.a.g.1.1 1 3.2 odd 2
4050.2.a.j.1.1 1 5.4 even 2
4050.2.a.x.1.1 1 1.1 even 1 trivial
4050.2.a.be.1.1 1 15.14 odd 2