Properties

Label 405.4.e.v.271.2
Level $405$
Weight $4$
Character 405.271
Analytic conductor $23.896$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,4,Mod(136,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.136"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,5,0,-17,15,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.84779568.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 13x^{4} - 4x^{3} + 152x^{2} - 96x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.2
Root \(-1.66402 + 2.88216i\) of defining polynomial
Character \(\chi\) \(=\) 405.271
Dual form 405.4.e.v.136.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06306 + 1.84127i) q^{2} +(1.73981 - 3.01344i) q^{4} +(2.50000 - 4.33013i) q^{5} +(-15.3500 - 26.5870i) q^{7} +24.4070 q^{8} +10.6306 q^{10} +(25.0774 + 43.4353i) q^{11} +(7.97962 - 13.8211i) q^{13} +(32.6360 - 56.5272i) q^{14} +(12.0277 + 20.8325i) q^{16} -105.668 q^{17} -21.3040 q^{19} +(-8.69904 - 15.0672i) q^{20} +(-53.3175 + 92.3487i) q^{22} +(68.0684 - 117.898i) q^{23} +(-12.5000 - 21.6506i) q^{25} +33.9312 q^{26} -106.824 q^{28} +(-112.162 - 194.270i) q^{29} +(112.991 - 195.706i) q^{31} +(72.0559 - 124.804i) q^{32} +(-112.332 - 194.564i) q^{34} -153.500 q^{35} -416.386 q^{37} +(-22.6474 - 39.2264i) q^{38} +(61.0176 - 105.686i) q^{40} +(38.0706 - 65.9402i) q^{41} +(-15.8686 - 27.4852i) q^{43} +174.519 q^{44} +289.443 q^{46} +(30.4013 + 52.6566i) q^{47} +(-299.746 + 519.176i) q^{49} +(26.5765 - 46.0318i) q^{50} +(-27.7660 - 48.0921i) q^{52} +466.532 q^{53} +250.774 q^{55} +(-374.649 - 648.910i) q^{56} +(238.469 - 413.040i) q^{58} +(47.7119 - 82.6395i) q^{59} +(178.587 + 309.322i) q^{61} +480.464 q^{62} +498.842 q^{64} +(-39.8981 - 69.1055i) q^{65} +(-43.9172 + 76.0668i) q^{67} +(-183.842 + 318.424i) q^{68} +(-163.180 - 282.636i) q^{70} -412.693 q^{71} -331.133 q^{73} +(-442.643 - 766.680i) q^{74} +(-37.0648 + 64.1981i) q^{76} +(769.877 - 1333.47i) q^{77} +(124.062 + 214.881i) q^{79} +120.277 q^{80} +161.885 q^{82} +(-276.253 - 478.484i) q^{83} +(-264.171 + 457.557i) q^{85} +(33.7386 - 58.4369i) q^{86} +(612.065 + 1060.13i) q^{88} +291.478 q^{89} -489.949 q^{91} +(-236.852 - 410.240i) q^{92} +(-64.6368 + 111.954i) q^{94} +(-53.2599 + 92.2489i) q^{95} +(-99.3032 - 171.998i) q^{97} -1274.59 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 17 q^{4} + 15 q^{5} + 4 q^{7} - 150 q^{8} + 50 q^{10} + 5 q^{11} - 7 q^{13} + 60 q^{14} - 161 q^{16} - 310 q^{17} - 100 q^{19} + 85 q^{20} + 229 q^{22} + 285 q^{23} - 75 q^{25} - 370 q^{26}+ \cdots + 610 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06306 + 1.84127i 0.375848 + 0.650988i 0.990454 0.137846i \(-0.0440180\pi\)
−0.614605 + 0.788835i \(0.710685\pi\)
\(3\) 0 0
\(4\) 1.73981 3.01344i 0.217476 0.376679i
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) −15.3500 26.5870i −0.828823 1.43556i −0.898962 0.438027i \(-0.855678\pi\)
0.0701387 0.997537i \(-0.477656\pi\)
\(8\) 24.4070 1.07865
\(9\) 0 0
\(10\) 10.6306 0.336169
\(11\) 25.0774 + 43.4353i 0.687375 + 1.19057i 0.972684 + 0.232132i \(0.0745702\pi\)
−0.285310 + 0.958435i \(0.592096\pi\)
\(12\) 0 0
\(13\) 7.97962 13.8211i 0.170242 0.294868i −0.768262 0.640135i \(-0.778878\pi\)
0.938504 + 0.345267i \(0.112212\pi\)
\(14\) 32.6360 56.5272i 0.623024 1.07911i
\(15\) 0 0
\(16\) 12.0277 + 20.8325i 0.187932 + 0.325508i
\(17\) −105.668 −1.50755 −0.753774 0.657134i \(-0.771769\pi\)
−0.753774 + 0.657134i \(0.771769\pi\)
\(18\) 0 0
\(19\) −21.3040 −0.257235 −0.128618 0.991694i \(-0.541054\pi\)
−0.128618 + 0.991694i \(0.541054\pi\)
\(20\) −8.69904 15.0672i −0.0972582 0.168456i
\(21\) 0 0
\(22\) −53.3175 + 92.3487i −0.516697 + 0.894946i
\(23\) 68.0684 117.898i 0.617098 1.06884i −0.372915 0.927866i \(-0.621642\pi\)
0.990013 0.140979i \(-0.0450251\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 33.9312 0.255941
\(27\) 0 0
\(28\) −106.824 −0.720997
\(29\) −112.162 194.270i −0.718203 1.24396i −0.961711 0.274065i \(-0.911632\pi\)
0.243508 0.969899i \(-0.421702\pi\)
\(30\) 0 0
\(31\) 112.991 195.706i 0.654638 1.13387i −0.327347 0.944904i \(-0.606155\pi\)
0.981985 0.188961i \(-0.0605121\pi\)
\(32\) 72.0559 124.804i 0.398056 0.689454i
\(33\) 0 0
\(34\) −112.332 194.564i −0.566609 0.981396i
\(35\) −153.500 −0.741322
\(36\) 0 0
\(37\) −416.386 −1.85009 −0.925046 0.379854i \(-0.875974\pi\)
−0.925046 + 0.379854i \(0.875974\pi\)
\(38\) −22.6474 39.2264i −0.0966814 0.167457i
\(39\) 0 0
\(40\) 61.0176 105.686i 0.241193 0.417759i
\(41\) 38.0706 65.9402i 0.145015 0.251174i −0.784363 0.620302i \(-0.787010\pi\)
0.929379 + 0.369128i \(0.120344\pi\)
\(42\) 0 0
\(43\) −15.8686 27.4852i −0.0562777 0.0974758i 0.836514 0.547945i \(-0.184590\pi\)
−0.892792 + 0.450470i \(0.851257\pi\)
\(44\) 174.519 0.597950
\(45\) 0 0
\(46\) 289.443 0.927741
\(47\) 30.4013 + 52.6566i 0.0943507 + 0.163420i 0.909337 0.416059i \(-0.136589\pi\)
−0.814987 + 0.579480i \(0.803256\pi\)
\(48\) 0 0
\(49\) −299.746 + 519.176i −0.873896 + 1.51363i
\(50\) 26.5765 46.0318i 0.0751697 0.130198i
\(51\) 0 0
\(52\) −27.7660 48.0921i −0.0740471 0.128253i
\(53\) 466.532 1.20911 0.604557 0.796562i \(-0.293350\pi\)
0.604557 + 0.796562i \(0.293350\pi\)
\(54\) 0 0
\(55\) 250.774 0.614806
\(56\) −374.649 648.910i −0.894009 1.54847i
\(57\) 0 0
\(58\) 238.469 413.040i 0.539871 0.935084i
\(59\) 47.7119 82.6395i 0.105281 0.182352i −0.808572 0.588397i \(-0.799759\pi\)
0.913853 + 0.406045i \(0.133093\pi\)
\(60\) 0 0
\(61\) 178.587 + 309.322i 0.374848 + 0.649256i 0.990304 0.138915i \(-0.0443616\pi\)
−0.615456 + 0.788171i \(0.711028\pi\)
\(62\) 480.464 0.984178
\(63\) 0 0
\(64\) 498.842 0.974300
\(65\) −39.8981 69.1055i −0.0761346 0.131869i
\(66\) 0 0
\(67\) −43.9172 + 76.0668i −0.0800797 + 0.138702i −0.903284 0.429043i \(-0.858851\pi\)
0.823204 + 0.567745i \(0.192184\pi\)
\(68\) −183.842 + 318.424i −0.327855 + 0.567862i
\(69\) 0 0
\(70\) −163.180 282.636i −0.278625 0.482592i
\(71\) −412.693 −0.689826 −0.344913 0.938635i \(-0.612092\pi\)
−0.344913 + 0.938635i \(0.612092\pi\)
\(72\) 0 0
\(73\) −331.133 −0.530906 −0.265453 0.964124i \(-0.585522\pi\)
−0.265453 + 0.964124i \(0.585522\pi\)
\(74\) −442.643 766.680i −0.695354 1.20439i
\(75\) 0 0
\(76\) −37.0648 + 64.1981i −0.0559424 + 0.0968952i
\(77\) 769.877 1333.47i 1.13942 1.97354i
\(78\) 0 0
\(79\) 124.062 + 214.881i 0.176684 + 0.306025i 0.940743 0.339121i \(-0.110130\pi\)
−0.764059 + 0.645146i \(0.776796\pi\)
\(80\) 120.277 0.168092
\(81\) 0 0
\(82\) 161.885 0.218015
\(83\) −276.253 478.484i −0.365333 0.632776i 0.623496 0.781826i \(-0.285712\pi\)
−0.988830 + 0.149050i \(0.952378\pi\)
\(84\) 0 0
\(85\) −264.171 + 457.557i −0.337098 + 0.583871i
\(86\) 33.7386 58.4369i 0.0423038 0.0732723i
\(87\) 0 0
\(88\) 612.065 + 1060.13i 0.741436 + 1.28420i
\(89\) 291.478 0.347153 0.173577 0.984820i \(-0.444468\pi\)
0.173577 + 0.984820i \(0.444468\pi\)
\(90\) 0 0
\(91\) −489.949 −0.564402
\(92\) −236.852 410.240i −0.268408 0.464896i
\(93\) 0 0
\(94\) −64.6368 + 111.954i −0.0709231 + 0.122842i
\(95\) −53.2599 + 92.2489i −0.0575195 + 0.0996267i
\(96\) 0 0
\(97\) −99.3032 171.998i −0.103946 0.180039i 0.809361 0.587311i \(-0.199813\pi\)
−0.913307 + 0.407272i \(0.866480\pi\)
\(98\) −1274.59 −1.31381
\(99\) 0 0
\(100\) −86.9904 −0.0869904
\(101\) 408.117 + 706.880i 0.402071 + 0.696408i 0.993976 0.109600i \(-0.0349570\pi\)
−0.591904 + 0.806008i \(0.701624\pi\)
\(102\) 0 0
\(103\) 701.186 1214.49i 0.670776 1.16182i −0.306908 0.951739i \(-0.599294\pi\)
0.977684 0.210079i \(-0.0673722\pi\)
\(104\) 194.759 337.332i 0.183631 0.318059i
\(105\) 0 0
\(106\) 495.951 + 859.013i 0.454444 + 0.787120i
\(107\) 978.996 0.884515 0.442258 0.896888i \(-0.354178\pi\)
0.442258 + 0.896888i \(0.354178\pi\)
\(108\) 0 0
\(109\) 2122.96 1.86553 0.932766 0.360484i \(-0.117388\pi\)
0.932766 + 0.360484i \(0.117388\pi\)
\(110\) 266.588 + 461.743i 0.231074 + 0.400232i
\(111\) 0 0
\(112\) 369.250 639.560i 0.311525 0.539578i
\(113\) 897.399 1554.34i 0.747082 1.29398i −0.202134 0.979358i \(-0.564788\pi\)
0.949216 0.314626i \(-0.101879\pi\)
\(114\) 0 0
\(115\) −340.342 589.490i −0.275975 0.478002i
\(116\) −780.559 −0.624768
\(117\) 0 0
\(118\) 202.883 0.158278
\(119\) 1622.01 + 2809.40i 1.24949 + 2.16418i
\(120\) 0 0
\(121\) −592.252 + 1025.81i −0.444968 + 0.770706i
\(122\) −379.697 + 657.655i −0.281772 + 0.488043i
\(123\) 0 0
\(124\) −393.165 680.982i −0.284736 0.493177i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −748.894 −0.523257 −0.261628 0.965169i \(-0.584259\pi\)
−0.261628 + 0.965169i \(0.584259\pi\)
\(128\) −46.1486 79.9317i −0.0318672 0.0551955i
\(129\) 0 0
\(130\) 84.8281 146.927i 0.0572301 0.0991255i
\(131\) −1198.05 + 2075.09i −0.799042 + 1.38398i 0.121198 + 0.992628i \(0.461326\pi\)
−0.920240 + 0.391353i \(0.872007\pi\)
\(132\) 0 0
\(133\) 327.016 + 566.409i 0.213202 + 0.369277i
\(134\) −186.746 −0.120391
\(135\) 0 0
\(136\) −2579.05 −1.62611
\(137\) 502.238 + 869.901i 0.313205 + 0.542486i 0.979054 0.203600i \(-0.0652641\pi\)
−0.665850 + 0.746086i \(0.731931\pi\)
\(138\) 0 0
\(139\) −1201.51 + 2081.08i −0.733172 + 1.26989i 0.222348 + 0.974967i \(0.428628\pi\)
−0.955521 + 0.294924i \(0.904706\pi\)
\(140\) −267.061 + 462.563i −0.161220 + 0.279241i
\(141\) 0 0
\(142\) −438.717 759.881i −0.259270 0.449069i
\(143\) 800.432 0.468080
\(144\) 0 0
\(145\) −1121.62 −0.642380
\(146\) −352.014 609.706i −0.199540 0.345614i
\(147\) 0 0
\(148\) −724.432 + 1254.75i −0.402351 + 0.696892i
\(149\) 254.824 441.368i 0.140107 0.242673i −0.787429 0.616405i \(-0.788589\pi\)
0.927537 + 0.373732i \(0.121922\pi\)
\(150\) 0 0
\(151\) −721.648 1249.93i −0.388920 0.673629i 0.603385 0.797450i \(-0.293818\pi\)
−0.992305 + 0.123821i \(0.960485\pi\)
\(152\) −519.967 −0.277466
\(153\) 0 0
\(154\) 3273.70 1.71300
\(155\) −564.955 978.530i −0.292763 0.507080i
\(156\) 0 0
\(157\) 1077.82 1866.84i 0.547895 0.948981i −0.450524 0.892764i \(-0.648763\pi\)
0.998419 0.0562170i \(-0.0179039\pi\)
\(158\) −263.770 + 456.863i −0.132813 + 0.230038i
\(159\) 0 0
\(160\) −360.279 624.022i −0.178016 0.308333i
\(161\) −4179.41 −2.04586
\(162\) 0 0
\(163\) −529.909 −0.254636 −0.127318 0.991862i \(-0.540637\pi\)
−0.127318 + 0.991862i \(0.540637\pi\)
\(164\) −132.471 229.446i −0.0630747 0.109249i
\(165\) 0 0
\(166\) 587.346 1017.31i 0.274620 0.475656i
\(167\) −1489.64 + 2580.13i −0.690250 + 1.19555i 0.281506 + 0.959559i \(0.409166\pi\)
−0.971756 + 0.235988i \(0.924167\pi\)
\(168\) 0 0
\(169\) 971.151 + 1682.08i 0.442035 + 0.765628i
\(170\) −1123.32 −0.506791
\(171\) 0 0
\(172\) −110.433 −0.0489562
\(173\) 889.939 + 1541.42i 0.391103 + 0.677410i 0.992595 0.121469i \(-0.0387604\pi\)
−0.601493 + 0.798878i \(0.705427\pi\)
\(174\) 0 0
\(175\) −383.751 + 664.675i −0.165765 + 0.287113i
\(176\) −603.246 + 1044.85i −0.258360 + 0.447492i
\(177\) 0 0
\(178\) 309.859 + 536.692i 0.130477 + 0.225993i
\(179\) 2836.26 1.18431 0.592157 0.805823i \(-0.298276\pi\)
0.592157 + 0.805823i \(0.298276\pi\)
\(180\) 0 0
\(181\) 811.890 0.333410 0.166705 0.986007i \(-0.446687\pi\)
0.166705 + 0.986007i \(0.446687\pi\)
\(182\) −520.845 902.130i −0.212130 0.367419i
\(183\) 0 0
\(184\) 1661.35 2877.54i 0.665632 1.15291i
\(185\) −1040.96 + 1803.00i −0.413693 + 0.716538i
\(186\) 0 0
\(187\) −2649.88 4589.73i −1.03625 1.79484i
\(188\) 211.570 0.0820761
\(189\) 0 0
\(190\) −226.474 −0.0864745
\(191\) 574.231 + 994.597i 0.217539 + 0.376788i 0.954055 0.299632i \(-0.0968638\pi\)
−0.736516 + 0.676420i \(0.763531\pi\)
\(192\) 0 0
\(193\) 1075.47 1862.76i 0.401107 0.694739i −0.592752 0.805385i \(-0.701959\pi\)
0.993860 + 0.110646i \(0.0352921\pi\)
\(194\) 211.131 365.689i 0.0781355 0.135335i
\(195\) 0 0
\(196\) 1043.00 + 1806.53i 0.380103 + 0.658357i
\(197\) 5057.51 1.82910 0.914551 0.404471i \(-0.132544\pi\)
0.914551 + 0.404471i \(0.132544\pi\)
\(198\) 0 0
\(199\) −3554.12 −1.26605 −0.633027 0.774130i \(-0.718188\pi\)
−0.633027 + 0.774130i \(0.718188\pi\)
\(200\) −305.088 528.428i −0.107865 0.186827i
\(201\) 0 0
\(202\) −867.707 + 1502.91i −0.302236 + 0.523488i
\(203\) −3443.37 + 5964.09i −1.19053 + 2.06205i
\(204\) 0 0
\(205\) −190.353 329.701i −0.0648528 0.112328i
\(206\) 2981.61 1.00844
\(207\) 0 0
\(208\) 383.905 0.127976
\(209\) −534.248 925.345i −0.176817 0.306256i
\(210\) 0 0
\(211\) 53.9547 93.4523i 0.0176038 0.0304906i −0.857089 0.515168i \(-0.827730\pi\)
0.874693 + 0.484677i \(0.161063\pi\)
\(212\) 811.676 1405.86i 0.262953 0.455449i
\(213\) 0 0
\(214\) 1040.73 + 1802.60i 0.332444 + 0.575809i
\(215\) −158.686 −0.0503363
\(216\) 0 0
\(217\) −6937.65 −2.17032
\(218\) 2256.84 + 3908.95i 0.701157 + 1.21444i
\(219\) 0 0
\(220\) 436.299 755.691i 0.133706 0.231585i
\(221\) −843.192 + 1460.45i −0.256648 + 0.444528i
\(222\) 0 0
\(223\) 971.013 + 1681.84i 0.291587 + 0.505043i 0.974185 0.225751i \(-0.0724834\pi\)
−0.682598 + 0.730794i \(0.739150\pi\)
\(224\) −4424.24 −1.31967
\(225\) 0 0
\(226\) 3815.96 1.12316
\(227\) 1721.99 + 2982.58i 0.503492 + 0.872074i 0.999992 + 0.00403708i \(0.00128505\pi\)
−0.496500 + 0.868037i \(0.665382\pi\)
\(228\) 0 0
\(229\) −1034.70 + 1792.15i −0.298579 + 0.517155i −0.975811 0.218615i \(-0.929846\pi\)
0.677232 + 0.735770i \(0.263179\pi\)
\(230\) 723.608 1253.33i 0.207449 0.359313i
\(231\) 0 0
\(232\) −2737.53 4741.55i −0.774689 1.34180i
\(233\) 2769.24 0.778622 0.389311 0.921106i \(-0.372713\pi\)
0.389311 + 0.921106i \(0.372713\pi\)
\(234\) 0 0
\(235\) 304.013 0.0843898
\(236\) −166.019 287.554i −0.0457921 0.0793142i
\(237\) 0 0
\(238\) −3448.59 + 5973.13i −0.939238 + 1.62681i
\(239\) −1471.92 + 2549.44i −0.398371 + 0.689999i −0.993525 0.113613i \(-0.963758\pi\)
0.595154 + 0.803612i \(0.297091\pi\)
\(240\) 0 0
\(241\) −2237.27 3875.06i −0.597988 1.03575i −0.993118 0.117120i \(-0.962634\pi\)
0.395130 0.918625i \(-0.370700\pi\)
\(242\) −2518.40 −0.668961
\(243\) 0 0
\(244\) 1242.83 0.326082
\(245\) 1498.73 + 2595.88i 0.390818 + 0.676917i
\(246\) 0 0
\(247\) −169.997 + 294.444i −0.0437922 + 0.0758504i
\(248\) 2757.77 4776.60i 0.706124 1.22304i
\(249\) 0 0
\(250\) −132.882 230.159i −0.0336169 0.0582262i
\(251\) 2121.41 0.533474 0.266737 0.963769i \(-0.414055\pi\)
0.266737 + 0.963769i \(0.414055\pi\)
\(252\) 0 0
\(253\) 6827.92 1.69671
\(254\) −796.119 1378.92i −0.196665 0.340634i
\(255\) 0 0
\(256\) 2093.48 3626.02i 0.511104 0.885259i
\(257\) 2274.12 3938.89i 0.551967 0.956035i −0.446165 0.894951i \(-0.647211\pi\)
0.998133 0.0610849i \(-0.0194560\pi\)
\(258\) 0 0
\(259\) 6391.53 + 11070.5i 1.53340 + 2.65593i
\(260\) −277.660 −0.0662298
\(261\) 0 0
\(262\) −5094.42 −1.20127
\(263\) −1749.92 3030.95i −0.410284 0.710632i 0.584637 0.811295i \(-0.301237\pi\)
−0.994921 + 0.100663i \(0.967904\pi\)
\(264\) 0 0
\(265\) 1166.33 2020.14i 0.270366 0.468288i
\(266\) −695.276 + 1204.25i −0.160264 + 0.277585i
\(267\) 0 0
\(268\) 152.815 + 264.683i 0.0348308 + 0.0603287i
\(269\) −2594.25 −0.588008 −0.294004 0.955804i \(-0.594988\pi\)
−0.294004 + 0.955804i \(0.594988\pi\)
\(270\) 0 0
\(271\) 8518.20 1.90939 0.954693 0.297593i \(-0.0961838\pi\)
0.954693 + 0.297593i \(0.0961838\pi\)
\(272\) −1270.94 2201.34i −0.283317 0.490720i
\(273\) 0 0
\(274\) −1067.82 + 1849.51i −0.235435 + 0.407785i
\(275\) 626.935 1085.88i 0.137475 0.238114i
\(276\) 0 0
\(277\) 945.248 + 1637.22i 0.205034 + 0.355130i 0.950144 0.311813i \(-0.100936\pi\)
−0.745109 + 0.666942i \(0.767603\pi\)
\(278\) −5109.12 −1.10225
\(279\) 0 0
\(280\) −3746.49 −0.799626
\(281\) 1569.34 + 2718.18i 0.333164 + 0.577057i 0.983130 0.182906i \(-0.0585504\pi\)
−0.649967 + 0.759963i \(0.725217\pi\)
\(282\) 0 0
\(283\) −2034.55 + 3523.94i −0.427354 + 0.740199i −0.996637 0.0819429i \(-0.973888\pi\)
0.569283 + 0.822142i \(0.307221\pi\)
\(284\) −718.007 + 1243.62i −0.150021 + 0.259843i
\(285\) 0 0
\(286\) 850.907 + 1473.81i 0.175927 + 0.304715i
\(287\) −2337.54 −0.480768
\(288\) 0 0
\(289\) 6252.77 1.27270
\(290\) −1192.35 2065.20i −0.241438 0.418182i
\(291\) 0 0
\(292\) −576.108 + 997.848i −0.115459 + 0.199982i
\(293\) 1818.97 3150.56i 0.362681 0.628182i −0.625720 0.780048i \(-0.715195\pi\)
0.988401 + 0.151865i \(0.0485281\pi\)
\(294\) 0 0
\(295\) −238.560 413.197i −0.0470830 0.0815501i
\(296\) −10162.7 −1.99560
\(297\) 0 0
\(298\) 1083.57 0.210637
\(299\) −1086.32 1881.56i −0.210112 0.363925i
\(300\) 0 0
\(301\) −487.167 + 843.798i −0.0932885 + 0.161580i
\(302\) 1534.31 2657.50i 0.292350 0.506365i
\(303\) 0 0
\(304\) −256.237 443.816i −0.0483428 0.0837322i
\(305\) 1785.87 0.335274
\(306\) 0 0
\(307\) −6829.07 −1.26956 −0.634781 0.772692i \(-0.718910\pi\)
−0.634781 + 0.772692i \(0.718910\pi\)
\(308\) −2678.88 4639.95i −0.495595 0.858395i
\(309\) 0 0
\(310\) 1201.16 2080.47i 0.220069 0.381171i
\(311\) 3300.51 5716.66i 0.601785 1.04232i −0.390766 0.920490i \(-0.627790\pi\)
0.992551 0.121831i \(-0.0388767\pi\)
\(312\) 0 0
\(313\) −1383.30 2395.94i −0.249803 0.432672i 0.713668 0.700484i \(-0.247033\pi\)
−0.963471 + 0.267812i \(0.913699\pi\)
\(314\) 4583.15 0.823701
\(315\) 0 0
\(316\) 863.373 0.153698
\(317\) 2282.21 + 3952.90i 0.404358 + 0.700368i 0.994247 0.107116i \(-0.0341617\pi\)
−0.589889 + 0.807485i \(0.700828\pi\)
\(318\) 0 0
\(319\) 5625.44 9743.55i 0.987349 1.71014i
\(320\) 1247.10 2160.05i 0.217860 0.377345i
\(321\) 0 0
\(322\) −4442.96 7695.43i −0.768933 1.33183i
\(323\) 2251.15 0.387794
\(324\) 0 0
\(325\) −398.981 −0.0680968
\(326\) −563.325 975.707i −0.0957045 0.165765i
\(327\) 0 0
\(328\) 929.190 1609.40i 0.156421 0.270928i
\(329\) 933.321 1616.56i 0.156400 0.270893i
\(330\) 0 0
\(331\) 2332.81 + 4040.54i 0.387380 + 0.670962i 0.992096 0.125479i \(-0.0400468\pi\)
−0.604716 + 0.796441i \(0.706713\pi\)
\(332\) −1922.51 −0.317805
\(333\) 0 0
\(334\) −6334.30 −1.03772
\(335\) 219.586 + 380.334i 0.0358127 + 0.0620295i
\(336\) 0 0
\(337\) 1903.53 3297.01i 0.307691 0.532937i −0.670166 0.742212i \(-0.733777\pi\)
0.977857 + 0.209275i \(0.0671103\pi\)
\(338\) −2064.78 + 3576.31i −0.332276 + 0.575520i
\(339\) 0 0
\(340\) 919.212 + 1592.12i 0.146621 + 0.253956i
\(341\) 11334.1 1.79993
\(342\) 0 0
\(343\) 7874.33 1.23957
\(344\) −387.306 670.833i −0.0607039 0.105142i
\(345\) 0 0
\(346\) −1892.12 + 3277.24i −0.293991 + 0.509207i
\(347\) 1155.63 2001.61i 0.178783 0.309660i −0.762681 0.646775i \(-0.776117\pi\)
0.941464 + 0.337114i \(0.109451\pi\)
\(348\) 0 0
\(349\) 5436.61 + 9416.49i 0.833854 + 1.44428i 0.894960 + 0.446147i \(0.147204\pi\)
−0.0611053 + 0.998131i \(0.519463\pi\)
\(350\) −1631.80 −0.249209
\(351\) 0 0
\(352\) 7227.89 1.09445
\(353\) −1446.87 2506.05i −0.218156 0.377857i 0.736088 0.676885i \(-0.236671\pi\)
−0.954244 + 0.299029i \(0.903337\pi\)
\(354\) 0 0
\(355\) −1031.73 + 1787.01i −0.154250 + 0.267168i
\(356\) 507.117 878.352i 0.0754975 0.130766i
\(357\) 0 0
\(358\) 3015.12 + 5222.34i 0.445123 + 0.770975i
\(359\) 9875.47 1.45183 0.725915 0.687784i \(-0.241416\pi\)
0.725915 + 0.687784i \(0.241416\pi\)
\(360\) 0 0
\(361\) −6405.14 −0.933830
\(362\) 863.087 + 1494.91i 0.125312 + 0.217046i
\(363\) 0 0
\(364\) −852.417 + 1476.43i −0.122744 + 0.212599i
\(365\) −827.832 + 1433.85i −0.118714 + 0.205619i
\(366\) 0 0
\(367\) −5361.08 9285.66i −0.762523 1.32073i −0.941546 0.336884i \(-0.890627\pi\)
0.179023 0.983845i \(-0.442706\pi\)
\(368\) 3274.82 0.463891
\(369\) 0 0
\(370\) −4426.43 −0.621944
\(371\) −7161.27 12403.7i −1.00214 1.73576i
\(372\) 0 0
\(373\) −2087.95 + 3616.44i −0.289839 + 0.502016i −0.973771 0.227530i \(-0.926935\pi\)
0.683932 + 0.729546i \(0.260268\pi\)
\(374\) 5633.97 9758.32i 0.778946 1.34917i
\(375\) 0 0
\(376\) 742.005 + 1285.19i 0.101771 + 0.176273i
\(377\) −3580.03 −0.489074
\(378\) 0 0
\(379\) 1715.14 0.232457 0.116228 0.993223i \(-0.462920\pi\)
0.116228 + 0.993223i \(0.462920\pi\)
\(380\) 185.324 + 320.991i 0.0250182 + 0.0433328i
\(381\) 0 0
\(382\) −1220.88 + 2114.63i −0.163523 + 0.283230i
\(383\) 2569.53 4450.56i 0.342812 0.593768i −0.642142 0.766586i \(-0.721954\pi\)
0.984954 + 0.172818i \(0.0552873\pi\)
\(384\) 0 0
\(385\) −3849.39 6667.33i −0.509566 0.882594i
\(386\) 4573.14 0.603022
\(387\) 0 0
\(388\) −691.074 −0.0904226
\(389\) 4498.27 + 7791.23i 0.586301 + 1.01550i 0.994712 + 0.102705i \(0.0327498\pi\)
−0.408411 + 0.912798i \(0.633917\pi\)
\(390\) 0 0
\(391\) −7192.67 + 12458.1i −0.930304 + 1.61133i
\(392\) −7315.92 + 12671.5i −0.942627 + 1.63268i
\(393\) 0 0
\(394\) 5376.44 + 9312.27i 0.687465 + 1.19072i
\(395\) 1240.62 0.158031
\(396\) 0 0
\(397\) −105.823 −0.0133781 −0.00668905 0.999978i \(-0.502129\pi\)
−0.00668905 + 0.999978i \(0.502129\pi\)
\(398\) −3778.24 6544.10i −0.475844 0.824186i
\(399\) 0 0
\(400\) 300.692 520.814i 0.0375865 0.0651017i
\(401\) 7240.91 12541.6i 0.901730 1.56184i 0.0764824 0.997071i \(-0.475631\pi\)
0.825248 0.564771i \(-0.191036\pi\)
\(402\) 0 0
\(403\) −1803.25 3123.32i −0.222894 0.386063i
\(404\) 2840.18 0.349763
\(405\) 0 0
\(406\) −14642.0 −1.78983
\(407\) −10441.9 18085.9i −1.27171 2.20266i
\(408\) 0 0
\(409\) 430.532 745.704i 0.0520500 0.0901533i −0.838826 0.544399i \(-0.816758\pi\)
0.890876 + 0.454246i \(0.150091\pi\)
\(410\) 404.713 700.983i 0.0487496 0.0844368i
\(411\) 0 0
\(412\) −2439.86 4225.96i −0.291755 0.505335i
\(413\) −2929.52 −0.349037
\(414\) 0 0
\(415\) −2762.53 −0.326764
\(416\) −1149.96 1991.78i −0.135532 0.234748i
\(417\) 0 0
\(418\) 1135.88 1967.39i 0.132913 0.230211i
\(419\) −6508.87 + 11273.7i −0.758900 + 1.31445i 0.184512 + 0.982830i \(0.440930\pi\)
−0.943412 + 0.331623i \(0.892404\pi\)
\(420\) 0 0
\(421\) −7273.28 12597.7i −0.841991 1.45837i −0.888209 0.459439i \(-0.848050\pi\)
0.0462188 0.998931i \(-0.485283\pi\)
\(422\) 229.428 0.0264654
\(423\) 0 0
\(424\) 11386.7 1.30421
\(425\) 1320.85 + 2287.78i 0.150755 + 0.261115i
\(426\) 0 0
\(427\) 5482.63 9496.19i 0.621365 1.07624i
\(428\) 1703.27 2950.14i 0.192361 0.333179i
\(429\) 0 0
\(430\) −168.693 292.185i −0.0189188 0.0327683i
\(431\) 3539.94 0.395622 0.197811 0.980240i \(-0.436617\pi\)
0.197811 + 0.980240i \(0.436617\pi\)
\(432\) 0 0
\(433\) 669.471 0.0743019 0.0371509 0.999310i \(-0.488172\pi\)
0.0371509 + 0.999310i \(0.488172\pi\)
\(434\) −7375.14 12774.1i −0.815710 1.41285i
\(435\) 0 0
\(436\) 3693.55 6397.41i 0.405708 0.702707i
\(437\) −1450.13 + 2511.70i −0.158739 + 0.274944i
\(438\) 0 0
\(439\) −6284.27 10884.7i −0.683216 1.18337i −0.973994 0.226575i \(-0.927247\pi\)
0.290777 0.956791i \(-0.406086\pi\)
\(440\) 6120.65 0.663160
\(441\) 0 0
\(442\) −3585.45 −0.385843
\(443\) 5530.17 + 9578.53i 0.593106 + 1.02729i 0.993811 + 0.111083i \(0.0354320\pi\)
−0.400705 + 0.916207i \(0.631235\pi\)
\(444\) 0 0
\(445\) 728.696 1262.14i 0.0776259 0.134452i
\(446\) −2064.49 + 3575.80i −0.219185 + 0.379639i
\(447\) 0 0
\(448\) −7657.23 13262.7i −0.807522 1.39867i
\(449\) −18553.9 −1.95014 −0.975072 0.221891i \(-0.928777\pi\)
−0.975072 + 0.221891i \(0.928777\pi\)
\(450\) 0 0
\(451\) 3818.84 0.398719
\(452\) −3122.60 5408.51i −0.324945 0.562821i
\(453\) 0 0
\(454\) −3661.16 + 6341.32i −0.378473 + 0.655535i
\(455\) −1224.87 + 2121.54i −0.126204 + 0.218592i
\(456\) 0 0
\(457\) 3401.13 + 5890.93i 0.348136 + 0.602989i 0.985918 0.167228i \(-0.0534814\pi\)
−0.637782 + 0.770217i \(0.720148\pi\)
\(458\) −4399.78 −0.448882
\(459\) 0 0
\(460\) −2368.52 −0.240071
\(461\) 7447.19 + 12898.9i 0.752386 + 1.30317i 0.946663 + 0.322224i \(0.104431\pi\)
−0.194277 + 0.980947i \(0.562236\pi\)
\(462\) 0 0
\(463\) 7144.33 12374.3i 0.717117 1.24208i −0.245020 0.969518i \(-0.578794\pi\)
0.962137 0.272566i \(-0.0878722\pi\)
\(464\) 2698.09 4673.22i 0.269947 0.467562i
\(465\) 0 0
\(466\) 2943.87 + 5098.93i 0.292644 + 0.506874i
\(467\) −13115.1 −1.29956 −0.649780 0.760122i \(-0.725139\pi\)
−0.649780 + 0.760122i \(0.725139\pi\)
\(468\) 0 0
\(469\) 2696.52 0.265488
\(470\) 323.184 + 559.771i 0.0317178 + 0.0549368i
\(471\) 0 0
\(472\) 1164.51 2016.99i 0.113561 0.196693i
\(473\) 795.887 1378.52i 0.0773677 0.134005i
\(474\) 0 0
\(475\) 266.300 + 461.244i 0.0257235 + 0.0445544i
\(476\) 11287.9 1.08694
\(477\) 0 0
\(478\) −6258.96 −0.598908
\(479\) 3959.89 + 6858.74i 0.377729 + 0.654246i 0.990731 0.135835i \(-0.0433717\pi\)
−0.613002 + 0.790081i \(0.710038\pi\)
\(480\) 0 0
\(481\) −3322.60 + 5754.91i −0.314964 + 0.545533i
\(482\) 4756.70 8238.85i 0.449506 0.778567i
\(483\) 0 0
\(484\) 2060.81 + 3569.43i 0.193540 + 0.335220i
\(485\) −993.032 −0.0929717
\(486\) 0 0
\(487\) −17003.1 −1.58210 −0.791051 0.611751i \(-0.790466\pi\)
−0.791051 + 0.611751i \(0.790466\pi\)
\(488\) 4358.78 + 7549.63i 0.404329 + 0.700319i
\(489\) 0 0
\(490\) −3186.48 + 5519.15i −0.293777 + 0.508836i
\(491\) 3195.87 5535.41i 0.293743 0.508777i −0.680949 0.732331i \(-0.738432\pi\)
0.974692 + 0.223554i \(0.0717658\pi\)
\(492\) 0 0
\(493\) 11851.9 + 20528.1i 1.08273 + 1.87534i
\(494\) −722.870 −0.0658370
\(495\) 0 0
\(496\) 5436.07 0.492111
\(497\) 6334.85 + 10972.3i 0.571744 + 0.990289i
\(498\) 0 0
\(499\) 1337.06 2315.85i 0.119950 0.207759i −0.799798 0.600270i \(-0.795060\pi\)
0.919748 + 0.392510i \(0.128393\pi\)
\(500\) −217.476 + 376.679i −0.0194516 + 0.0336912i
\(501\) 0 0
\(502\) 2255.18 + 3906.09i 0.200505 + 0.347285i
\(503\) −1263.13 −0.111969 −0.0559843 0.998432i \(-0.517830\pi\)
−0.0559843 + 0.998432i \(0.517830\pi\)
\(504\) 0 0
\(505\) 4081.17 0.359624
\(506\) 7258.48 + 12572.1i 0.637706 + 1.10454i
\(507\) 0 0
\(508\) −1302.93 + 2256.74i −0.113796 + 0.197100i
\(509\) 690.421 1195.84i 0.0601226 0.104135i −0.834397 0.551163i \(-0.814184\pi\)
0.894520 + 0.447028i \(0.147518\pi\)
\(510\) 0 0
\(511\) 5082.90 + 8803.84i 0.440028 + 0.762150i
\(512\) 8163.62 0.704657
\(513\) 0 0
\(514\) 9670.09 0.829824
\(515\) −3505.93 6072.45i −0.299980 0.519581i
\(516\) 0 0
\(517\) −1524.77 + 2640.98i −0.129709 + 0.224662i
\(518\) −13589.2 + 23537.1i −1.15265 + 1.99645i
\(519\) 0 0
\(520\) −973.794 1686.66i −0.0821225 0.142240i
\(521\) −2689.80 −0.226185 −0.113092 0.993584i \(-0.536076\pi\)
−0.113092 + 0.993584i \(0.536076\pi\)
\(522\) 0 0
\(523\) 7144.18 0.597310 0.298655 0.954361i \(-0.403462\pi\)
0.298655 + 0.954361i \(0.403462\pi\)
\(524\) 4168.77 + 7220.52i 0.347545 + 0.601966i
\(525\) 0 0
\(526\) 3720.54 6444.16i 0.308409 0.534180i
\(527\) −11939.6 + 20679.9i −0.986897 + 1.70936i
\(528\) 0 0
\(529\) −3183.13 5513.34i −0.261620 0.453138i
\(530\) 4959.51 0.406467
\(531\) 0 0
\(532\) 2275.78 0.185466
\(533\) −607.577 1052.35i −0.0493754 0.0855207i
\(534\) 0 0
\(535\) 2447.49 4239.18i 0.197784 0.342571i
\(536\) −1071.89 + 1856.57i −0.0863779 + 0.149611i
\(537\) 0 0
\(538\) −2757.84 4776.72i −0.221002 0.382786i
\(539\) −30067.4 −2.40278
\(540\) 0 0
\(541\) −3310.57 −0.263091 −0.131546 0.991310i \(-0.541994\pi\)
−0.131546 + 0.991310i \(0.541994\pi\)
\(542\) 9055.35 + 15684.3i 0.717640 + 1.24299i
\(543\) 0 0
\(544\) −7614.02 + 13187.9i −0.600089 + 1.03938i
\(545\) 5307.41 9192.70i 0.417145 0.722517i
\(546\) 0 0
\(547\) −1143.26 1980.18i −0.0893643 0.154784i 0.817878 0.575391i \(-0.195150\pi\)
−0.907243 + 0.420608i \(0.861817\pi\)
\(548\) 3495.19 0.272458
\(549\) 0 0
\(550\) 2665.88 0.206679
\(551\) 2389.49 + 4138.71i 0.184747 + 0.319991i
\(552\) 0 0
\(553\) 3808.70 6596.85i 0.292879 0.507282i
\(554\) −2009.71 + 3480.92i −0.154124 + 0.266950i
\(555\) 0 0
\(556\) 4180.80 + 7241.36i 0.318895 + 0.552342i
\(557\) 13846.6 1.05332 0.526658 0.850077i \(-0.323445\pi\)
0.526658 + 0.850077i \(0.323445\pi\)
\(558\) 0 0
\(559\) −506.502 −0.0383233
\(560\) −1846.25 3197.80i −0.139318 0.241307i
\(561\) 0 0
\(562\) −3336.61 + 5779.17i −0.250438 + 0.433772i
\(563\) 8082.21 13998.8i 0.605017 1.04792i −0.387032 0.922066i \(-0.626500\pi\)
0.992049 0.125853i \(-0.0401669\pi\)
\(564\) 0 0
\(565\) −4487.00 7771.71i −0.334105 0.578687i
\(566\) −8651.37 −0.642481
\(567\) 0 0
\(568\) −10072.6 −0.744080
\(569\) −248.167 429.838i −0.0182842 0.0316691i 0.856739 0.515751i \(-0.172487\pi\)
−0.875023 + 0.484082i \(0.839154\pi\)
\(570\) 0 0
\(571\) −2985.59 + 5171.20i −0.218815 + 0.378998i −0.954446 0.298384i \(-0.903552\pi\)
0.735631 + 0.677382i \(0.236886\pi\)
\(572\) 1392.60 2412.05i 0.101796 0.176316i
\(573\) 0 0
\(574\) −2484.94 4304.04i −0.180696 0.312974i
\(575\) −3403.42 −0.246839
\(576\) 0 0
\(577\) 9571.82 0.690607 0.345304 0.938491i \(-0.387776\pi\)
0.345304 + 0.938491i \(0.387776\pi\)
\(578\) 6647.07 + 11513.1i 0.478342 + 0.828513i
\(579\) 0 0
\(580\) −1951.40 + 3379.92i −0.139702 + 0.241971i
\(581\) −8480.97 + 14689.5i −0.605594 + 1.04892i
\(582\) 0 0
\(583\) 11699.4 + 20264.0i 0.831115 + 1.43953i
\(584\) −8081.97 −0.572662
\(585\) 0 0
\(586\) 7734.71 0.545253
\(587\) −2661.09 4609.14i −0.187112 0.324088i 0.757174 0.653213i \(-0.226580\pi\)
−0.944286 + 0.329125i \(0.893246\pi\)
\(588\) 0 0
\(589\) −2407.16 + 4169.31i −0.168396 + 0.291670i
\(590\) 507.206 878.507i 0.0353921 0.0613010i
\(591\) 0 0
\(592\) −5008.15 8674.38i −0.347692 0.602221i
\(593\) −11066.5 −0.766354 −0.383177 0.923675i \(-0.625170\pi\)
−0.383177 + 0.923675i \(0.625170\pi\)
\(594\) 0 0
\(595\) 16220.1 1.11758
\(596\) −886.690 1535.79i −0.0609400 0.105551i
\(597\) 0 0
\(598\) 2309.65 4000.42i 0.157941 0.273561i
\(599\) −9192.50 + 15921.9i −0.627037 + 1.08606i 0.361106 + 0.932525i \(0.382399\pi\)
−0.988143 + 0.153536i \(0.950934\pi\)
\(600\) 0 0
\(601\) 308.915 + 535.057i 0.0209666 + 0.0363152i 0.876318 0.481733i \(-0.159992\pi\)
−0.855352 + 0.518048i \(0.826659\pi\)
\(602\) −2071.55 −0.140249
\(603\) 0 0
\(604\) −5022.12 −0.338323
\(605\) 2961.26 + 5129.05i 0.198996 + 0.344670i
\(606\) 0 0
\(607\) −6919.89 + 11985.6i −0.462718 + 0.801451i −0.999095 0.0425272i \(-0.986459\pi\)
0.536377 + 0.843978i \(0.319792\pi\)
\(608\) −1535.08 + 2658.83i −0.102394 + 0.177352i
\(609\) 0 0
\(610\) 1898.49 + 3288.28i 0.126012 + 0.218260i
\(611\) 970.362 0.0642498
\(612\) 0 0
\(613\) −25655.4 −1.69039 −0.845196 0.534457i \(-0.820516\pi\)
−0.845196 + 0.534457i \(0.820516\pi\)
\(614\) −7259.71 12574.2i −0.477163 0.826470i
\(615\) 0 0
\(616\) 18790.4 32546.0i 1.22904 2.12876i
\(617\) −2109.13 + 3653.12i −0.137618 + 0.238361i −0.926594 0.376062i \(-0.877278\pi\)
0.788977 + 0.614423i \(0.210611\pi\)
\(618\) 0 0
\(619\) −6091.28 10550.4i −0.395524 0.685067i 0.597644 0.801761i \(-0.296104\pi\)
−0.993168 + 0.116694i \(0.962770\pi\)
\(620\) −3931.65 −0.254676
\(621\) 0 0
\(622\) 14034.6 0.904719
\(623\) −4474.20 7749.54i −0.287729 0.498361i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 2941.05 5094.05i 0.187776 0.325238i
\(627\) 0 0
\(628\) −3750.40 6495.89i −0.238308 0.412761i
\(629\) 43998.8 2.78910
\(630\) 0 0
\(631\) 16673.2 1.05190 0.525951 0.850515i \(-0.323709\pi\)
0.525951 + 0.850515i \(0.323709\pi\)
\(632\) 3027.98 + 5244.61i 0.190580 + 0.330094i
\(633\) 0 0
\(634\) −4852.24 + 8404.33i −0.303954 + 0.526465i
\(635\) −1872.23 + 3242.81i −0.117004 + 0.202656i
\(636\) 0 0
\(637\) 4783.72 + 8285.65i 0.297548 + 0.515368i
\(638\) 23920.7 1.48437
\(639\) 0 0
\(640\) −461.486 −0.0285028
\(641\) −13135.4 22751.2i −0.809388 1.40190i −0.913289 0.407313i \(-0.866466\pi\)
0.103901 0.994588i \(-0.466867\pi\)
\(642\) 0 0
\(643\) −5778.17 + 10008.1i −0.354384 + 0.613810i −0.987012 0.160645i \(-0.948643\pi\)
0.632629 + 0.774455i \(0.281976\pi\)
\(644\) −7271.37 + 12594.4i −0.444925 + 0.770634i
\(645\) 0 0
\(646\) 2393.11 + 4144.99i 0.145752 + 0.252449i
\(647\) −25395.2 −1.54310 −0.771552 0.636166i \(-0.780519\pi\)
−0.771552 + 0.636166i \(0.780519\pi\)
\(648\) 0 0
\(649\) 4785.96 0.289469
\(650\) −424.140 734.633i −0.0255941 0.0443303i
\(651\) 0 0
\(652\) −921.939 + 1596.85i −0.0553772 + 0.0959161i
\(653\) 3091.42 5354.50i 0.185263 0.320885i −0.758402 0.651787i \(-0.774020\pi\)
0.943665 + 0.330902i \(0.107353\pi\)
\(654\) 0 0
\(655\) 5990.27 + 10375.5i 0.357343 + 0.618935i
\(656\) 1831.60 0.109012
\(657\) 0 0
\(658\) 3968.70 0.235131
\(659\) 4442.66 + 7694.91i 0.262612 + 0.454858i 0.966935 0.255022i \(-0.0820827\pi\)
−0.704323 + 0.709880i \(0.748749\pi\)
\(660\) 0 0
\(661\) 3585.80 6210.79i 0.211001 0.365464i −0.741027 0.671475i \(-0.765661\pi\)
0.952028 + 0.306011i \(0.0989944\pi\)
\(662\) −4959.83 + 8590.68i −0.291192 + 0.504360i
\(663\) 0 0
\(664\) −6742.51 11678.4i −0.394066 0.682543i
\(665\) 3270.16 0.190694
\(666\) 0 0
\(667\) −30538.7 −1.77281
\(668\) 5183.37 + 8977.86i 0.300226 + 0.520006i
\(669\) 0 0
\(670\) −466.866 + 808.636i −0.0269203 + 0.0466273i
\(671\) −8957.00 + 15514.0i −0.515322 + 0.892564i
\(672\) 0 0
\(673\) 2125.26 + 3681.06i 0.121728 + 0.210839i 0.920449 0.390862i \(-0.127823\pi\)
−0.798721 + 0.601701i \(0.794490\pi\)
\(674\) 8094.27 0.462581
\(675\) 0 0
\(676\) 6758.47 0.384528
\(677\) −1116.83 1934.40i −0.0634019 0.109815i 0.832582 0.553902i \(-0.186862\pi\)
−0.895984 + 0.444086i \(0.853528\pi\)
\(678\) 0 0
\(679\) −3048.61 + 5280.35i −0.172305 + 0.298441i
\(680\) −6447.62 + 11167.6i −0.363610 + 0.629791i
\(681\) 0 0
\(682\) 12048.8 + 20869.1i 0.676499 + 1.17173i
\(683\) −6071.62 −0.340153 −0.170076 0.985431i \(-0.554401\pi\)
−0.170076 + 0.985431i \(0.554401\pi\)
\(684\) 0 0
\(685\) 5022.38 0.280139
\(686\) 8370.89 + 14498.8i 0.465892 + 0.806949i
\(687\) 0 0
\(688\) 381.725 661.167i 0.0211528 0.0366377i
\(689\) 3722.74 6447.98i 0.205842 0.356529i
\(690\) 0 0
\(691\) 382.892 + 663.188i 0.0210794 + 0.0365107i 0.876373 0.481634i \(-0.159956\pi\)
−0.855293 + 0.518144i \(0.826623\pi\)
\(692\) 6193.29 0.340222
\(693\) 0 0
\(694\) 4914.02 0.268780
\(695\) 6007.56 + 10405.4i 0.327885 + 0.567913i
\(696\) 0 0
\(697\) −4022.85 + 6967.78i −0.218617 + 0.378656i
\(698\) −11558.9 + 20020.6i −0.626806 + 1.08566i
\(699\) 0 0
\(700\) 1335.30 + 2312.82i 0.0720997 + 0.124880i
\(701\) 23564.3 1.26963 0.634814 0.772665i \(-0.281077\pi\)
0.634814 + 0.772665i \(0.281077\pi\)
\(702\) 0 0
\(703\) 8870.67 0.475909
\(704\) 12509.6 + 21667.3i 0.669709 + 1.15997i
\(705\) 0 0
\(706\) 3076.21 5328.16i 0.163987 0.284034i
\(707\) 12529.2 21701.3i 0.666492 1.15440i
\(708\) 0 0
\(709\) −12086.1 20933.8i −0.640204 1.10887i −0.985387 0.170331i \(-0.945516\pi\)
0.345183 0.938535i \(-0.387817\pi\)
\(710\) −4387.17 −0.231898
\(711\) 0 0
\(712\) 7114.13 0.374457
\(713\) −15382.2 26642.8i −0.807951 1.39941i
\(714\) 0 0
\(715\) 2001.08 3465.97i 0.104666 0.181287i
\(716\) 4934.55 8546.90i 0.257560 0.446107i
\(717\) 0 0
\(718\) 10498.2 + 18183.4i 0.545668 + 0.945125i
\(719\) 12829.0 0.665424 0.332712 0.943028i \(-0.392036\pi\)
0.332712 + 0.943028i \(0.392036\pi\)
\(720\) 0 0
\(721\) −43052.9 −2.22382
\(722\) −6809.05 11793.6i −0.350979 0.607913i
\(723\) 0 0
\(724\) 1412.53 2446.58i 0.0725088 0.125589i
\(725\) −2804.04 + 4856.74i −0.143641 + 0.248793i
\(726\) 0 0
\(727\) 12362.4 + 21412.2i 0.630666 + 1.09235i 0.987416 + 0.158146i \(0.0505517\pi\)
−0.356749 + 0.934200i \(0.616115\pi\)
\(728\) −11958.2 −0.608792
\(729\) 0 0
\(730\) −3520.14 −0.178474
\(731\) 1676.81 + 2904.32i 0.0848413 + 0.146949i
\(732\) 0 0
\(733\) 10086.1 17469.7i 0.508239 0.880296i −0.491715 0.870756i \(-0.663630\pi\)
0.999954 0.00954010i \(-0.00303675\pi\)
\(734\) 11398.3 19742.4i 0.573186 0.992788i
\(735\) 0 0
\(736\) −9809.46 16990.5i −0.491279 0.850921i
\(737\) −4405.32 −0.220179
\(738\) 0 0
\(739\) −16452.8 −0.818979 −0.409489 0.912315i \(-0.634293\pi\)
−0.409489 + 0.912315i \(0.634293\pi\)
\(740\) 3622.16 + 6273.76i 0.179937 + 0.311660i
\(741\) 0 0
\(742\) 15225.7 26371.7i 0.753307 1.30477i
\(743\) −10432.3 + 18069.3i −0.515107 + 0.892191i 0.484739 + 0.874659i \(0.338914\pi\)
−0.999846 + 0.0175328i \(0.994419\pi\)
\(744\) 0 0
\(745\) −1274.12 2206.84i −0.0626579 0.108527i
\(746\) −8878.47 −0.435742
\(747\) 0 0
\(748\) −18441.2 −0.901438
\(749\) −15027.6 26028.6i −0.733107 1.26978i
\(750\) 0 0
\(751\) −7762.84 + 13445.6i −0.377191 + 0.653313i −0.990652 0.136411i \(-0.956443\pi\)
0.613462 + 0.789725i \(0.289777\pi\)
\(752\) −731.313 + 1266.67i −0.0354631 + 0.0614239i
\(753\) 0 0
\(754\) −3805.78 6591.81i −0.183818 0.318381i
\(755\) −7216.48 −0.347861
\(756\) 0 0
\(757\) 30105.7 1.44546 0.722729 0.691132i \(-0.242888\pi\)
0.722729 + 0.691132i \(0.242888\pi\)
\(758\) 1823.30 + 3158.05i 0.0873684 + 0.151327i
\(759\) 0 0
\(760\) −1299.92 + 2251.52i −0.0620433 + 0.107462i
\(761\) 10869.9 18827.3i 0.517786 0.896831i −0.482001 0.876171i \(-0.660090\pi\)
0.999787 0.0206605i \(-0.00657692\pi\)
\(762\) 0 0
\(763\) −32587.5 56443.2i −1.54620 2.67809i
\(764\) 3996.21 0.189238
\(765\) 0 0
\(766\) 10926.3 0.515381
\(767\) −761.446 1318.86i −0.0358464 0.0620878i
\(768\) 0 0
\(769\) −971.112 + 1682.02i −0.0455386 + 0.0788752i −0.887896 0.460044i \(-0.847834\pi\)
0.842358 + 0.538919i \(0.181167\pi\)
\(770\) 8184.25 14175.5i 0.383039 0.663443i
\(771\) 0 0
\(772\) −3742.21 6481.70i −0.174462 0.302178i
\(773\) 7921.02 0.368563 0.184282 0.982873i \(-0.441004\pi\)
0.184282 + 0.982873i \(0.441004\pi\)
\(774\) 0 0
\(775\) −5649.55 −0.261855
\(776\) −2423.70 4197.97i −0.112121 0.194199i
\(777\) 0 0
\(778\) −9563.85 + 16565.1i −0.440721 + 0.763351i
\(779\) −811.054 + 1404.79i −0.0373030 + 0.0646107i
\(780\) 0 0
\(781\) −10349.3 17925.5i −0.474169 0.821285i
\(782\) −30585.0 −1.39861
\(783\) 0 0
\(784\) −14421.0 −0.656933
\(785\) −5389.10 9334.20i −0.245026 0.424397i
\(786\) 0 0
\(787\) 680.702 1179.01i 0.0308315 0.0534017i −0.850198 0.526463i \(-0.823518\pi\)
0.881029 + 0.473061i \(0.156851\pi\)
\(788\) 8799.10 15240.5i 0.397786 0.688985i
\(789\) 0 0
\(790\) 1318.85 + 2284.31i 0.0593956 + 0.102876i
\(791\) −55100.4 −2.47679
\(792\) 0 0
\(793\) 5700.22 0.255260
\(794\) −112.496 194.849i −0.00502814 0.00870899i
\(795\) 0 0
\(796\) −6183.48 + 10710.1i −0.275336 + 0.476896i
\(797\) 13958.7 24177.2i 0.620381 1.07453i −0.369033 0.929416i \(-0.620311\pi\)
0.989415 0.145116i \(-0.0463555\pi\)
\(798\) 0 0
\(799\) −3212.45 5564.13i −0.142238 0.246364i
\(800\) −3602.79 −0.159222
\(801\) 0 0
\(802\) 30790.1 1.35565
\(803\) −8303.95 14382.9i −0.364932 0.632080i
\(804\) 0 0
\(805\) −10448.5 + 18097.4i −0.457468 + 0.792358i
\(806\) 3833.92 6640.55i 0.167549 0.290203i
\(807\) 0 0
\(808\) 9960.94 + 17252.9i 0.433694 + 0.751180i
\(809\) −5275.87 −0.229283 −0.114641 0.993407i \(-0.536572\pi\)
−0.114641 + 0.993407i \(0.536572\pi\)
\(810\) 0 0
\(811\) −23769.1 −1.02916 −0.514579 0.857443i \(-0.672052\pi\)
−0.514579 + 0.857443i \(0.672052\pi\)
\(812\) 11981.6 + 20752.7i 0.517822 + 0.896894i
\(813\) 0 0
\(814\) 22200.7 38452.7i 0.955938 1.65573i
\(815\) −1324.77 + 2294.57i −0.0569383 + 0.0986201i
\(816\) 0 0
\(817\) 338.064 + 585.545i 0.0144766 + 0.0250742i
\(818\) 1830.73 0.0782516
\(819\) 0 0
\(820\) −1324.71 −0.0564157
\(821\) −17104.6 29626.1i −0.727108 1.25939i −0.958100 0.286432i \(-0.907531\pi\)
0.230992 0.972956i \(-0.425803\pi\)
\(822\) 0 0
\(823\) −620.065 + 1073.98i −0.0262626 + 0.0454882i −0.878858 0.477083i \(-0.841694\pi\)
0.852595 + 0.522572i \(0.175027\pi\)
\(824\) 17113.9 29642.1i 0.723532 1.25319i
\(825\) 0 0
\(826\) −3114.25 5394.04i −0.131185 0.227219i
\(827\) 26971.0 1.13407 0.567034 0.823694i \(-0.308091\pi\)
0.567034 + 0.823694i \(0.308091\pi\)
\(828\) 0 0
\(829\) −26743.1 −1.12042 −0.560208 0.828352i \(-0.689279\pi\)
−0.560208 + 0.828352i \(0.689279\pi\)
\(830\) −2936.73 5086.57i −0.122814 0.212720i
\(831\) 0 0
\(832\) 3980.56 6894.54i 0.165867 0.287290i
\(833\) 31673.7 54860.4i 1.31744 2.28187i
\(834\) 0 0
\(835\) 7448.19 + 12900.7i 0.308689 + 0.534665i
\(836\) −3717.96 −0.153814
\(837\) 0 0
\(838\) −27677.3 −1.14093
\(839\) −2636.57 4566.67i −0.108492 0.187913i 0.806668 0.591005i \(-0.201269\pi\)
−0.915159 + 0.403092i \(0.867935\pi\)
\(840\) 0 0
\(841\) −12966.0 + 22457.7i −0.531631 + 0.920813i
\(842\) 15463.9 26784.2i 0.632922 1.09625i
\(843\) 0 0
\(844\) −187.742 325.178i −0.00765679 0.0132620i
\(845\) 9711.51 0.395368
\(846\) 0 0
\(847\) 36364.3 1.47520
\(848\) 5611.29 + 9719.04i 0.227232 + 0.393577i
\(849\) 0 0
\(850\) −2808.29 + 4864.10i −0.113322 + 0.196279i
\(851\) −28342.7 + 49091.1i −1.14169 + 1.97746i
\(852\) 0 0
\(853\) −2521.73 4367.76i −0.101222 0.175322i 0.810966 0.585093i \(-0.198942\pi\)
−0.912188 + 0.409771i \(0.865609\pi\)
\(854\) 23313.5 0.934157
\(855\) 0 0
\(856\) 23894.4 0.954081
\(857\) −7239.27 12538.8i −0.288552 0.499786i 0.684913 0.728625i \(-0.259840\pi\)
−0.973464 + 0.228839i \(0.926507\pi\)
\(858\) 0 0
\(859\) 3936.94 6818.98i 0.156376 0.270850i −0.777183 0.629274i \(-0.783352\pi\)
0.933559 + 0.358424i \(0.116686\pi\)
\(860\) −276.083 + 478.190i −0.0109469 + 0.0189606i
\(861\) 0 0
\(862\) 3763.17 + 6518.01i 0.148694 + 0.257545i
\(863\) −24166.0 −0.953209 −0.476604 0.879118i \(-0.658133\pi\)
−0.476604 + 0.879118i \(0.658133\pi\)
\(864\) 0 0
\(865\) 8899.39 0.349813
\(866\) 711.688 + 1232.68i 0.0279262 + 0.0483697i
\(867\) 0 0
\(868\) −12070.2 + 20906.2i −0.471992 + 0.817513i
\(869\) −6222.28 + 10777.3i −0.242896 + 0.420708i
\(870\) 0 0
\(871\) 700.885 + 1213.97i 0.0272659 + 0.0472259i
\(872\) 51815.2 2.01225
\(873\) 0 0
\(874\) −6166.29 −0.238647
\(875\) 1918.75 + 3323.38i 0.0741322 + 0.128401i
\(876\) 0 0
\(877\) −3205.91 + 5552.80i −0.123439 + 0.213802i −0.921122 0.389275i \(-0.872726\pi\)
0.797683 + 0.603077i \(0.206059\pi\)
\(878\) 13361.1 23142.1i 0.513572 0.889532i
\(879\) 0 0
\(880\) 3016.23 + 5224.26i 0.115542 + 0.200125i
\(881\) −22908.5 −0.876059 −0.438029 0.898961i \(-0.644323\pi\)
−0.438029 + 0.898961i \(0.644323\pi\)
\(882\) 0 0
\(883\) 39198.4 1.49392 0.746960 0.664869i \(-0.231513\pi\)
0.746960 + 0.664869i \(0.231513\pi\)
\(884\) 2933.98 + 5081.81i 0.111630 + 0.193348i
\(885\) 0 0
\(886\) −11757.8 + 20365.1i −0.445836 + 0.772211i
\(887\) 2711.10 4695.75i 0.102626 0.177754i −0.810140 0.586237i \(-0.800609\pi\)
0.912766 + 0.408483i \(0.133942\pi\)
\(888\) 0 0
\(889\) 11495.5 + 19910.9i 0.433687 + 0.751168i
\(890\) 3098.59 0.116702
\(891\) 0 0
\(892\) 6757.51 0.253653
\(893\) −647.668 1121.79i −0.0242703 0.0420374i
\(894\) 0 0
\(895\) 7090.66 12281.4i 0.264821 0.458683i
\(896\) −1416.76 + 2453.91i −0.0528245 + 0.0914947i
\(897\) 0 0
\(898\) −19723.9 34162.9i −0.732958 1.26952i
\(899\) −50693.0 −1.88065
\(900\) 0 0
\(901\) −49297.6 −1.82280
\(902\) 4059.66 + 7031.54i 0.149858 + 0.259562i
\(903\) 0 0
\(904\) 21902.9 37936.9i 0.805839 1.39575i
\(905\) 2029.72 3515.59i 0.0745528 0.129129i
\(906\) 0 0
\(907\) 15363.5 + 26610.3i 0.562444 + 0.974181i 0.997282 + 0.0736727i \(0.0234720\pi\)
−0.434839 + 0.900508i \(0.643195\pi\)
\(908\) 11983.8 0.437990
\(909\) 0 0
\(910\) −5208.45 −0.189735
\(911\) 2050.67 + 3551.86i 0.0745793 + 0.129175i 0.900903 0.434020i \(-0.142905\pi\)
−0.826324 + 0.563195i \(0.809572\pi\)
\(912\) 0 0
\(913\) 13855.4 23998.2i 0.502242 0.869908i
\(914\) −7231.21 + 12524.8i −0.261693 + 0.453265i
\(915\) 0 0
\(916\) 3600.35 + 6235.98i 0.129868 + 0.224937i
\(917\) 73560.7 2.64906
\(918\) 0 0
\(919\) −50926.3 −1.82797 −0.913984 0.405750i \(-0.867010\pi\)
−0.913984 + 0.405750i \(0.867010\pi\)
\(920\) −8306.74 14387.7i −0.297680 0.515596i
\(921\) 0 0
\(922\) −15833.6 + 27424.6i −0.565566 + 0.979589i
\(923\) −3293.13 + 5703.87i −0.117437 + 0.203408i
\(924\) 0 0
\(925\) 5204.82 + 9015.02i 0.185009 + 0.320445i
\(926\) 30379.4 1.07811
\(927\) 0 0
\(928\) −32327.6 −1.14354
\(929\) 11020.4 + 19087.9i 0.389201 + 0.674116i 0.992342 0.123519i \(-0.0394179\pi\)
−0.603141 + 0.797634i \(0.706085\pi\)
\(930\) 0 0
\(931\) 6385.79 11060.5i 0.224797 0.389359i
\(932\) 4817.95 8344.93i 0.169332 0.293291i
\(933\) 0 0
\(934\) −13942.1 24148.5i −0.488438 0.845999i
\(935\) −26498.8 −0.926850
\(936\) 0 0
\(937\) 28111.2 0.980097 0.490049 0.871695i \(-0.336979\pi\)
0.490049 + 0.871695i \(0.336979\pi\)
\(938\) 2866.56 + 4965.03i 0.0997831 + 0.172829i
\(939\) 0 0
\(940\) 528.924 916.123i 0.0183528 0.0317879i
\(941\) 26405.6 45735.9i 0.914770 1.58443i 0.107533 0.994201i \(-0.465705\pi\)
0.807237 0.590227i \(-0.200962\pi\)
\(942\) 0 0
\(943\) −5182.81 8976.89i −0.178977 0.309998i
\(944\) 2295.45 0.0791427
\(945\) 0 0
\(946\) 3384.30 0.116314
\(947\) −913.114 1581.56i −0.0313329 0.0542701i 0.849934 0.526890i \(-0.176642\pi\)
−0.881267 + 0.472619i \(0.843309\pi\)
\(948\) 0 0
\(949\) −2642.31 + 4576.62i −0.0903826 + 0.156547i
\(950\) −566.185 + 980.661i −0.0193363 + 0.0334914i
\(951\) 0 0
\(952\) 39588.4 + 68569.2i 1.34776 + 2.33439i
\(953\) 41164.2 1.39920 0.699601 0.714534i \(-0.253361\pi\)
0.699601 + 0.714534i \(0.253361\pi\)
\(954\) 0 0
\(955\) 5742.31 0.194573
\(956\) 5121.72 + 8871.08i 0.173272 + 0.300116i
\(957\) 0 0
\(958\) −8419.21 + 14582.5i −0.283938 + 0.491795i
\(959\) 15418.7 26706.0i 0.519183 0.899251i
\(960\) 0 0
\(961\) −10638.4 18426.2i −0.357101 0.618517i
\(962\) −14128.5 −0.473514
\(963\) 0 0
\(964\) −15569.7 −0.520192
\(965\) −5377.33 9313.81i −0.179381 0.310697i
\(966\) 0 0
\(967\) 3544.39 6139.06i 0.117870 0.204156i −0.801054 0.598593i \(-0.795727\pi\)
0.918923 + 0.394436i \(0.129060\pi\)
\(968\) −14455.1 + 25037.0i −0.479964 + 0.831321i
\(969\) 0 0
\(970\) −1055.65 1828.44i −0.0349433 0.0605235i
\(971\) −2355.90 −0.0778625 −0.0389312 0.999242i \(-0.512395\pi\)
−0.0389312 + 0.999242i \(0.512395\pi\)
\(972\) 0 0
\(973\) 73773.0 2.43068
\(974\) −18075.3 31307.3i −0.594630 1.02993i
\(975\) 0 0
\(976\) −4295.97 + 7440.84i −0.140892 + 0.244032i
\(977\) −8397.55 + 14545.0i −0.274986 + 0.476290i −0.970132 0.242579i \(-0.922007\pi\)
0.695146 + 0.718869i \(0.255340\pi\)
\(978\) 0 0
\(979\) 7309.52 + 12660.5i 0.238624 + 0.413310i
\(980\) 10430.0 0.339974
\(981\) 0 0
\(982\) 13589.6 0.441611
\(983\) −7366.92 12759.9i −0.239032 0.414015i 0.721405 0.692513i \(-0.243497\pi\)
−0.960437 + 0.278498i \(0.910163\pi\)
\(984\) 0 0
\(985\) 12643.8 21899.7i 0.409000 0.708408i
\(986\) −25198.6 + 43645.3i −0.813881 + 1.40968i
\(987\) 0 0
\(988\) 591.526 + 1024.55i 0.0190475 + 0.0329913i
\(989\) −4320.61 −0.138915
\(990\) 0 0
\(991\) 36809.2 1.17990 0.589950 0.807440i \(-0.299147\pi\)
0.589950 + 0.807440i \(0.299147\pi\)
\(992\) −16283.3 28203.5i −0.521165 0.902685i
\(993\) 0 0
\(994\) −13468.6 + 23328.4i −0.429778 + 0.744397i
\(995\) −8885.29 + 15389.8i −0.283098 + 0.490340i
\(996\) 0 0
\(997\) 10605.0 + 18368.4i 0.336875 + 0.583484i 0.983843 0.179033i \(-0.0572968\pi\)
−0.646969 + 0.762517i \(0.723964\pi\)
\(998\) 5685.49 0.180332
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.4.e.v.271.2 6
3.2 odd 2 405.4.e.q.271.2 6
9.2 odd 6 405.4.e.q.136.2 6
9.4 even 3 135.4.a.e.1.2 3
9.5 odd 6 135.4.a.h.1.2 yes 3
9.7 even 3 inner 405.4.e.v.136.2 6
36.23 even 6 2160.4.a.bq.1.1 3
36.31 odd 6 2160.4.a.bi.1.1 3
45.4 even 6 675.4.a.s.1.2 3
45.13 odd 12 675.4.b.m.649.4 6
45.14 odd 6 675.4.a.p.1.2 3
45.22 odd 12 675.4.b.m.649.3 6
45.23 even 12 675.4.b.n.649.3 6
45.32 even 12 675.4.b.n.649.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.e.1.2 3 9.4 even 3
135.4.a.h.1.2 yes 3 9.5 odd 6
405.4.e.q.136.2 6 9.2 odd 6
405.4.e.q.271.2 6 3.2 odd 2
405.4.e.v.136.2 6 9.7 even 3 inner
405.4.e.v.271.2 6 1.1 even 1 trivial
675.4.a.p.1.2 3 45.14 odd 6
675.4.a.s.1.2 3 45.4 even 6
675.4.b.m.649.3 6 45.22 odd 12
675.4.b.m.649.4 6 45.13 odd 12
675.4.b.n.649.3 6 45.23 even 12
675.4.b.n.649.4 6 45.32 even 12
2160.4.a.bi.1.1 3 36.31 odd 6
2160.4.a.bq.1.1 3 36.23 even 6