Properties

Label 405.4.e.v.271.1
Level $405$
Weight $4$
Character 405.271
Analytic conductor $23.896$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(136,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.136");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.84779568.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 13x^{4} - 4x^{3} + 152x^{2} - 96x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.1
Root \(1.83685 - 3.18152i\) of defining polynomial
Character \(\chi\) \(=\) 405.271
Dual form 405.4.e.v.136.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29244 - 2.23857i) q^{2} +(0.659207 - 1.14178i) q^{4} +(2.50000 - 4.33013i) q^{5} +(11.4468 + 19.8264i) q^{7} -24.0869 q^{8} -12.9244 q^{10} +(5.54140 + 9.59799i) q^{11} +(5.81841 - 10.0778i) q^{13} +(29.5885 - 51.2487i) q^{14} +(25.8572 + 44.7861i) q^{16} -10.0643 q^{17} +117.865 q^{19} +(-3.29603 - 5.70890i) q^{20} +(14.3238 - 24.8096i) q^{22} +(86.2204 - 149.338i) q^{23} +(-12.5000 - 21.6506i) q^{25} -30.0798 q^{26} +30.1831 q^{28} +(89.1603 + 154.430i) q^{29} +(-70.2642 + 121.701i) q^{31} +(-29.5100 + 51.1128i) q^{32} +(13.0075 + 22.5296i) q^{34} +114.468 q^{35} +250.074 q^{37} +(-152.333 - 263.848i) q^{38} +(-60.2174 + 104.300i) q^{40} +(180.784 - 313.128i) q^{41} +(180.354 + 312.382i) q^{43} +14.6117 q^{44} -445.738 q^{46} +(-300.060 - 519.720i) q^{47} +(-90.5568 + 156.849i) q^{49} +(-32.3110 + 55.9642i) q^{50} +(-7.67107 - 13.2867i) q^{52} -201.312 q^{53} +55.4140 q^{55} +(-275.718 - 477.557i) q^{56} +(230.468 - 399.183i) q^{58} +(207.886 - 360.069i) q^{59} +(27.3135 + 47.3083i) q^{61} +363.248 q^{62} +566.275 q^{64} +(-29.0921 - 50.3889i) q^{65} +(265.539 - 459.928i) q^{67} +(-6.63444 + 11.4912i) q^{68} +(-147.942 - 256.244i) q^{70} +933.534 q^{71} -560.199 q^{73} +(-323.205 - 559.807i) q^{74} +(77.6972 - 134.575i) q^{76} +(-126.862 + 219.732i) q^{77} +(-405.391 - 702.157i) q^{79} +258.572 q^{80} -934.611 q^{82} +(269.105 + 466.104i) q^{83} +(-25.1607 + 43.5796i) q^{85} +(466.192 - 807.468i) q^{86} +(-133.475 - 231.186i) q^{88} -686.173 q^{89} +266.408 q^{91} +(-113.674 - 196.889i) q^{92} +(-775.619 + 1343.41i) q^{94} +(294.662 - 510.369i) q^{95} +(-357.327 - 618.909i) q^{97} +468.156 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{2} - 17 q^{4} + 15 q^{5} + 4 q^{7} - 150 q^{8} + 50 q^{10} + 5 q^{11} - 7 q^{13} + 60 q^{14} - 161 q^{16} - 310 q^{17} - 100 q^{19} + 85 q^{20} + 229 q^{22} + 285 q^{23} - 75 q^{25} - 370 q^{26}+ \cdots + 610 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29244 2.23857i −0.456946 0.791454i 0.541852 0.840474i \(-0.317723\pi\)
−0.998798 + 0.0490204i \(0.984390\pi\)
\(3\) 0 0
\(4\) 0.659207 1.14178i 0.0824008 0.142722i
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) 11.4468 + 19.8264i 0.618067 + 1.07052i 0.989838 + 0.142199i \(0.0454174\pi\)
−0.371771 + 0.928324i \(0.621249\pi\)
\(8\) −24.0869 −1.06450
\(9\) 0 0
\(10\) −12.9244 −0.408705
\(11\) 5.54140 + 9.59799i 0.151891 + 0.263082i 0.931922 0.362658i \(-0.118131\pi\)
−0.780032 + 0.625740i \(0.784797\pi\)
\(12\) 0 0
\(13\) 5.81841 10.0778i 0.124134 0.215006i −0.797260 0.603636i \(-0.793718\pi\)
0.921394 + 0.388630i \(0.127052\pi\)
\(14\) 29.5885 51.2487i 0.564847 0.978343i
\(15\) 0 0
\(16\) 25.8572 + 44.7861i 0.404019 + 0.699782i
\(17\) −10.0643 −0.143585 −0.0717926 0.997420i \(-0.522872\pi\)
−0.0717926 + 0.997420i \(0.522872\pi\)
\(18\) 0 0
\(19\) 117.865 1.42316 0.711579 0.702606i \(-0.247980\pi\)
0.711579 + 0.702606i \(0.247980\pi\)
\(20\) −3.29603 5.70890i −0.0368508 0.0638274i
\(21\) 0 0
\(22\) 14.3238 24.8096i 0.138812 0.240429i
\(23\) 86.2204 149.338i 0.781661 1.35388i −0.149313 0.988790i \(-0.547706\pi\)
0.930974 0.365086i \(-0.118961\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −30.0798 −0.226889
\(27\) 0 0
\(28\) 30.1831 0.203717
\(29\) 89.1603 + 154.430i 0.570919 + 0.988860i 0.996472 + 0.0839270i \(0.0267462\pi\)
−0.425553 + 0.904933i \(0.639920\pi\)
\(30\) 0 0
\(31\) −70.2642 + 121.701i −0.407091 + 0.705102i −0.994562 0.104143i \(-0.966790\pi\)
0.587471 + 0.809245i \(0.300123\pi\)
\(32\) −29.5100 + 51.1128i −0.163021 + 0.282361i
\(33\) 0 0
\(34\) 13.0075 + 22.5296i 0.0656107 + 0.113641i
\(35\) 114.468 0.552816
\(36\) 0 0
\(37\) 250.074 1.11113 0.555566 0.831473i \(-0.312502\pi\)
0.555566 + 0.831473i \(0.312502\pi\)
\(38\) −152.333 263.848i −0.650307 1.12636i
\(39\) 0 0
\(40\) −60.2174 + 104.300i −0.238030 + 0.412280i
\(41\) 180.784 313.128i 0.688629 1.19274i −0.283652 0.958927i \(-0.591546\pi\)
0.972281 0.233813i \(-0.0751205\pi\)
\(42\) 0 0
\(43\) 180.354 + 312.382i 0.639620 + 1.10786i 0.985516 + 0.169582i \(0.0542418\pi\)
−0.345896 + 0.938273i \(0.612425\pi\)
\(44\) 14.6117 0.0500636
\(45\) 0 0
\(46\) −445.738 −1.42871
\(47\) −300.060 519.720i −0.931241 1.61296i −0.781204 0.624276i \(-0.785394\pi\)
−0.150037 0.988680i \(-0.547939\pi\)
\(48\) 0 0
\(49\) −90.5568 + 156.849i −0.264014 + 0.457286i
\(50\) −32.3110 + 55.9642i −0.0913892 + 0.158291i
\(51\) 0 0
\(52\) −7.67107 13.2867i −0.0204574 0.0354333i
\(53\) −201.312 −0.521742 −0.260871 0.965374i \(-0.584010\pi\)
−0.260871 + 0.965374i \(0.584010\pi\)
\(54\) 0 0
\(55\) 55.4140 0.135855
\(56\) −275.718 477.557i −0.657934 1.13958i
\(57\) 0 0
\(58\) 230.468 399.183i 0.521758 0.903712i
\(59\) 207.886 360.069i 0.458719 0.794525i −0.540174 0.841553i \(-0.681642\pi\)
0.998894 + 0.0470283i \(0.0149751\pi\)
\(60\) 0 0
\(61\) 27.3135 + 47.3083i 0.0573301 + 0.0992986i 0.893266 0.449528i \(-0.148408\pi\)
−0.835936 + 0.548827i \(0.815075\pi\)
\(62\) 363.248 0.744074
\(63\) 0 0
\(64\) 566.275 1.10601
\(65\) −29.0921 50.3889i −0.0555143 0.0961535i
\(66\) 0 0
\(67\) 265.539 459.928i 0.484191 0.838643i −0.515644 0.856803i \(-0.672447\pi\)
0.999835 + 0.0181595i \(0.00578066\pi\)
\(68\) −6.63444 + 11.4912i −0.0118315 + 0.0204928i
\(69\) 0 0
\(70\) −147.942 256.244i −0.252607 0.437528i
\(71\) 933.534 1.56042 0.780212 0.625515i \(-0.215111\pi\)
0.780212 + 0.625515i \(0.215111\pi\)
\(72\) 0 0
\(73\) −560.199 −0.898169 −0.449085 0.893489i \(-0.648250\pi\)
−0.449085 + 0.893489i \(0.648250\pi\)
\(74\) −323.205 559.807i −0.507727 0.879409i
\(75\) 0 0
\(76\) 77.6972 134.575i 0.117269 0.203117i
\(77\) −126.862 + 219.732i −0.187757 + 0.325205i
\(78\) 0 0
\(79\) −405.391 702.157i −0.577342 0.999985i −0.995783 0.0917413i \(-0.970757\pi\)
0.418441 0.908244i \(-0.362577\pi\)
\(80\) 258.572 0.361366
\(81\) 0 0
\(82\) −934.611 −1.25867
\(83\) 269.105 + 466.104i 0.355881 + 0.616404i 0.987268 0.159064i \(-0.0508475\pi\)
−0.631387 + 0.775468i \(0.717514\pi\)
\(84\) 0 0
\(85\) −25.1607 + 43.5796i −0.0321066 + 0.0556103i
\(86\) 466.192 807.468i 0.584544 1.01246i
\(87\) 0 0
\(88\) −133.475 231.186i −0.161688 0.280052i
\(89\) −686.173 −0.817238 −0.408619 0.912705i \(-0.633990\pi\)
−0.408619 + 0.912705i \(0.633990\pi\)
\(90\) 0 0
\(91\) 266.408 0.306892
\(92\) −113.674 196.889i −0.128819 0.223121i
\(93\) 0 0
\(94\) −775.619 + 1343.41i −0.851053 + 1.47407i
\(95\) 294.662 510.369i 0.318228 0.551187i
\(96\) 0 0
\(97\) −357.327 618.909i −0.374032 0.647842i 0.616150 0.787629i \(-0.288692\pi\)
−0.990182 + 0.139787i \(0.955358\pi\)
\(98\) 468.156 0.482560
\(99\) 0 0
\(100\) −32.9603 −0.0329603
\(101\) 486.953 + 843.428i 0.479739 + 0.830933i 0.999730 0.0232390i \(-0.00739786\pi\)
−0.519991 + 0.854172i \(0.674065\pi\)
\(102\) 0 0
\(103\) 379.614 657.511i 0.363151 0.628995i −0.625327 0.780363i \(-0.715034\pi\)
0.988478 + 0.151368i \(0.0483677\pi\)
\(104\) −140.148 + 242.743i −0.132141 + 0.228874i
\(105\) 0 0
\(106\) 260.183 + 450.650i 0.238408 + 0.412934i
\(107\) −1832.06 −1.65525 −0.827625 0.561282i \(-0.810308\pi\)
−0.827625 + 0.561282i \(0.810308\pi\)
\(108\) 0 0
\(109\) 1370.91 1.20467 0.602335 0.798244i \(-0.294237\pi\)
0.602335 + 0.798244i \(0.294237\pi\)
\(110\) −71.6192 124.048i −0.0620784 0.107523i
\(111\) 0 0
\(112\) −591.963 + 1025.31i −0.499422 + 0.865025i
\(113\) 291.783 505.384i 0.242909 0.420730i −0.718633 0.695390i \(-0.755232\pi\)
0.961542 + 0.274659i \(0.0885651\pi\)
\(114\) 0 0
\(115\) −431.102 746.691i −0.349569 0.605472i
\(116\) 235.100 0.188177
\(117\) 0 0
\(118\) −1074.72 −0.838439
\(119\) −115.204 199.538i −0.0887453 0.153711i
\(120\) 0 0
\(121\) 604.086 1046.31i 0.453859 0.786106i
\(122\) 70.6020 122.286i 0.0523935 0.0907482i
\(123\) 0 0
\(124\) 92.6372 + 160.452i 0.0670892 + 0.116202i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −2432.76 −1.69978 −0.849891 0.526958i \(-0.823333\pi\)
−0.849891 + 0.526958i \(0.823333\pi\)
\(128\) −495.796 858.744i −0.342364 0.592992i
\(129\) 0 0
\(130\) −75.1994 + 130.249i −0.0507340 + 0.0878739i
\(131\) 250.537 433.942i 0.167095 0.289418i −0.770302 0.637679i \(-0.779895\pi\)
0.937397 + 0.348262i \(0.113228\pi\)
\(132\) 0 0
\(133\) 1349.17 + 2336.83i 0.879608 + 1.52353i
\(134\) −1372.77 −0.884996
\(135\) 0 0
\(136\) 242.418 0.152847
\(137\) 1261.53 + 2185.04i 0.786716 + 1.36263i 0.927969 + 0.372658i \(0.121553\pi\)
−0.141253 + 0.989973i \(0.545113\pi\)
\(138\) 0 0
\(139\) 319.421 553.253i 0.194913 0.337599i −0.751959 0.659210i \(-0.770891\pi\)
0.946872 + 0.321611i \(0.104224\pi\)
\(140\) 75.4578 130.697i 0.0455525 0.0788992i
\(141\) 0 0
\(142\) −1206.54 2089.78i −0.713029 1.23500i
\(143\) 128.969 0.0754189
\(144\) 0 0
\(145\) 891.603 0.510645
\(146\) 724.023 + 1254.04i 0.410415 + 0.710859i
\(147\) 0 0
\(148\) 164.850 285.529i 0.0915581 0.158583i
\(149\) −1337.07 + 2315.87i −0.735146 + 1.27331i 0.219513 + 0.975610i \(0.429553\pi\)
−0.954659 + 0.297701i \(0.903780\pi\)
\(150\) 0 0
\(151\) 518.339 + 897.790i 0.279350 + 0.483848i 0.971223 0.238171i \(-0.0765477\pi\)
−0.691873 + 0.722019i \(0.743214\pi\)
\(152\) −2839.00 −1.51496
\(153\) 0 0
\(154\) 655.847 0.343179
\(155\) 351.321 + 608.506i 0.182057 + 0.315331i
\(156\) 0 0
\(157\) 190.929 330.699i 0.0970560 0.168106i −0.813409 0.581692i \(-0.802391\pi\)
0.910465 + 0.413586i \(0.135724\pi\)
\(158\) −1047.88 + 1814.99i −0.527628 + 0.913878i
\(159\) 0 0
\(160\) 147.550 + 255.564i 0.0729054 + 0.126276i
\(161\) 3947.78 1.93248
\(162\) 0 0
\(163\) 2421.17 1.16344 0.581719 0.813390i \(-0.302380\pi\)
0.581719 + 0.813390i \(0.302380\pi\)
\(164\) −238.349 412.832i −0.113487 0.196566i
\(165\) 0 0
\(166\) 695.603 1204.82i 0.325237 0.563326i
\(167\) −1767.88 + 3062.06i −0.819178 + 1.41886i 0.0871109 + 0.996199i \(0.472237\pi\)
−0.906289 + 0.422659i \(0.861097\pi\)
\(168\) 0 0
\(169\) 1030.79 + 1785.38i 0.469182 + 0.812646i
\(170\) 130.075 0.0586840
\(171\) 0 0
\(172\) 475.561 0.210821
\(173\) 1571.94 + 2722.68i 0.690824 + 1.19654i 0.971568 + 0.236759i \(0.0760853\pi\)
−0.280745 + 0.959783i \(0.590581\pi\)
\(174\) 0 0
\(175\) 286.169 495.659i 0.123613 0.214105i
\(176\) −286.571 + 496.355i −0.122733 + 0.212581i
\(177\) 0 0
\(178\) 886.836 + 1536.05i 0.373434 + 0.646806i
\(179\) 3299.06 1.37756 0.688780 0.724970i \(-0.258147\pi\)
0.688780 + 0.724970i \(0.258147\pi\)
\(180\) 0 0
\(181\) 1875.10 0.770026 0.385013 0.922911i \(-0.374197\pi\)
0.385013 + 0.922911i \(0.374197\pi\)
\(182\) −344.316 596.373i −0.140233 0.242891i
\(183\) 0 0
\(184\) −2076.79 + 3597.10i −0.832080 + 1.44121i
\(185\) 625.184 1082.85i 0.248456 0.430339i
\(186\) 0 0
\(187\) −55.7703 96.5969i −0.0218092 0.0377747i
\(188\) −791.207 −0.306940
\(189\) 0 0
\(190\) −1523.33 −0.581652
\(191\) −680.810 1179.20i −0.257915 0.446721i 0.707768 0.706445i \(-0.249702\pi\)
−0.965683 + 0.259723i \(0.916369\pi\)
\(192\) 0 0
\(193\) −1117.10 + 1934.88i −0.416636 + 0.721634i −0.995599 0.0937198i \(-0.970124\pi\)
0.578963 + 0.815354i \(0.303458\pi\)
\(194\) −923.647 + 1599.80i −0.341825 + 0.592058i
\(195\) 0 0
\(196\) 119.391 + 206.792i 0.0435099 + 0.0753614i
\(197\) 346.625 0.125360 0.0626801 0.998034i \(-0.480035\pi\)
0.0626801 + 0.998034i \(0.480035\pi\)
\(198\) 0 0
\(199\) 4198.77 1.49569 0.747846 0.663872i \(-0.231088\pi\)
0.747846 + 0.663872i \(0.231088\pi\)
\(200\) 301.087 + 521.498i 0.106450 + 0.184377i
\(201\) 0 0
\(202\) 1258.71 2180.16i 0.438430 0.759383i
\(203\) −2041.19 + 3535.45i −0.705732 + 1.22236i
\(204\) 0 0
\(205\) −903.922 1565.64i −0.307964 0.533410i
\(206\) −1962.51 −0.663761
\(207\) 0 0
\(208\) 601.792 0.200610
\(209\) 653.136 + 1131.26i 0.216164 + 0.374408i
\(210\) 0 0
\(211\) −2364.23 + 4094.96i −0.771375 + 1.33606i 0.165434 + 0.986221i \(0.447098\pi\)
−0.936809 + 0.349841i \(0.886236\pi\)
\(212\) −132.706 + 229.854i −0.0429919 + 0.0744642i
\(213\) 0 0
\(214\) 2367.82 + 4101.19i 0.756360 + 1.31005i
\(215\) 1803.54 0.572094
\(216\) 0 0
\(217\) −3217.19 −1.00644
\(218\) −1771.81 3068.87i −0.550469 0.953440i
\(219\) 0 0
\(220\) 36.5293 63.2706i 0.0111946 0.0193896i
\(221\) −58.5582 + 101.426i −0.0178238 + 0.0308716i
\(222\) 0 0
\(223\) −1215.08 2104.58i −0.364878 0.631987i 0.623879 0.781521i \(-0.285556\pi\)
−0.988757 + 0.149534i \(0.952223\pi\)
\(224\) −1351.18 −0.403032
\(225\) 0 0
\(226\) −1508.45 −0.443985
\(227\) −292.343 506.354i −0.0854780 0.148052i 0.820117 0.572196i \(-0.193908\pi\)
−0.905595 + 0.424144i \(0.860575\pi\)
\(228\) 0 0
\(229\) 2365.89 4097.84i 0.682717 1.18250i −0.291431 0.956592i \(-0.594132\pi\)
0.974148 0.225909i \(-0.0725351\pi\)
\(230\) −1114.35 + 1930.10i −0.319469 + 0.553336i
\(231\) 0 0
\(232\) −2147.60 3719.75i −0.607745 1.05264i
\(233\) −1228.45 −0.345401 −0.172701 0.984974i \(-0.555249\pi\)
−0.172701 + 0.984974i \(0.555249\pi\)
\(234\) 0 0
\(235\) −3000.60 −0.832927
\(236\) −274.079 474.719i −0.0755977 0.130939i
\(237\) 0 0
\(238\) −297.787 + 515.782i −0.0811036 + 0.140476i
\(239\) −60.2727 + 104.395i −0.0163126 + 0.0282543i −0.874066 0.485806i \(-0.838526\pi\)
0.857754 + 0.514061i \(0.171859\pi\)
\(240\) 0 0
\(241\) −866.278 1500.44i −0.231543 0.401044i 0.726719 0.686935i \(-0.241044\pi\)
−0.958262 + 0.285890i \(0.907711\pi\)
\(242\) −3122.97 −0.829555
\(243\) 0 0
\(244\) 72.0209 0.0188962
\(245\) 452.784 + 784.245i 0.118071 + 0.204504i
\(246\) 0 0
\(247\) 685.786 1187.82i 0.176662 0.305987i
\(248\) 1692.45 2931.41i 0.433349 0.750583i
\(249\) 0 0
\(250\) 161.555 + 279.821i 0.0408705 + 0.0707898i
\(251\) 3287.82 0.826793 0.413397 0.910551i \(-0.364342\pi\)
0.413397 + 0.910551i \(0.364342\pi\)
\(252\) 0 0
\(253\) 1911.13 0.474908
\(254\) 3144.19 + 5445.90i 0.776709 + 1.34530i
\(255\) 0 0
\(256\) 983.530 1703.52i 0.240120 0.415900i
\(257\) −744.912 + 1290.22i −0.180803 + 0.313160i −0.942154 0.335180i \(-0.891203\pi\)
0.761351 + 0.648339i \(0.224536\pi\)
\(258\) 0 0
\(259\) 2862.53 + 4958.05i 0.686754 + 1.18949i
\(260\) −76.7107 −0.0182977
\(261\) 0 0
\(262\) −1295.21 −0.305414
\(263\) 355.072 + 615.003i 0.0832497 + 0.144193i 0.904644 0.426168i \(-0.140137\pi\)
−0.821394 + 0.570361i \(0.806803\pi\)
\(264\) 0 0
\(265\) −503.280 + 871.706i −0.116665 + 0.202070i
\(266\) 3487.44 6040.42i 0.803866 1.39234i
\(267\) 0 0
\(268\) −350.091 606.375i −0.0797955 0.138210i
\(269\) −3667.61 −0.831294 −0.415647 0.909526i \(-0.636445\pi\)
−0.415647 + 0.909526i \(0.636445\pi\)
\(270\) 0 0
\(271\) −1990.45 −0.446166 −0.223083 0.974799i \(-0.571612\pi\)
−0.223083 + 0.974799i \(0.571612\pi\)
\(272\) −260.235 450.740i −0.0580112 0.100478i
\(273\) 0 0
\(274\) 3260.91 5648.06i 0.718973 1.24530i
\(275\) 138.535 239.950i 0.0303781 0.0526164i
\(276\) 0 0
\(277\) −4157.34 7200.73i −0.901770 1.56191i −0.825195 0.564848i \(-0.808935\pi\)
−0.0765757 0.997064i \(-0.524399\pi\)
\(278\) −1651.33 −0.356259
\(279\) 0 0
\(280\) −2757.18 −0.588474
\(281\) 2882.56 + 4992.75i 0.611955 + 1.05994i 0.990911 + 0.134522i \(0.0429500\pi\)
−0.378955 + 0.925415i \(0.623717\pi\)
\(282\) 0 0
\(283\) −228.780 + 396.259i −0.0480551 + 0.0832338i −0.889052 0.457805i \(-0.848636\pi\)
0.840997 + 0.541039i \(0.181969\pi\)
\(284\) 615.392 1065.89i 0.128580 0.222707i
\(285\) 0 0
\(286\) −166.684 288.705i −0.0344624 0.0596906i
\(287\) 8277.59 1.70248
\(288\) 0 0
\(289\) −4811.71 −0.979383
\(290\) −1152.34 1995.91i −0.233337 0.404152i
\(291\) 0 0
\(292\) −369.287 + 639.624i −0.0740099 + 0.128189i
\(293\) 2651.41 4592.38i 0.528659 0.915664i −0.470783 0.882249i \(-0.656028\pi\)
0.999442 0.0334147i \(-0.0106382\pi\)
\(294\) 0 0
\(295\) −1039.43 1800.34i −0.205145 0.355322i
\(296\) −6023.51 −1.18280
\(297\) 0 0
\(298\) 6912.30 1.34369
\(299\) −1003.33 1737.82i −0.194061 0.336123i
\(300\) 0 0
\(301\) −4128.93 + 7151.52i −0.790657 + 1.36946i
\(302\) 1339.84 2320.68i 0.255296 0.442185i
\(303\) 0 0
\(304\) 3047.66 + 5278.70i 0.574984 + 0.995901i
\(305\) 273.135 0.0512776
\(306\) 0 0
\(307\) −6583.54 −1.22392 −0.611959 0.790890i \(-0.709618\pi\)
−0.611959 + 0.790890i \(0.709618\pi\)
\(308\) 167.257 + 289.697i 0.0309427 + 0.0535943i
\(309\) 0 0
\(310\) 908.121 1572.91i 0.166380 0.288179i
\(311\) −4064.02 + 7039.10i −0.740996 + 1.28344i 0.211047 + 0.977476i \(0.432313\pi\)
−0.952042 + 0.305966i \(0.901021\pi\)
\(312\) 0 0
\(313\) 2603.82 + 4509.94i 0.470212 + 0.814431i 0.999420 0.0340613i \(-0.0108441\pi\)
−0.529208 + 0.848492i \(0.677511\pi\)
\(314\) −987.056 −0.177397
\(315\) 0 0
\(316\) −1068.94 −0.190294
\(317\) −1631.17 2825.27i −0.289008 0.500577i 0.684565 0.728952i \(-0.259992\pi\)
−0.973573 + 0.228375i \(0.926659\pi\)
\(318\) 0 0
\(319\) −988.146 + 1711.52i −0.173434 + 0.300397i
\(320\) 1415.69 2452.04i 0.247311 0.428354i
\(321\) 0 0
\(322\) −5102.26 8837.37i −0.883037 1.52946i
\(323\) −1186.22 −0.204345
\(324\) 0 0
\(325\) −290.921 −0.0496535
\(326\) −3129.21 5419.95i −0.531628 0.920807i
\(327\) 0 0
\(328\) −4354.55 + 7542.30i −0.733048 + 1.26968i
\(329\) 6869.44 11898.2i 1.15114 1.99383i
\(330\) 0 0
\(331\) −5180.23 8972.43i −0.860216 1.48994i −0.871720 0.490004i \(-0.836995\pi\)
0.0115047 0.999934i \(-0.496338\pi\)
\(332\) 709.583 0.117299
\(333\) 0 0
\(334\) 9139.51 1.49728
\(335\) −1327.70 2299.64i −0.216537 0.375053i
\(336\) 0 0
\(337\) 1867.63 3234.83i 0.301888 0.522886i −0.674675 0.738115i \(-0.735716\pi\)
0.976564 + 0.215229i \(0.0690497\pi\)
\(338\) 2664.47 4615.00i 0.428781 0.742671i
\(339\) 0 0
\(340\) 33.1722 + 57.4560i 0.00529122 + 0.00916467i
\(341\) −1557.45 −0.247333
\(342\) 0 0
\(343\) 3706.15 0.583421
\(344\) −4344.17 7524.32i −0.680878 1.17931i
\(345\) 0 0
\(346\) 4063.28 7037.80i 0.631338 1.09351i
\(347\) 98.5050 170.616i 0.0152393 0.0263952i −0.858305 0.513140i \(-0.828482\pi\)
0.873544 + 0.486744i \(0.161816\pi\)
\(348\) 0 0
\(349\) 3667.10 + 6351.60i 0.562451 + 0.974193i 0.997282 + 0.0736811i \(0.0234747\pi\)
−0.434831 + 0.900512i \(0.643192\pi\)
\(350\) −1479.42 −0.225939
\(351\) 0 0
\(352\) −654.107 −0.0990456
\(353\) 2308.14 + 3997.82i 0.348017 + 0.602783i 0.985897 0.167352i \(-0.0535218\pi\)
−0.637880 + 0.770136i \(0.720188\pi\)
\(354\) 0 0
\(355\) 2333.84 4042.32i 0.348921 0.604350i
\(356\) −452.330 + 783.458i −0.0673411 + 0.116638i
\(357\) 0 0
\(358\) −4263.83 7385.17i −0.629470 1.09027i
\(359\) 1153.79 0.169623 0.0848115 0.996397i \(-0.472971\pi\)
0.0848115 + 0.996397i \(0.472971\pi\)
\(360\) 0 0
\(361\) 7033.09 1.02538
\(362\) −2423.44 4197.53i −0.351860 0.609440i
\(363\) 0 0
\(364\) 175.618 304.179i 0.0252881 0.0438003i
\(365\) −1400.50 + 2425.73i −0.200837 + 0.347859i
\(366\) 0 0
\(367\) 1724.52 + 2986.96i 0.245285 + 0.424845i 0.962212 0.272303i \(-0.0877853\pi\)
−0.716927 + 0.697148i \(0.754452\pi\)
\(368\) 8917.69 1.26322
\(369\) 0 0
\(370\) −3232.05 −0.454125
\(371\) −2304.37 3991.28i −0.322471 0.558537i
\(372\) 0 0
\(373\) −181.440 + 314.263i −0.0251866 + 0.0436245i −0.878344 0.478029i \(-0.841351\pi\)
0.853157 + 0.521654i \(0.174685\pi\)
\(374\) −144.159 + 249.691i −0.0199313 + 0.0345220i
\(375\) 0 0
\(376\) 7227.54 + 12518.5i 0.991308 + 1.71700i
\(377\) 2075.09 0.283481
\(378\) 0 0
\(379\) −7719.79 −1.04628 −0.523139 0.852248i \(-0.675239\pi\)
−0.523139 + 0.852248i \(0.675239\pi\)
\(380\) −388.486 672.877i −0.0524445 0.0908365i
\(381\) 0 0
\(382\) −1759.81 + 3048.08i −0.235706 + 0.408255i
\(383\) −2836.83 + 4913.53i −0.378473 + 0.655534i −0.990840 0.135039i \(-0.956884\pi\)
0.612367 + 0.790573i \(0.290217\pi\)
\(384\) 0 0
\(385\) 634.311 + 1098.66i 0.0839675 + 0.145436i
\(386\) 5775.13 0.761520
\(387\) 0 0
\(388\) −942.210 −0.123282
\(389\) −4090.23 7084.48i −0.533117 0.923386i −0.999252 0.0386726i \(-0.987687\pi\)
0.466135 0.884714i \(-0.345646\pi\)
\(390\) 0 0
\(391\) −867.747 + 1502.98i −0.112235 + 0.194397i
\(392\) 2181.24 3778.01i 0.281044 0.486782i
\(393\) 0 0
\(394\) −447.991 775.943i −0.0572829 0.0992169i
\(395\) −4053.91 −0.516390
\(396\) 0 0
\(397\) −12940.5 −1.63594 −0.817968 0.575263i \(-0.804900\pi\)
−0.817968 + 0.575263i \(0.804900\pi\)
\(398\) −5426.65 9399.23i −0.683450 1.18377i
\(399\) 0 0
\(400\) 646.431 1119.65i 0.0808039 0.139956i
\(401\) 3290.65 5699.56i 0.409793 0.709782i −0.585073 0.810980i \(-0.698934\pi\)
0.994866 + 0.101198i \(0.0322676\pi\)
\(402\) 0 0
\(403\) 817.652 + 1416.21i 0.101067 + 0.175054i
\(404\) 1284.01 0.158124
\(405\) 0 0
\(406\) 10552.5 1.28993
\(407\) 1385.76 + 2400.20i 0.168770 + 0.292319i
\(408\) 0 0
\(409\) −2460.92 + 4262.44i −0.297518 + 0.515316i −0.975567 0.219700i \(-0.929492\pi\)
0.678050 + 0.735016i \(0.262825\pi\)
\(410\) −2336.53 + 4046.98i −0.281446 + 0.487479i
\(411\) 0 0
\(412\) −500.488 866.871i −0.0598478 0.103659i
\(413\) 9518.48 1.13408
\(414\) 0 0
\(415\) 2691.05 0.318310
\(416\) 343.403 + 594.791i 0.0404729 + 0.0701011i
\(417\) 0 0
\(418\) 1688.28 2924.18i 0.197551 0.342168i
\(419\) −1957.14 + 3389.87i −0.228193 + 0.395241i −0.957273 0.289187i \(-0.906615\pi\)
0.729080 + 0.684429i \(0.239948\pi\)
\(420\) 0 0
\(421\) 2629.38 + 4554.22i 0.304390 + 0.527219i 0.977125 0.212664i \(-0.0682140\pi\)
−0.672735 + 0.739883i \(0.734881\pi\)
\(422\) 12222.5 1.40991
\(423\) 0 0
\(424\) 4848.99 0.555395
\(425\) 125.804 + 217.898i 0.0143585 + 0.0248697i
\(426\) 0 0
\(427\) −625.302 + 1083.05i −0.0708677 + 0.122746i
\(428\) −1207.70 + 2091.81i −0.136394 + 0.236241i
\(429\) 0 0
\(430\) −2330.96 4037.34i −0.261416 0.452786i
\(431\) −14350.1 −1.60376 −0.801881 0.597484i \(-0.796167\pi\)
−0.801881 + 0.597484i \(0.796167\pi\)
\(432\) 0 0
\(433\) 863.149 0.0957974 0.0478987 0.998852i \(-0.484748\pi\)
0.0478987 + 0.998852i \(0.484748\pi\)
\(434\) 4158.02 + 7201.90i 0.459888 + 0.796549i
\(435\) 0 0
\(436\) 903.710 1565.27i 0.0992658 0.171933i
\(437\) 10162.3 17601.7i 1.11243 1.92678i
\(438\) 0 0
\(439\) 8071.03 + 13979.4i 0.877470 + 1.51982i 0.854108 + 0.520095i \(0.174104\pi\)
0.0233618 + 0.999727i \(0.492563\pi\)
\(440\) −1334.75 −0.144618
\(441\) 0 0
\(442\) 302.731 0.0325780
\(443\) 2942.05 + 5095.77i 0.315532 + 0.546518i 0.979551 0.201198i \(-0.0644836\pi\)
−0.664018 + 0.747716i \(0.731150\pi\)
\(444\) 0 0
\(445\) −1715.43 + 2971.22i −0.182740 + 0.316515i
\(446\) −3140.83 + 5440.08i −0.333459 + 0.577568i
\(447\) 0 0
\(448\) 6482.02 + 11227.2i 0.683586 + 1.18401i
\(449\) 16858.4 1.77193 0.885965 0.463753i \(-0.153497\pi\)
0.885965 + 0.463753i \(0.153497\pi\)
\(450\) 0 0
\(451\) 4007.20 0.418385
\(452\) −384.691 666.305i −0.0400317 0.0693370i
\(453\) 0 0
\(454\) −755.672 + 1308.86i −0.0781177 + 0.135304i
\(455\) 666.020 1153.58i 0.0686231 0.118859i
\(456\) 0 0
\(457\) −3811.52 6601.74i −0.390143 0.675747i 0.602325 0.798251i \(-0.294241\pi\)
−0.992468 + 0.122504i \(0.960908\pi\)
\(458\) −12231.1 −1.24786
\(459\) 0 0
\(460\) −1136.74 −0.115219
\(461\) −2039.70 3532.86i −0.206070 0.356923i 0.744403 0.667730i \(-0.232734\pi\)
−0.950473 + 0.310807i \(0.899401\pi\)
\(462\) 0 0
\(463\) 2749.61 4762.46i 0.275994 0.478035i −0.694392 0.719597i \(-0.744326\pi\)
0.970385 + 0.241562i \(0.0776597\pi\)
\(464\) −4610.88 + 7986.27i −0.461325 + 0.799038i
\(465\) 0 0
\(466\) 1587.70 + 2749.97i 0.157830 + 0.273369i
\(467\) −6422.51 −0.636399 −0.318199 0.948024i \(-0.603078\pi\)
−0.318199 + 0.948024i \(0.603078\pi\)
\(468\) 0 0
\(469\) 12158.3 1.19705
\(470\) 3878.10 + 6717.06i 0.380603 + 0.659223i
\(471\) 0 0
\(472\) −5007.33 + 8672.96i −0.488308 + 0.845774i
\(473\) −1998.82 + 3462.07i −0.194305 + 0.336545i
\(474\) 0 0
\(475\) −1473.31 2551.85i −0.142316 0.246498i
\(476\) −303.772 −0.0292507
\(477\) 0 0
\(478\) 311.595 0.0298160
\(479\) 99.3800 + 172.131i 0.00947973 + 0.0164194i 0.870726 0.491768i \(-0.163649\pi\)
−0.861247 + 0.508187i \(0.830316\pi\)
\(480\) 0 0
\(481\) 1455.03 2520.19i 0.137929 0.238900i
\(482\) −2239.22 + 3878.45i −0.211605 + 0.366511i
\(483\) 0 0
\(484\) −796.434 1379.46i −0.0747966 0.129552i
\(485\) −3573.27 −0.334544
\(486\) 0 0
\(487\) −1308.73 −0.121774 −0.0608871 0.998145i \(-0.519393\pi\)
−0.0608871 + 0.998145i \(0.519393\pi\)
\(488\) −657.899 1139.51i −0.0610280 0.105704i
\(489\) 0 0
\(490\) 1170.39 2027.18i 0.107904 0.186895i
\(491\) −6237.41 + 10803.5i −0.573300 + 0.992984i 0.422924 + 0.906165i \(0.361004\pi\)
−0.996224 + 0.0868193i \(0.972330\pi\)
\(492\) 0 0
\(493\) −897.335 1554.23i −0.0819755 0.141986i
\(494\) −3545.34 −0.322900
\(495\) 0 0
\(496\) −7267.35 −0.657890
\(497\) 10685.9 + 18508.6i 0.964447 + 1.67047i
\(498\) 0 0
\(499\) −1573.41 + 2725.23i −0.141153 + 0.244485i −0.927931 0.372751i \(-0.878414\pi\)
0.786778 + 0.617236i \(0.211748\pi\)
\(500\) −82.4008 + 142.722i −0.00737015 + 0.0127655i
\(501\) 0 0
\(502\) −4249.30 7360.00i −0.377800 0.654369i
\(503\) −5419.35 −0.480391 −0.240196 0.970725i \(-0.577212\pi\)
−0.240196 + 0.970725i \(0.577212\pi\)
\(504\) 0 0
\(505\) 4869.53 0.429092
\(506\) −2470.02 4278.19i −0.217007 0.375867i
\(507\) 0 0
\(508\) −1603.69 + 2777.67i −0.140063 + 0.242597i
\(509\) 8597.28 14890.9i 0.748660 1.29672i −0.199805 0.979836i \(-0.564031\pi\)
0.948465 0.316881i \(-0.102636\pi\)
\(510\) 0 0
\(511\) −6412.47 11106.7i −0.555129 0.961511i
\(512\) −13017.3 −1.12361
\(513\) 0 0
\(514\) 3851.01 0.330468
\(515\) −1898.07 3287.56i −0.162406 0.281295i
\(516\) 0 0
\(517\) 3325.51 5759.96i 0.282893 0.489986i
\(518\) 7399.30 12816.0i 0.627619 1.08707i
\(519\) 0 0
\(520\) 700.739 + 1213.72i 0.0590951 + 0.102356i
\(521\) −19829.5 −1.66746 −0.833730 0.552172i \(-0.813799\pi\)
−0.833730 + 0.552172i \(0.813799\pi\)
\(522\) 0 0
\(523\) 5392.82 0.450882 0.225441 0.974257i \(-0.427618\pi\)
0.225441 + 0.974257i \(0.427618\pi\)
\(524\) −330.311 572.115i −0.0275376 0.0476965i
\(525\) 0 0
\(526\) 917.817 1589.71i 0.0760812 0.131777i
\(527\) 707.159 1224.83i 0.0584522 0.101242i
\(528\) 0 0
\(529\) −8784.42 15215.1i −0.721987 1.25052i
\(530\) 2601.83 0.213238
\(531\) 0 0
\(532\) 3557.53 0.289922
\(533\) −2103.76 3643.81i −0.170964 0.296118i
\(534\) 0 0
\(535\) −4580.14 + 7933.04i −0.370125 + 0.641075i
\(536\) −6396.03 + 11078.3i −0.515423 + 0.892738i
\(537\) 0 0
\(538\) 4740.16 + 8210.20i 0.379856 + 0.657931i
\(539\) −2007.25 −0.160405
\(540\) 0 0
\(541\) −11475.8 −0.911984 −0.455992 0.889984i \(-0.650715\pi\)
−0.455992 + 0.889984i \(0.650715\pi\)
\(542\) 2572.53 + 4455.75i 0.203874 + 0.353120i
\(543\) 0 0
\(544\) 296.997 514.414i 0.0234074 0.0405429i
\(545\) 3427.27 5936.20i 0.269372 0.466567i
\(546\) 0 0
\(547\) 3964.55 + 6866.79i 0.309893 + 0.536751i 0.978339 0.207010i \(-0.0663733\pi\)
−0.668445 + 0.743761i \(0.733040\pi\)
\(548\) 3326.44 0.259304
\(549\) 0 0
\(550\) −716.192 −0.0555246
\(551\) 10508.8 + 18201.9i 0.812508 + 1.40731i
\(552\) 0 0
\(553\) 9280.82 16074.8i 0.713672 1.23612i
\(554\) −10746.2 + 18613.0i −0.824121 + 1.42742i
\(555\) 0 0
\(556\) −421.128 729.416i −0.0321220 0.0556369i
\(557\) 9519.36 0.724144 0.362072 0.932150i \(-0.382069\pi\)
0.362072 + 0.932150i \(0.382069\pi\)
\(558\) 0 0
\(559\) 4197.49 0.317594
\(560\) 2959.82 + 5126.55i 0.223348 + 0.386851i
\(561\) 0 0
\(562\) 7451.07 12905.6i 0.559261 0.968668i
\(563\) −5961.14 + 10325.0i −0.446238 + 0.772907i −0.998138 0.0610035i \(-0.980570\pi\)
0.551899 + 0.833911i \(0.313903\pi\)
\(564\) 0 0
\(565\) −1458.92 2526.92i −0.108632 0.188156i
\(566\) 1182.74 0.0878343
\(567\) 0 0
\(568\) −22486.0 −1.66108
\(569\) 8795.72 + 15234.6i 0.648042 + 1.12244i 0.983590 + 0.180418i \(0.0577452\pi\)
−0.335548 + 0.942023i \(0.608922\pi\)
\(570\) 0 0
\(571\) −4125.37 + 7145.34i −0.302349 + 0.523684i −0.976668 0.214757i \(-0.931104\pi\)
0.674319 + 0.738440i \(0.264437\pi\)
\(572\) 85.0170 147.254i 0.00621458 0.0107640i
\(573\) 0 0
\(574\) −10698.3 18530.0i −0.777939 1.34743i
\(575\) −4311.02 −0.312664
\(576\) 0 0
\(577\) −15922.4 −1.14880 −0.574401 0.818574i \(-0.694765\pi\)
−0.574401 + 0.818574i \(0.694765\pi\)
\(578\) 6218.84 + 10771.3i 0.447525 + 0.775136i
\(579\) 0 0
\(580\) 587.750 1018.01i 0.0420776 0.0728805i
\(581\) −6160.76 + 10670.8i −0.439917 + 0.761958i
\(582\) 0 0
\(583\) −1115.55 1932.19i −0.0792476 0.137261i
\(584\) 13493.5 0.956103
\(585\) 0 0
\(586\) −13707.1 −0.966274
\(587\) −4794.83 8304.88i −0.337144 0.583951i 0.646750 0.762702i \(-0.276128\pi\)
−0.983894 + 0.178751i \(0.942794\pi\)
\(588\) 0 0
\(589\) −8281.67 + 14344.3i −0.579355 + 1.00347i
\(590\) −2686.80 + 4653.67i −0.187481 + 0.324726i
\(591\) 0 0
\(592\) 6466.21 + 11199.8i 0.448919 + 0.777550i
\(593\) −5311.77 −0.367838 −0.183919 0.982941i \(-0.558878\pi\)
−0.183919 + 0.982941i \(0.558878\pi\)
\(594\) 0 0
\(595\) −1152.04 −0.0793762
\(596\) 1762.81 + 3053.27i 0.121153 + 0.209844i
\(597\) 0 0
\(598\) −2593.49 + 4492.06i −0.177351 + 0.307180i
\(599\) −3173.02 + 5495.83i −0.216437 + 0.374881i −0.953716 0.300708i \(-0.902777\pi\)
0.737279 + 0.675589i \(0.236110\pi\)
\(600\) 0 0
\(601\) 4906.67 + 8498.60i 0.333023 + 0.576814i 0.983103 0.183053i \(-0.0585978\pi\)
−0.650080 + 0.759866i \(0.725265\pi\)
\(602\) 21345.6 1.44515
\(603\) 0 0
\(604\) 1366.77 0.0920746
\(605\) −3020.43 5231.54i −0.202972 0.351557i
\(606\) 0 0
\(607\) 2085.48 3612.15i 0.139451 0.241537i −0.787838 0.615883i \(-0.788800\pi\)
0.927289 + 0.374346i \(0.122133\pi\)
\(608\) −3478.19 + 6024.40i −0.232005 + 0.401845i
\(609\) 0 0
\(610\) −353.010 611.431i −0.0234311 0.0405838i
\(611\) −6983.50 −0.462393
\(612\) 0 0
\(613\) −3157.32 −0.208031 −0.104016 0.994576i \(-0.533169\pi\)
−0.104016 + 0.994576i \(0.533169\pi\)
\(614\) 8508.82 + 14737.7i 0.559264 + 0.968674i
\(615\) 0 0
\(616\) 3055.72 5292.67i 0.199868 0.346181i
\(617\) −1481.47 + 2565.99i −0.0966643 + 0.167428i −0.910302 0.413945i \(-0.864151\pi\)
0.813638 + 0.581372i \(0.197484\pi\)
\(618\) 0 0
\(619\) −2347.86 4066.62i −0.152453 0.264057i 0.779676 0.626184i \(-0.215384\pi\)
−0.932129 + 0.362127i \(0.882051\pi\)
\(620\) 926.372 0.0600064
\(621\) 0 0
\(622\) 21010.0 1.35438
\(623\) −7854.46 13604.3i −0.505108 0.874873i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 6730.54 11657.6i 0.429723 0.744302i
\(627\) 0 0
\(628\) −251.723 435.998i −0.0159950 0.0277041i
\(629\) −2516.81 −0.159542
\(630\) 0 0
\(631\) −17397.6 −1.09760 −0.548800 0.835954i \(-0.684915\pi\)
−0.548800 + 0.835954i \(0.684915\pi\)
\(632\) 9764.62 + 16912.8i 0.614582 + 1.06449i
\(633\) 0 0
\(634\) −4216.37 + 7302.97i −0.264122 + 0.457473i
\(635\) −6081.90 + 10534.2i −0.380083 + 0.658323i
\(636\) 0 0
\(637\) 1053.79 + 1825.22i 0.0655460 + 0.113529i
\(638\) 5108.47 0.317000
\(639\) 0 0
\(640\) −4957.96 −0.306220
\(641\) −3451.73 5978.57i −0.212691 0.368392i 0.739865 0.672756i \(-0.234890\pi\)
−0.952556 + 0.304364i \(0.901556\pi\)
\(642\) 0 0
\(643\) 6066.04 10506.7i 0.372039 0.644391i −0.617840 0.786304i \(-0.711992\pi\)
0.989879 + 0.141913i \(0.0453253\pi\)
\(644\) 2602.40 4507.49i 0.159238 0.275808i
\(645\) 0 0
\(646\) 1533.12 + 2655.44i 0.0933744 + 0.161729i
\(647\) −16784.3 −1.01988 −0.509939 0.860211i \(-0.670332\pi\)
−0.509939 + 0.860211i \(0.670332\pi\)
\(648\) 0 0
\(649\) 4607.92 0.278700
\(650\) 375.997 + 651.246i 0.0226889 + 0.0392984i
\(651\) 0 0
\(652\) 1596.05 2764.44i 0.0958682 0.166049i
\(653\) −7855.76 + 13606.6i −0.470781 + 0.815416i −0.999441 0.0334172i \(-0.989361\pi\)
0.528661 + 0.848833i \(0.322694\pi\)
\(654\) 0 0
\(655\) −1252.68 2169.71i −0.0747273 0.129431i
\(656\) 18698.4 1.11288
\(657\) 0 0
\(658\) −35513.3 −2.10403
\(659\) −10113.5 17517.1i −0.597825 1.03546i −0.993141 0.116919i \(-0.962698\pi\)
0.395316 0.918545i \(-0.370635\pi\)
\(660\) 0 0
\(661\) −7493.41 + 12979.0i −0.440938 + 0.763727i −0.997759 0.0669056i \(-0.978687\pi\)
0.556822 + 0.830632i \(0.312021\pi\)
\(662\) −13390.3 + 23192.6i −0.786144 + 1.36164i
\(663\) 0 0
\(664\) −6481.92 11227.0i −0.378836 0.656164i
\(665\) 13491.7 0.786745
\(666\) 0 0
\(667\) 30749.7 1.78506
\(668\) 2330.80 + 4037.06i 0.135002 + 0.233830i
\(669\) 0 0
\(670\) −3431.93 + 5944.28i −0.197891 + 0.342758i
\(671\) −302.710 + 524.309i −0.0174158 + 0.0301650i
\(672\) 0 0
\(673\) −3416.87 5918.20i −0.195707 0.338974i 0.751425 0.659818i \(-0.229367\pi\)
−0.947132 + 0.320844i \(0.896033\pi\)
\(674\) −9655.19 −0.551787
\(675\) 0 0
\(676\) 2718.02 0.154644
\(677\) −15219.6 26361.2i −0.864015 1.49652i −0.868022 0.496525i \(-0.834609\pi\)
0.00400745 0.999992i \(-0.498724\pi\)
\(678\) 0 0
\(679\) 8180.48 14169.0i 0.462354 0.800820i
\(680\) 606.045 1049.70i 0.0341776 0.0591973i
\(681\) 0 0
\(682\) 2012.91 + 3486.46i 0.113018 + 0.195753i
\(683\) 9675.88 0.542075 0.271038 0.962569i \(-0.412633\pi\)
0.271038 + 0.962569i \(0.412633\pi\)
\(684\) 0 0
\(685\) 12615.3 0.703660
\(686\) −4789.97 8296.47i −0.266592 0.461751i
\(687\) 0 0
\(688\) −9326.90 + 16154.7i −0.516838 + 0.895190i
\(689\) −1171.32 + 2028.78i −0.0647657 + 0.112177i
\(690\) 0 0
\(691\) −6705.28 11613.9i −0.369147 0.639382i 0.620285 0.784376i \(-0.287017\pi\)
−0.989432 + 0.144994i \(0.953684\pi\)
\(692\) 4144.94 0.227698
\(693\) 0 0
\(694\) −509.247 −0.0278541
\(695\) −1597.10 2766.26i −0.0871678 0.150979i
\(696\) 0 0
\(697\) −1819.47 + 3151.41i −0.0988769 + 0.171260i
\(698\) 9479.00 16418.1i 0.514019 0.890307i
\(699\) 0 0
\(700\) −377.289 653.484i −0.0203717 0.0352848i
\(701\) 12796.5 0.689466 0.344733 0.938701i \(-0.387969\pi\)
0.344733 + 0.938701i \(0.387969\pi\)
\(702\) 0 0
\(703\) 29474.9 1.58132
\(704\) 3137.96 + 5435.11i 0.167992 + 0.290971i
\(705\) 0 0
\(706\) 5966.26 10333.9i 0.318050 0.550879i
\(707\) −11148.1 + 19309.0i −0.593022 + 1.02714i
\(708\) 0 0
\(709\) −2424.66 4199.64i −0.128435 0.222455i 0.794636 0.607087i \(-0.207662\pi\)
−0.923070 + 0.384631i \(0.874329\pi\)
\(710\) −12065.4 −0.637753
\(711\) 0 0
\(712\) 16527.8 0.869952
\(713\) 12116.4 + 20986.2i 0.636414 + 1.10230i
\(714\) 0 0
\(715\) 322.422 558.451i 0.0168642 0.0292096i
\(716\) 2174.76 3766.80i 0.113512 0.196609i
\(717\) 0 0
\(718\) −1491.20 2582.83i −0.0775085 0.134249i
\(719\) −33988.7 −1.76296 −0.881479 0.472224i \(-0.843451\pi\)
−0.881479 + 0.472224i \(0.843451\pi\)
\(720\) 0 0
\(721\) 17381.4 0.897806
\(722\) −9089.83 15744.1i −0.468544 0.811542i
\(723\) 0 0
\(724\) 1236.07 2140.94i 0.0634508 0.109900i
\(725\) 2229.01 3860.75i 0.114184 0.197772i
\(726\) 0 0
\(727\) 8156.13 + 14126.8i 0.416085 + 0.720681i 0.995542 0.0943224i \(-0.0300685\pi\)
−0.579456 + 0.815003i \(0.696735\pi\)
\(728\) −6416.96 −0.326687
\(729\) 0 0
\(730\) 7240.23 0.367086
\(731\) −1815.13 3143.90i −0.0918400 0.159072i
\(732\) 0 0
\(733\) 18915.9 32763.3i 0.953172 1.65094i 0.214673 0.976686i \(-0.431131\pi\)
0.738498 0.674256i \(-0.235535\pi\)
\(734\) 4457.68 7720.93i 0.224164 0.388263i
\(735\) 0 0
\(736\) 5088.73 + 8813.94i 0.254855 + 0.441421i
\(737\) 5885.84 0.294176
\(738\) 0 0
\(739\) −16860.9 −0.839295 −0.419647 0.907687i \(-0.637846\pi\)
−0.419647 + 0.907687i \(0.637846\pi\)
\(740\) −824.251 1427.64i −0.0409460 0.0709206i
\(741\) 0 0
\(742\) −5956.51 + 10317.0i −0.294704 + 0.510442i
\(743\) 203.039 351.673i 0.0100253 0.0173643i −0.860969 0.508657i \(-0.830142\pi\)
0.870995 + 0.491293i \(0.163475\pi\)
\(744\) 0 0
\(745\) 6685.33 + 11579.3i 0.328767 + 0.569442i
\(746\) 937.999 0.0460357
\(747\) 0 0
\(748\) −147.056 −0.00718839
\(749\) −20971.1 36323.1i −1.02306 1.77198i
\(750\) 0 0
\(751\) 7553.15 13082.4i 0.367002 0.635666i −0.622093 0.782943i \(-0.713718\pi\)
0.989095 + 0.147277i \(0.0470509\pi\)
\(752\) 15517.5 26877.0i 0.752479 1.30333i
\(753\) 0 0
\(754\) −2681.92 4645.22i −0.129535 0.224362i
\(755\) 5183.39 0.249858
\(756\) 0 0
\(757\) −14265.4 −0.684919 −0.342460 0.939533i \(-0.611260\pi\)
−0.342460 + 0.939533i \(0.611260\pi\)
\(758\) 9977.36 + 17281.3i 0.478092 + 0.828080i
\(759\) 0 0
\(760\) −7097.50 + 12293.2i −0.338755 + 0.586740i
\(761\) 11500.6 19919.7i 0.547828 0.948867i −0.450595 0.892729i \(-0.648788\pi\)
0.998423 0.0561380i \(-0.0178787\pi\)
\(762\) 0 0
\(763\) 15692.4 + 27180.1i 0.744567 + 1.28963i
\(764\) −1795.18 −0.0850095
\(765\) 0 0
\(766\) 14665.7 0.691767
\(767\) −2419.13 4190.06i −0.113885 0.197255i
\(768\) 0 0
\(769\) −6147.31 + 10647.5i −0.288267 + 0.499294i −0.973396 0.229128i \(-0.926413\pi\)
0.685129 + 0.728422i \(0.259746\pi\)
\(770\) 1639.62 2839.90i 0.0767372 0.132913i
\(771\) 0 0
\(772\) 1472.80 + 2550.96i 0.0686622 + 0.118926i
\(773\) −5938.46 −0.276315 −0.138158 0.990410i \(-0.544118\pi\)
−0.138158 + 0.990410i \(0.544118\pi\)
\(774\) 0 0
\(775\) 3513.21 0.162836
\(776\) 8606.93 + 14907.6i 0.398158 + 0.689630i
\(777\) 0 0
\(778\) −10572.7 + 18312.5i −0.487212 + 0.843875i
\(779\) 21308.1 36906.7i 0.980029 1.69746i
\(780\) 0 0
\(781\) 5173.09 + 8960.05i 0.237014 + 0.410520i
\(782\) 4486.04 0.205141
\(783\) 0 0
\(784\) −9366.19 −0.426667
\(785\) −954.645 1653.49i −0.0434048 0.0751793i
\(786\) 0 0
\(787\) −16212.5 + 28080.9i −0.734325 + 1.27189i 0.220694 + 0.975343i \(0.429168\pi\)
−0.955019 + 0.296545i \(0.904166\pi\)
\(788\) 228.497 395.769i 0.0103298 0.0178917i
\(789\) 0 0
\(790\) 5239.42 + 9074.95i 0.235962 + 0.408699i
\(791\) 13359.9 0.600535
\(792\) 0 0
\(793\) 635.685 0.0284664
\(794\) 16724.8 + 28968.3i 0.747535 + 1.29477i
\(795\) 0 0
\(796\) 2767.85 4794.06i 0.123246 0.213469i
\(797\) −10495.2 + 18178.2i −0.466449 + 0.807913i −0.999266 0.0383177i \(-0.987800\pi\)
0.532817 + 0.846231i \(0.321133\pi\)
\(798\) 0 0
\(799\) 3019.89 + 5230.61i 0.133712 + 0.231597i
\(800\) 1475.50 0.0652085
\(801\) 0 0
\(802\) −17011.8 −0.749013
\(803\) −3104.29 5376.79i −0.136423 0.236292i
\(804\) 0 0
\(805\) 9869.45 17094.4i 0.432115 0.748445i
\(806\) 2113.53 3660.74i 0.0923646 0.159980i
\(807\) 0 0
\(808\) −11729.2 20315.6i −0.510684 0.884531i
\(809\) 4943.95 0.214858 0.107429 0.994213i \(-0.465738\pi\)
0.107429 + 0.994213i \(0.465738\pi\)
\(810\) 0 0
\(811\) −19844.5 −0.859230 −0.429615 0.903012i \(-0.641351\pi\)
−0.429615 + 0.903012i \(0.641351\pi\)
\(812\) 2691.14 + 4661.18i 0.116306 + 0.201448i
\(813\) 0 0
\(814\) 3582.02 6204.23i 0.154238 0.267148i
\(815\) 6052.91 10484.0i 0.260153 0.450597i
\(816\) 0 0
\(817\) 21257.3 + 36818.8i 0.910282 + 1.57665i
\(818\) 12722.4 0.543798
\(819\) 0 0
\(820\) −2383.49 −0.101506
\(821\) 6304.12 + 10919.1i 0.267985 + 0.464163i 0.968341 0.249630i \(-0.0803090\pi\)
−0.700357 + 0.713793i \(0.746976\pi\)
\(822\) 0 0
\(823\) −12421.7 + 21515.0i −0.526116 + 0.911260i 0.473421 + 0.880836i \(0.343019\pi\)
−0.999537 + 0.0304237i \(0.990314\pi\)
\(824\) −9143.75 + 15837.4i −0.386575 + 0.669567i
\(825\) 0 0
\(826\) −12302.0 21307.8i −0.518212 0.897569i
\(827\) −33361.1 −1.40276 −0.701379 0.712789i \(-0.747432\pi\)
−0.701379 + 0.712789i \(0.747432\pi\)
\(828\) 0 0
\(829\) −5049.62 −0.211557 −0.105778 0.994390i \(-0.533733\pi\)
−0.105778 + 0.994390i \(0.533733\pi\)
\(830\) −3478.02 6024.10i −0.145450 0.251927i
\(831\) 0 0
\(832\) 3294.82 5706.80i 0.137293 0.237798i
\(833\) 911.389 1578.57i 0.0379085 0.0656594i
\(834\) 0 0
\(835\) 8839.40 + 15310.3i 0.366347 + 0.634532i
\(836\) 1722.21 0.0712485
\(837\) 0 0
\(838\) 10117.9 0.417087
\(839\) −8732.33 15124.8i −0.359325 0.622369i 0.628523 0.777791i \(-0.283660\pi\)
−0.987848 + 0.155422i \(0.950326\pi\)
\(840\) 0 0
\(841\) −3704.61 + 6416.57i −0.151897 + 0.263093i
\(842\) 6796.63 11772.1i 0.278180 0.481821i
\(843\) 0 0
\(844\) 3117.03 + 5398.85i 0.127124 + 0.220185i
\(845\) 10307.9 0.419649
\(846\) 0 0
\(847\) 27659.3 1.12206
\(848\) −5205.37 9015.96i −0.210794 0.365105i
\(849\) 0 0
\(850\) 325.187 563.240i 0.0131221 0.0227282i
\(851\) 21561.5 37345.5i 0.868528 1.50433i
\(852\) 0 0
\(853\) −1373.24 2378.51i −0.0551216 0.0954734i 0.837148 0.546977i \(-0.184221\pi\)
−0.892270 + 0.451503i \(0.850888\pi\)
\(854\) 3232.66 0.129531
\(855\) 0 0
\(856\) 44128.7 1.76202
\(857\) 7828.41 + 13559.2i 0.312034 + 0.540459i 0.978803 0.204806i \(-0.0656562\pi\)
−0.666768 + 0.745265i \(0.732323\pi\)
\(858\) 0 0
\(859\) 17253.7 29884.2i 0.685317 1.18700i −0.288021 0.957624i \(-0.592997\pi\)
0.973337 0.229379i \(-0.0736695\pi\)
\(860\) 1188.90 2059.24i 0.0471410 0.0816506i
\(861\) 0 0
\(862\) 18546.7 + 32123.8i 0.732833 + 1.26930i
\(863\) −26576.7 −1.04830 −0.524150 0.851626i \(-0.675617\pi\)
−0.524150 + 0.851626i \(0.675617\pi\)
\(864\) 0 0
\(865\) 15719.4 0.617892
\(866\) −1115.57 1932.22i −0.0437742 0.0758192i
\(867\) 0 0
\(868\) −2120.79 + 3673.32i −0.0829313 + 0.143641i
\(869\) 4492.86 7781.87i 0.175385 0.303777i
\(870\) 0 0
\(871\) −3090.04 5352.10i −0.120209 0.208208i
\(872\) −33020.9 −1.28237
\(873\) 0 0
\(874\) −52536.8 −2.03328
\(875\) −1430.85 2478.30i −0.0552816 0.0957505i
\(876\) 0 0
\(877\) 6699.73 11604.3i 0.257963 0.446806i −0.707733 0.706480i \(-0.750282\pi\)
0.965696 + 0.259674i \(0.0836153\pi\)
\(878\) 20862.6 36135.1i 0.801913 1.38895i
\(879\) 0 0
\(880\) 1432.85 + 2481.78i 0.0548881 + 0.0950689i
\(881\) 44435.4 1.69928 0.849641 0.527362i \(-0.176819\pi\)
0.849641 + 0.527362i \(0.176819\pi\)
\(882\) 0 0
\(883\) −11162.1 −0.425408 −0.212704 0.977117i \(-0.568227\pi\)
−0.212704 + 0.977117i \(0.568227\pi\)
\(884\) 77.2039 + 133.721i 0.00293738 + 0.00508770i
\(885\) 0 0
\(886\) 7604.83 13171.9i 0.288362 0.499458i
\(887\) 5795.60 10038.3i 0.219388 0.379991i −0.735233 0.677814i \(-0.762927\pi\)
0.954621 + 0.297823i \(0.0962606\pi\)
\(888\) 0 0
\(889\) −27847.2 48232.8i −1.05058 1.81966i
\(890\) 8868.36 0.334009
\(891\) 0 0
\(892\) −3203.96 −0.120265
\(893\) −35366.5 61256.6i −1.32530 2.29549i
\(894\) 0 0
\(895\) 8247.65 14285.3i 0.308032 0.533527i
\(896\) 11350.5 19659.7i 0.423208 0.733017i
\(897\) 0 0
\(898\) −21788.4 37738.7i −0.809676 1.40240i
\(899\) −25059.1 −0.929663
\(900\) 0 0
\(901\) 2026.06 0.0749144
\(902\) −5179.06 8970.39i −0.191179 0.331132i
\(903\) 0 0
\(904\) −7028.17 + 12173.2i −0.258577 + 0.447868i
\(905\) 4687.74 8119.40i 0.172183 0.298230i
\(906\) 0 0
\(907\) −4326.19 7493.19i −0.158378 0.274319i 0.775906 0.630849i \(-0.217293\pi\)
−0.934284 + 0.356530i \(0.883960\pi\)
\(908\) −770.859 −0.0281738
\(909\) 0 0
\(910\) −3443.16 −0.125428
\(911\) −18356.2 31793.9i −0.667583 1.15629i −0.978578 0.205876i \(-0.933996\pi\)
0.310995 0.950411i \(-0.399338\pi\)
\(912\) 0 0
\(913\) −2982.44 + 5165.74i −0.108110 + 0.187252i
\(914\) −9852.30 + 17064.7i −0.356548 + 0.617560i
\(915\) 0 0
\(916\) −3119.22 5402.64i −0.112513 0.194878i
\(917\) 11471.3 0.413104
\(918\) 0 0
\(919\) −42003.3 −1.50768 −0.753841 0.657057i \(-0.771801\pi\)
−0.753841 + 0.657057i \(0.771801\pi\)
\(920\) 10383.9 + 17985.5i 0.372118 + 0.644526i
\(921\) 0 0
\(922\) −5272.36 + 9132.00i −0.188325 + 0.326189i
\(923\) 5431.69 9407.96i 0.193701 0.335500i
\(924\) 0 0
\(925\) −3125.92 5414.25i −0.111113 0.192454i
\(926\) −14214.8 −0.504457
\(927\) 0 0
\(928\) −10524.5 −0.372288
\(929\) −6556.30 11355.8i −0.231545 0.401048i 0.726718 0.686936i \(-0.241045\pi\)
−0.958263 + 0.285888i \(0.907711\pi\)
\(930\) 0 0
\(931\) −10673.4 + 18487.0i −0.375734 + 0.650790i
\(932\) −809.803 + 1402.62i −0.0284614 + 0.0492965i
\(933\) 0 0
\(934\) 8300.69 + 14377.2i 0.290800 + 0.503680i
\(935\) −557.703 −0.0195068
\(936\) 0 0
\(937\) 49863.5 1.73849 0.869247 0.494378i \(-0.164604\pi\)
0.869247 + 0.494378i \(0.164604\pi\)
\(938\) −15713.8 27217.1i −0.546987 0.947410i
\(939\) 0 0
\(940\) −1978.02 + 3426.03i −0.0686339 + 0.118877i
\(941\) −4676.14 + 8099.31i −0.161996 + 0.280584i −0.935584 0.353104i \(-0.885126\pi\)
0.773589 + 0.633688i \(0.218460\pi\)
\(942\) 0 0
\(943\) −31174.6 53996.0i −1.07655 1.86464i
\(944\) 21501.4 0.741326
\(945\) 0 0
\(946\) 10333.4 0.355147
\(947\) −2005.69 3473.96i −0.0688239 0.119207i 0.829560 0.558418i \(-0.188591\pi\)
−0.898384 + 0.439211i \(0.855258\pi\)
\(948\) 0 0
\(949\) −3259.47 + 5645.57i −0.111493 + 0.193112i
\(950\) −3808.32 + 6596.21i −0.130061 + 0.225273i
\(951\) 0 0
\(952\) 2774.90 + 4806.27i 0.0944696 + 0.163626i
\(953\) 39128.6 1.33001 0.665005 0.746839i \(-0.268429\pi\)
0.665005 + 0.746839i \(0.268429\pi\)
\(954\) 0 0
\(955\) −6808.10 −0.230686
\(956\) 79.4643 + 137.636i 0.00268835 + 0.00465636i
\(957\) 0 0
\(958\) 256.885 444.938i 0.00866345 0.0150055i
\(959\) −28880.9 + 50023.3i −0.972486 + 1.68440i
\(960\) 0 0
\(961\) 5021.39 + 8697.31i 0.168554 + 0.291944i
\(962\) −7522.15 −0.252104
\(963\) 0 0
\(964\) −2284.22 −0.0763174
\(965\) 5585.50 + 9674.38i 0.186325 + 0.322725i
\(966\) 0 0
\(967\) −8817.49 + 15272.3i −0.293228 + 0.507885i −0.974571 0.224079i \(-0.928063\pi\)
0.681343 + 0.731964i \(0.261396\pi\)
\(968\) −14550.6 + 25202.3i −0.483134 + 0.836812i
\(969\) 0 0
\(970\) 4618.24 + 7999.02i 0.152869 + 0.264776i
\(971\) −26827.3 −0.886642 −0.443321 0.896363i \(-0.646200\pi\)
−0.443321 + 0.896363i \(0.646200\pi\)
\(972\) 0 0
\(973\) 14625.3 0.481877
\(974\) 1691.45 + 2929.67i 0.0556442 + 0.0963787i
\(975\) 0 0
\(976\) −1412.50 + 2446.53i −0.0463249 + 0.0802371i
\(977\) 4171.82 7225.80i 0.136610 0.236616i −0.789601 0.613620i \(-0.789713\pi\)
0.926211 + 0.377004i \(0.123046\pi\)
\(978\) 0 0
\(979\) −3802.36 6585.88i −0.124131 0.215001i
\(980\) 1193.91 0.0389165
\(981\) 0 0
\(982\) 32245.8 1.04787
\(983\) 18445.0 + 31947.7i 0.598479 + 1.03660i 0.993046 + 0.117729i \(0.0375614\pi\)
−0.394567 + 0.918867i \(0.629105\pi\)
\(984\) 0 0
\(985\) 866.561 1500.93i 0.0280314 0.0485518i
\(986\) −2319.50 + 4017.49i −0.0749167 + 0.129760i
\(987\) 0 0
\(988\) −904.149 1566.03i −0.0291142 0.0504272i
\(989\) 62200.7 1.99987
\(990\) 0 0
\(991\) −24259.3 −0.777619 −0.388810 0.921318i \(-0.627114\pi\)
−0.388810 + 0.921318i \(0.627114\pi\)
\(992\) −4146.99 7182.80i −0.132729 0.229893i
\(993\) 0 0
\(994\) 27621.8 47842.4i 0.881400 1.52663i
\(995\) 10496.9 18181.2i 0.334447 0.579279i
\(996\) 0 0
\(997\) −15850.1 27453.2i −0.503488 0.872067i −0.999992 0.00403269i \(-0.998716\pi\)
0.496504 0.868035i \(-0.334617\pi\)
\(998\) 8134.15 0.257998
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.4.e.v.271.1 6
3.2 odd 2 405.4.e.q.271.3 6
9.2 odd 6 405.4.e.q.136.3 6
9.4 even 3 135.4.a.e.1.3 3
9.5 odd 6 135.4.a.h.1.1 yes 3
9.7 even 3 inner 405.4.e.v.136.1 6
36.23 even 6 2160.4.a.bq.1.3 3
36.31 odd 6 2160.4.a.bi.1.3 3
45.4 even 6 675.4.a.s.1.1 3
45.13 odd 12 675.4.b.m.649.2 6
45.14 odd 6 675.4.a.p.1.3 3
45.22 odd 12 675.4.b.m.649.5 6
45.23 even 12 675.4.b.n.649.5 6
45.32 even 12 675.4.b.n.649.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.e.1.3 3 9.4 even 3
135.4.a.h.1.1 yes 3 9.5 odd 6
405.4.e.q.136.3 6 9.2 odd 6
405.4.e.q.271.3 6 3.2 odd 2
405.4.e.v.136.1 6 9.7 even 3 inner
405.4.e.v.271.1 6 1.1 even 1 trivial
675.4.a.p.1.3 3 45.14 odd 6
675.4.a.s.1.1 3 45.4 even 6
675.4.b.m.649.2 6 45.13 odd 12
675.4.b.m.649.5 6 45.22 odd 12
675.4.b.n.649.2 6 45.32 even 12
675.4.b.n.649.5 6 45.23 even 12
2160.4.a.bi.1.3 3 36.31 odd 6
2160.4.a.bq.1.3 3 36.23 even 6