Properties

Label 405.4.e.g.136.1
Level $405$
Weight $4$
Character 405.136
Analytic conductor $23.896$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(136,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.136");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 136.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 405.136
Dual form 405.4.e.g.271.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(3.50000 + 6.06218i) q^{4} +(-2.50000 - 4.33013i) q^{5} +(12.0000 - 20.7846i) q^{7} -15.0000 q^{8} +5.00000 q^{10} +(-26.0000 + 45.0333i) q^{11} +(-11.0000 - 19.0526i) q^{13} +(12.0000 + 20.7846i) q^{14} +(-20.5000 + 35.5070i) q^{16} -14.0000 q^{17} -20.0000 q^{19} +(17.5000 - 30.3109i) q^{20} +(-26.0000 - 45.0333i) q^{22} +(84.0000 + 145.492i) q^{23} +(-12.5000 + 21.6506i) q^{25} +22.0000 q^{26} +168.000 q^{28} +(-115.000 + 199.186i) q^{29} +(144.000 + 249.415i) q^{31} +(-80.5000 - 139.430i) q^{32} +(7.00000 - 12.1244i) q^{34} -120.000 q^{35} -34.0000 q^{37} +(10.0000 - 17.3205i) q^{38} +(37.5000 + 64.9519i) q^{40} +(-61.0000 - 105.655i) q^{41} +(94.0000 - 162.813i) q^{43} -364.000 q^{44} -168.000 q^{46} +(-128.000 + 221.703i) q^{47} +(-116.500 - 201.784i) q^{49} +(-12.5000 - 21.6506i) q^{50} +(77.0000 - 133.368i) q^{52} -338.000 q^{53} +260.000 q^{55} +(-180.000 + 311.769i) q^{56} +(-115.000 - 199.186i) q^{58} +(-50.0000 - 86.6025i) q^{59} +(-371.000 + 642.591i) q^{61} -288.000 q^{62} -167.000 q^{64} +(-55.0000 + 95.2628i) q^{65} +(42.0000 + 72.7461i) q^{67} +(-49.0000 - 84.8705i) q^{68} +(60.0000 - 103.923i) q^{70} -328.000 q^{71} -38.0000 q^{73} +(17.0000 - 29.4449i) q^{74} +(-70.0000 - 121.244i) q^{76} +(624.000 + 1080.80i) q^{77} +(120.000 - 207.846i) q^{79} +205.000 q^{80} +122.000 q^{82} +(-606.000 + 1049.62i) q^{83} +(35.0000 + 60.6218i) q^{85} +(94.0000 + 162.813i) q^{86} +(390.000 - 675.500i) q^{88} +330.000 q^{89} -528.000 q^{91} +(-588.000 + 1018.45i) q^{92} +(-128.000 - 221.703i) q^{94} +(50.0000 + 86.6025i) q^{95} +(-433.000 + 749.978i) q^{97} +233.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 7 q^{4} - 5 q^{5} + 24 q^{7} - 30 q^{8} + 10 q^{10} - 52 q^{11} - 22 q^{13} + 24 q^{14} - 41 q^{16} - 28 q^{17} - 40 q^{19} + 35 q^{20} - 52 q^{22} + 168 q^{23} - 25 q^{25} + 44 q^{26} + 336 q^{28}+ \cdots + 466 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.176777 + 0.306186i −0.940775 0.339032i \(-0.889900\pi\)
0.763998 + 0.645219i \(0.223234\pi\)
\(3\) 0 0
\(4\) 3.50000 + 6.06218i 0.437500 + 0.757772i
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) 12.0000 20.7846i 0.647939 1.12226i −0.335675 0.941978i \(-0.608964\pi\)
0.983614 0.180286i \(-0.0577022\pi\)
\(8\) −15.0000 −0.662913
\(9\) 0 0
\(10\) 5.00000 0.158114
\(11\) −26.0000 + 45.0333i −0.712663 + 1.23437i 0.251191 + 0.967938i \(0.419178\pi\)
−0.963854 + 0.266431i \(0.914155\pi\)
\(12\) 0 0
\(13\) −11.0000 19.0526i −0.234681 0.406479i 0.724499 0.689276i \(-0.242071\pi\)
−0.959180 + 0.282797i \(0.908738\pi\)
\(14\) 12.0000 + 20.7846i 0.229081 + 0.396780i
\(15\) 0 0
\(16\) −20.5000 + 35.5070i −0.320312 + 0.554798i
\(17\) −14.0000 −0.199735 −0.0998676 0.995001i \(-0.531842\pi\)
−0.0998676 + 0.995001i \(0.531842\pi\)
\(18\) 0 0
\(19\) −20.0000 −0.241490 −0.120745 0.992684i \(-0.538528\pi\)
−0.120745 + 0.992684i \(0.538528\pi\)
\(20\) 17.5000 30.3109i 0.195656 0.338886i
\(21\) 0 0
\(22\) −26.0000 45.0333i −0.251964 0.436415i
\(23\) 84.0000 + 145.492i 0.761531 + 1.31901i 0.942061 + 0.335441i \(0.108885\pi\)
−0.180530 + 0.983569i \(0.557781\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 22.0000 0.165944
\(27\) 0 0
\(28\) 168.000 1.13389
\(29\) −115.000 + 199.186i −0.736378 + 1.27544i 0.217738 + 0.976007i \(0.430132\pi\)
−0.954116 + 0.299437i \(0.903201\pi\)
\(30\) 0 0
\(31\) 144.000 + 249.415i 0.834296 + 1.44504i 0.894603 + 0.446862i \(0.147459\pi\)
−0.0603071 + 0.998180i \(0.519208\pi\)
\(32\) −80.5000 139.430i −0.444704 0.770250i
\(33\) 0 0
\(34\) 7.00000 12.1244i 0.0353085 0.0611562i
\(35\) −120.000 −0.579534
\(36\) 0 0
\(37\) −34.0000 −0.151069 −0.0755347 0.997143i \(-0.524066\pi\)
−0.0755347 + 0.997143i \(0.524066\pi\)
\(38\) 10.0000 17.3205i 0.0426898 0.0739410i
\(39\) 0 0
\(40\) 37.5000 + 64.9519i 0.148232 + 0.256745i
\(41\) −61.0000 105.655i −0.232356 0.402453i 0.726145 0.687542i \(-0.241310\pi\)
−0.958501 + 0.285089i \(0.907977\pi\)
\(42\) 0 0
\(43\) 94.0000 162.813i 0.333369 0.577412i −0.649801 0.760104i \(-0.725148\pi\)
0.983170 + 0.182692i \(0.0584812\pi\)
\(44\) −364.000 −1.24716
\(45\) 0 0
\(46\) −168.000 −0.538484
\(47\) −128.000 + 221.703i −0.397249 + 0.688056i −0.993385 0.114827i \(-0.963369\pi\)
0.596136 + 0.802883i \(0.296702\pi\)
\(48\) 0 0
\(49\) −116.500 201.784i −0.339650 0.588291i
\(50\) −12.5000 21.6506i −0.0353553 0.0612372i
\(51\) 0 0
\(52\) 77.0000 133.368i 0.205346 0.355669i
\(53\) −338.000 −0.875998 −0.437999 0.898976i \(-0.644313\pi\)
−0.437999 + 0.898976i \(0.644313\pi\)
\(54\) 0 0
\(55\) 260.000 0.637425
\(56\) −180.000 + 311.769i −0.429527 + 0.743963i
\(57\) 0 0
\(58\) −115.000 199.186i −0.260349 0.450938i
\(59\) −50.0000 86.6025i −0.110330 0.191096i 0.805574 0.592496i \(-0.201857\pi\)
−0.915903 + 0.401399i \(0.868524\pi\)
\(60\) 0 0
\(61\) −371.000 + 642.591i −0.778716 + 1.34878i 0.153966 + 0.988076i \(0.450795\pi\)
−0.932682 + 0.360700i \(0.882538\pi\)
\(62\) −288.000 −0.589936
\(63\) 0 0
\(64\) −167.000 −0.326172
\(65\) −55.0000 + 95.2628i −0.104952 + 0.181783i
\(66\) 0 0
\(67\) 42.0000 + 72.7461i 0.0765838 + 0.132647i 0.901774 0.432208i \(-0.142265\pi\)
−0.825190 + 0.564855i \(0.808932\pi\)
\(68\) −49.0000 84.8705i −0.0873842 0.151354i
\(69\) 0 0
\(70\) 60.0000 103.923i 0.102448 0.177445i
\(71\) −328.000 −0.548260 −0.274130 0.961693i \(-0.588390\pi\)
−0.274130 + 0.961693i \(0.588390\pi\)
\(72\) 0 0
\(73\) −38.0000 −0.0609255 −0.0304628 0.999536i \(-0.509698\pi\)
−0.0304628 + 0.999536i \(0.509698\pi\)
\(74\) 17.0000 29.4449i 0.0267055 0.0462553i
\(75\) 0 0
\(76\) −70.0000 121.244i −0.105652 0.182995i
\(77\) 624.000 + 1080.80i 0.923525 + 1.59959i
\(78\) 0 0
\(79\) 120.000 207.846i 0.170899 0.296006i −0.767835 0.640647i \(-0.778666\pi\)
0.938735 + 0.344641i \(0.111999\pi\)
\(80\) 205.000 0.286496
\(81\) 0 0
\(82\) 122.000 0.164301
\(83\) −606.000 + 1049.62i −0.801411 + 1.38809i 0.117276 + 0.993099i \(0.462584\pi\)
−0.918687 + 0.394986i \(0.870750\pi\)
\(84\) 0 0
\(85\) 35.0000 + 60.6218i 0.0446622 + 0.0773571i
\(86\) 94.0000 + 162.813i 0.117864 + 0.204146i
\(87\) 0 0
\(88\) 390.000 675.500i 0.472433 0.818279i
\(89\) 330.000 0.393033 0.196516 0.980501i \(-0.437037\pi\)
0.196516 + 0.980501i \(0.437037\pi\)
\(90\) 0 0
\(91\) −528.000 −0.608236
\(92\) −588.000 + 1018.45i −0.666340 + 1.15413i
\(93\) 0 0
\(94\) −128.000 221.703i −0.140449 0.243265i
\(95\) 50.0000 + 86.6025i 0.0539989 + 0.0935288i
\(96\) 0 0
\(97\) −433.000 + 749.978i −0.453242 + 0.785038i −0.998585 0.0531745i \(-0.983066\pi\)
0.545343 + 0.838213i \(0.316399\pi\)
\(98\) 233.000 0.240169
\(99\) 0 0
\(100\) −175.000 −0.175000
\(101\) 609.000 1054.82i 0.599978 1.03919i −0.392846 0.919604i \(-0.628509\pi\)
0.992824 0.119588i \(-0.0381573\pi\)
\(102\) 0 0
\(103\) 44.0000 + 76.2102i 0.0420917 + 0.0729050i 0.886304 0.463104i \(-0.153264\pi\)
−0.844212 + 0.536009i \(0.819931\pi\)
\(104\) 165.000 + 285.788i 0.155573 + 0.269460i
\(105\) 0 0
\(106\) 169.000 292.717i 0.154856 0.268218i
\(107\) 36.0000 0.0325257 0.0162629 0.999868i \(-0.494823\pi\)
0.0162629 + 0.999868i \(0.494823\pi\)
\(108\) 0 0
\(109\) −970.000 −0.852378 −0.426189 0.904634i \(-0.640144\pi\)
−0.426189 + 0.904634i \(0.640144\pi\)
\(110\) −130.000 + 225.167i −0.112682 + 0.195171i
\(111\) 0 0
\(112\) 492.000 + 852.169i 0.415086 + 0.718950i
\(113\) −521.000 902.398i −0.433731 0.751243i 0.563460 0.826143i \(-0.309470\pi\)
−0.997191 + 0.0748996i \(0.976136\pi\)
\(114\) 0 0
\(115\) 420.000 727.461i 0.340567 0.589879i
\(116\) −1610.00 −1.28866
\(117\) 0 0
\(118\) 100.000 0.0780148
\(119\) −168.000 + 290.985i −0.129416 + 0.224156i
\(120\) 0 0
\(121\) −686.500 1189.05i −0.515778 0.893353i
\(122\) −371.000 642.591i −0.275318 0.476864i
\(123\) 0 0
\(124\) −1008.00 + 1745.91i −0.730009 + 1.26441i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1936.00 1.35269 0.676347 0.736583i \(-0.263562\pi\)
0.676347 + 0.736583i \(0.263562\pi\)
\(128\) 727.500 1260.07i 0.502363 0.870119i
\(129\) 0 0
\(130\) −55.0000 95.2628i −0.0371063 0.0642700i
\(131\) −366.000 633.931i −0.244104 0.422800i 0.717776 0.696274i \(-0.245160\pi\)
−0.961879 + 0.273475i \(0.911827\pi\)
\(132\) 0 0
\(133\) −240.000 + 415.692i −0.156471 + 0.271016i
\(134\) −84.0000 −0.0541529
\(135\) 0 0
\(136\) 210.000 0.132407
\(137\) 1107.00 1917.38i 0.690346 1.19571i −0.281379 0.959597i \(-0.590792\pi\)
0.971725 0.236117i \(-0.0758750\pi\)
\(138\) 0 0
\(139\) −10.0000 17.3205i −0.00610208 0.0105691i 0.862958 0.505275i \(-0.168609\pi\)
−0.869060 + 0.494706i \(0.835276\pi\)
\(140\) −420.000 727.461i −0.253546 0.439155i
\(141\) 0 0
\(142\) 164.000 284.056i 0.0969195 0.167870i
\(143\) 1144.00 0.668994
\(144\) 0 0
\(145\) 1150.00 0.658637
\(146\) 19.0000 32.9090i 0.0107702 0.0186546i
\(147\) 0 0
\(148\) −119.000 206.114i −0.0660928 0.114476i
\(149\) 665.000 + 1151.81i 0.365630 + 0.633290i 0.988877 0.148735i \(-0.0475201\pi\)
−0.623247 + 0.782025i \(0.714187\pi\)
\(150\) 0 0
\(151\) 604.000 1046.16i 0.325515 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611289\pi\)
\(152\) 300.000 0.160087
\(153\) 0 0
\(154\) −1248.00 −0.653031
\(155\) 720.000 1247.08i 0.373108 0.646243i
\(156\) 0 0
\(157\) 1757.00 + 3043.21i 0.893146 + 1.54697i 0.836083 + 0.548603i \(0.184840\pi\)
0.0570627 + 0.998371i \(0.481827\pi\)
\(158\) 120.000 + 207.846i 0.0604221 + 0.104654i
\(159\) 0 0
\(160\) −402.500 + 697.150i −0.198878 + 0.344466i
\(161\) 4032.00 1.97370
\(162\) 0 0
\(163\) −2068.00 −0.993732 −0.496866 0.867827i \(-0.665516\pi\)
−0.496866 + 0.867827i \(0.665516\pi\)
\(164\) 427.000 739.586i 0.203312 0.352146i
\(165\) 0 0
\(166\) −606.000 1049.62i −0.283342 0.490762i
\(167\) 12.0000 + 20.7846i 0.00556041 + 0.00963091i 0.868792 0.495177i \(-0.164897\pi\)
−0.863232 + 0.504808i \(0.831563\pi\)
\(168\) 0 0
\(169\) 856.500 1483.50i 0.389850 0.675240i
\(170\) −70.0000 −0.0315809
\(171\) 0 0
\(172\) 1316.00 0.583396
\(173\) 309.000 535.204i 0.135797 0.235207i −0.790105 0.612972i \(-0.789974\pi\)
0.925902 + 0.377765i \(0.123307\pi\)
\(174\) 0 0
\(175\) 300.000 + 519.615i 0.129588 + 0.224453i
\(176\) −1066.00 1846.37i −0.456550 0.790768i
\(177\) 0 0
\(178\) −165.000 + 285.788i −0.0694791 + 0.120341i
\(179\) 3340.00 1.39466 0.697328 0.716752i \(-0.254372\pi\)
0.697328 + 0.716752i \(0.254372\pi\)
\(180\) 0 0
\(181\) −178.000 −0.0730974 −0.0365487 0.999332i \(-0.511636\pi\)
−0.0365487 + 0.999332i \(0.511636\pi\)
\(182\) 264.000 457.261i 0.107522 0.186233i
\(183\) 0 0
\(184\) −1260.00 2182.38i −0.504828 0.874389i
\(185\) 85.0000 + 147.224i 0.0337801 + 0.0585089i
\(186\) 0 0
\(187\) 364.000 630.466i 0.142344 0.246547i
\(188\) −1792.00 −0.695186
\(189\) 0 0
\(190\) −100.000 −0.0381830
\(191\) 944.000 1635.06i 0.357620 0.619416i −0.629943 0.776642i \(-0.716922\pi\)
0.987563 + 0.157225i \(0.0502549\pi\)
\(192\) 0 0
\(193\) −961.000 1664.50i −0.358416 0.620795i 0.629280 0.777178i \(-0.283350\pi\)
−0.987696 + 0.156384i \(0.950016\pi\)
\(194\) −433.000 749.978i −0.160245 0.277553i
\(195\) 0 0
\(196\) 815.500 1412.49i 0.297194 0.514755i
\(197\) 2526.00 0.913554 0.456777 0.889581i \(-0.349004\pi\)
0.456777 + 0.889581i \(0.349004\pi\)
\(198\) 0 0
\(199\) −1160.00 −0.413217 −0.206609 0.978424i \(-0.566243\pi\)
−0.206609 + 0.978424i \(0.566243\pi\)
\(200\) 187.500 324.760i 0.0662913 0.114820i
\(201\) 0 0
\(202\) 609.000 + 1054.82i 0.212124 + 0.367410i
\(203\) 2760.00 + 4780.46i 0.954256 + 1.65282i
\(204\) 0 0
\(205\) −305.000 + 528.275i −0.103913 + 0.179982i
\(206\) −88.0000 −0.0297634
\(207\) 0 0
\(208\) 902.000 0.300685
\(209\) 520.000 900.666i 0.172101 0.298088i
\(210\) 0 0
\(211\) 2234.00 + 3869.40i 0.728886 + 1.26247i 0.957354 + 0.288916i \(0.0932948\pi\)
−0.228469 + 0.973551i \(0.573372\pi\)
\(212\) −1183.00 2049.02i −0.383249 0.663807i
\(213\) 0 0
\(214\) −18.0000 + 31.1769i −0.00574979 + 0.00995893i
\(215\) −940.000 −0.298174
\(216\) 0 0
\(217\) 6912.00 2.16229
\(218\) 485.000 840.045i 0.150680 0.260986i
\(219\) 0 0
\(220\) 910.000 + 1576.17i 0.278874 + 0.483023i
\(221\) 154.000 + 266.736i 0.0468740 + 0.0811882i
\(222\) 0 0
\(223\) −3016.00 + 5223.87i −0.905678 + 1.56868i −0.0856746 + 0.996323i \(0.527305\pi\)
−0.820004 + 0.572358i \(0.806029\pi\)
\(224\) −3864.00 −1.15256
\(225\) 0 0
\(226\) 1042.00 0.306694
\(227\) −1318.00 + 2282.84i −0.385369 + 0.667478i −0.991820 0.127642i \(-0.959259\pi\)
0.606451 + 0.795121i \(0.292592\pi\)
\(228\) 0 0
\(229\) −2415.00 4182.90i −0.696889 1.20705i −0.969540 0.244935i \(-0.921233\pi\)
0.272650 0.962113i \(-0.412100\pi\)
\(230\) 420.000 + 727.461i 0.120409 + 0.208554i
\(231\) 0 0
\(232\) 1725.00 2987.79i 0.488154 0.845508i
\(233\) 2682.00 0.754093 0.377046 0.926194i \(-0.376940\pi\)
0.377046 + 0.926194i \(0.376940\pi\)
\(234\) 0 0
\(235\) 1280.00 0.355311
\(236\) 350.000 606.218i 0.0965384 0.167209i
\(237\) 0 0
\(238\) −168.000 290.985i −0.0457556 0.0792509i
\(239\) −1160.00 2009.18i −0.313950 0.543778i 0.665263 0.746609i \(-0.268319\pi\)
−0.979214 + 0.202831i \(0.934986\pi\)
\(240\) 0 0
\(241\) −1001.00 + 1733.78i −0.267552 + 0.463414i −0.968229 0.250065i \(-0.919548\pi\)
0.700677 + 0.713479i \(0.252881\pi\)
\(242\) 1373.00 0.364710
\(243\) 0 0
\(244\) −5194.00 −1.36275
\(245\) −582.500 + 1008.92i −0.151896 + 0.263092i
\(246\) 0 0
\(247\) 220.000 + 381.051i 0.0566731 + 0.0981608i
\(248\) −2160.00 3741.23i −0.553065 0.957937i
\(249\) 0 0
\(250\) −62.5000 + 108.253i −0.0158114 + 0.0273861i
\(251\) 132.000 0.0331943 0.0165971 0.999862i \(-0.494717\pi\)
0.0165971 + 0.999862i \(0.494717\pi\)
\(252\) 0 0
\(253\) −8736.00 −2.17086
\(254\) −968.000 + 1676.63i −0.239125 + 0.414176i
\(255\) 0 0
\(256\) 59.5000 + 103.057i 0.0145264 + 0.0251604i
\(257\) 3807.00 + 6593.92i 0.924024 + 1.60046i 0.793124 + 0.609061i \(0.208453\pi\)
0.130900 + 0.991396i \(0.458213\pi\)
\(258\) 0 0
\(259\) −408.000 + 706.677i −0.0978837 + 0.169540i
\(260\) −770.000 −0.183667
\(261\) 0 0
\(262\) 732.000 0.172607
\(263\) 2444.00 4233.13i 0.573017 0.992495i −0.423237 0.906019i \(-0.639106\pi\)
0.996254 0.0864757i \(-0.0275605\pi\)
\(264\) 0 0
\(265\) 845.000 + 1463.58i 0.195879 + 0.339272i
\(266\) −240.000 415.692i −0.0553208 0.0958185i
\(267\) 0 0
\(268\) −294.000 + 509.223i −0.0670109 + 0.116066i
\(269\) 1270.00 0.287856 0.143928 0.989588i \(-0.454027\pi\)
0.143928 + 0.989588i \(0.454027\pi\)
\(270\) 0 0
\(271\) 1072.00 0.240293 0.120146 0.992756i \(-0.461664\pi\)
0.120146 + 0.992756i \(0.461664\pi\)
\(272\) 287.000 497.099i 0.0639777 0.110813i
\(273\) 0 0
\(274\) 1107.00 + 1917.38i 0.244074 + 0.422749i
\(275\) −650.000 1125.83i −0.142533 0.246874i
\(276\) 0 0
\(277\) 2697.00 4671.34i 0.585007 1.01326i −0.409867 0.912145i \(-0.634425\pi\)
0.994875 0.101117i \(-0.0322417\pi\)
\(278\) 20.0000 0.00431482
\(279\) 0 0
\(280\) 1800.00 0.384181
\(281\) −1221.00 + 2114.83i −0.259213 + 0.448969i −0.966031 0.258425i \(-0.916796\pi\)
0.706819 + 0.707395i \(0.250130\pi\)
\(282\) 0 0
\(283\) −1386.00 2400.62i −0.291128 0.504248i 0.682949 0.730466i \(-0.260697\pi\)
−0.974077 + 0.226218i \(0.927364\pi\)
\(284\) −1148.00 1988.39i −0.239864 0.415456i
\(285\) 0 0
\(286\) −572.000 + 990.733i −0.118262 + 0.204837i
\(287\) −2928.00 −0.602210
\(288\) 0 0
\(289\) −4717.00 −0.960106
\(290\) −575.000 + 995.929i −0.116432 + 0.201665i
\(291\) 0 0
\(292\) −133.000 230.363i −0.0266549 0.0461677i
\(293\) −2271.00 3933.49i −0.452810 0.784289i 0.545750 0.837948i \(-0.316245\pi\)
−0.998559 + 0.0536589i \(0.982912\pi\)
\(294\) 0 0
\(295\) −250.000 + 433.013i −0.0493409 + 0.0854609i
\(296\) 510.000 0.100146
\(297\) 0 0
\(298\) −1330.00 −0.258540
\(299\) 1848.00 3200.83i 0.357433 0.619093i
\(300\) 0 0
\(301\) −2256.00 3907.51i −0.432006 0.748256i
\(302\) 604.000 + 1046.16i 0.115087 + 0.199337i
\(303\) 0 0
\(304\) 410.000 710.141i 0.0773523 0.133978i
\(305\) 3710.00 0.696505
\(306\) 0 0
\(307\) 5116.00 0.951093 0.475546 0.879691i \(-0.342250\pi\)
0.475546 + 0.879691i \(0.342250\pi\)
\(308\) −4368.00 + 7565.60i −0.808084 + 1.39964i
\(309\) 0 0
\(310\) 720.000 + 1247.08i 0.131914 + 0.228481i
\(311\) 1404.00 + 2431.80i 0.255992 + 0.443391i 0.965165 0.261644i \(-0.0842646\pi\)
−0.709172 + 0.705035i \(0.750931\pi\)
\(312\) 0 0
\(313\) 3659.00 6337.57i 0.660763 1.14448i −0.319652 0.947535i \(-0.603566\pi\)
0.980415 0.196941i \(-0.0631006\pi\)
\(314\) −3514.00 −0.631549
\(315\) 0 0
\(316\) 1680.00 0.299074
\(317\) −1123.00 + 1945.09i −0.198971 + 0.344629i −0.948195 0.317688i \(-0.897093\pi\)
0.749224 + 0.662317i \(0.230427\pi\)
\(318\) 0 0
\(319\) −5980.00 10357.7i −1.04958 1.81792i
\(320\) 417.500 + 723.131i 0.0729342 + 0.126326i
\(321\) 0 0
\(322\) −2016.00 + 3491.81i −0.348905 + 0.604321i
\(323\) 280.000 0.0482341
\(324\) 0 0
\(325\) 550.000 0.0938723
\(326\) 1034.00 1790.94i 0.175669 0.304267i
\(327\) 0 0
\(328\) 915.000 + 1584.83i 0.154032 + 0.266791i
\(329\) 3072.00 + 5320.86i 0.514787 + 0.891637i
\(330\) 0 0
\(331\) −666.000 + 1153.55i −0.110594 + 0.191555i −0.916010 0.401155i \(-0.868609\pi\)
0.805416 + 0.592710i \(0.201942\pi\)
\(332\) −8484.00 −1.40247
\(333\) 0 0
\(334\) −24.0000 −0.00393180
\(335\) 210.000 363.731i 0.0342493 0.0593216i
\(336\) 0 0
\(337\) 5767.00 + 9988.74i 0.932191 + 1.61460i 0.779567 + 0.626319i \(0.215439\pi\)
0.152624 + 0.988284i \(0.451228\pi\)
\(338\) 856.500 + 1483.50i 0.137833 + 0.238733i
\(339\) 0 0
\(340\) −245.000 + 424.352i −0.0390794 + 0.0676875i
\(341\) −14976.0 −2.37829
\(342\) 0 0
\(343\) 2640.00 0.415588
\(344\) −1410.00 + 2442.19i −0.220994 + 0.382774i
\(345\) 0 0
\(346\) 309.000 + 535.204i 0.0480114 + 0.0831582i
\(347\) −5978.00 10354.2i −0.924830 1.60185i −0.791835 0.610735i \(-0.790874\pi\)
−0.132994 0.991117i \(-0.542459\pi\)
\(348\) 0 0
\(349\) −2435.00 + 4217.54i −0.373474 + 0.646877i −0.990097 0.140382i \(-0.955167\pi\)
0.616623 + 0.787259i \(0.288500\pi\)
\(350\) −600.000 −0.0916324
\(351\) 0 0
\(352\) 8372.00 1.26770
\(353\) −5361.00 + 9285.52i −0.808321 + 1.40005i 0.105705 + 0.994397i \(0.466290\pi\)
−0.914026 + 0.405655i \(0.867043\pi\)
\(354\) 0 0
\(355\) 820.000 + 1420.28i 0.122595 + 0.212340i
\(356\) 1155.00 + 2000.52i 0.171952 + 0.297829i
\(357\) 0 0
\(358\) −1670.00 + 2892.52i −0.246543 + 0.427024i
\(359\) 120.000 0.0176417 0.00882083 0.999961i \(-0.497192\pi\)
0.00882083 + 0.999961i \(0.497192\pi\)
\(360\) 0 0
\(361\) −6459.00 −0.941682
\(362\) 89.0000 154.153i 0.0129219 0.0223814i
\(363\) 0 0
\(364\) −1848.00 3200.83i −0.266103 0.460904i
\(365\) 95.0000 + 164.545i 0.0136234 + 0.0235964i
\(366\) 0 0
\(367\) −1968.00 + 3408.68i −0.279915 + 0.484827i −0.971363 0.237599i \(-0.923640\pi\)
0.691448 + 0.722426i \(0.256973\pi\)
\(368\) −6888.00 −0.975711
\(369\) 0 0
\(370\) −170.000 −0.0238862
\(371\) −4056.00 + 7025.20i −0.567593 + 0.983100i
\(372\) 0 0
\(373\) −1511.00 2617.13i −0.209750 0.363297i 0.741886 0.670526i \(-0.233932\pi\)
−0.951636 + 0.307229i \(0.900598\pi\)
\(374\) 364.000 + 630.466i 0.0503262 + 0.0871675i
\(375\) 0 0
\(376\) 1920.00 3325.54i 0.263342 0.456121i
\(377\) 5060.00 0.691255
\(378\) 0 0
\(379\) −13340.0 −1.80799 −0.903997 0.427539i \(-0.859381\pi\)
−0.903997 + 0.427539i \(0.859381\pi\)
\(380\) −350.000 + 606.218i −0.0472490 + 0.0818377i
\(381\) 0 0
\(382\) 944.000 + 1635.06i 0.126438 + 0.218997i
\(383\) 504.000 + 872.954i 0.0672407 + 0.116464i 0.897686 0.440636i \(-0.145247\pi\)
−0.830445 + 0.557101i \(0.811914\pi\)
\(384\) 0 0
\(385\) 3120.00 5404.00i 0.413013 0.715359i
\(386\) 1922.00 0.253438
\(387\) 0 0
\(388\) −6062.00 −0.793174
\(389\) −4815.00 + 8339.82i −0.627584 + 1.08701i 0.360451 + 0.932778i \(0.382623\pi\)
−0.988035 + 0.154229i \(0.950711\pi\)
\(390\) 0 0
\(391\) −1176.00 2036.89i −0.152105 0.263453i
\(392\) 1747.50 + 3026.76i 0.225158 + 0.389986i
\(393\) 0 0
\(394\) −1263.00 + 2187.58i −0.161495 + 0.279718i
\(395\) −1200.00 −0.152857
\(396\) 0 0
\(397\) 7126.00 0.900866 0.450433 0.892810i \(-0.351270\pi\)
0.450433 + 0.892810i \(0.351270\pi\)
\(398\) 580.000 1004.59i 0.0730472 0.126521i
\(399\) 0 0
\(400\) −512.500 887.676i −0.0640625 0.110960i
\(401\) 4359.00 + 7550.01i 0.542838 + 0.940223i 0.998740 + 0.0501929i \(0.0159836\pi\)
−0.455901 + 0.890030i \(0.650683\pi\)
\(402\) 0 0
\(403\) 3168.00 5487.14i 0.391586 0.678248i
\(404\) 8526.00 1.04996
\(405\) 0 0
\(406\) −5520.00 −0.674761
\(407\) 884.000 1531.13i 0.107662 0.186475i
\(408\) 0 0
\(409\) 5435.00 + 9413.70i 0.657074 + 1.13809i 0.981369 + 0.192130i \(0.0615396\pi\)
−0.324295 + 0.945956i \(0.605127\pi\)
\(410\) −305.000 528.275i −0.0367387 0.0636333i
\(411\) 0 0
\(412\) −308.000 + 533.472i −0.0368303 + 0.0637919i
\(413\) −2400.00 −0.285947
\(414\) 0 0
\(415\) 6060.00 0.716804
\(416\) −1771.00 + 3067.46i −0.208727 + 0.361526i
\(417\) 0 0
\(418\) 520.000 + 900.666i 0.0608470 + 0.105390i
\(419\) 4850.00 + 8400.45i 0.565484 + 0.979448i 0.997004 + 0.0773445i \(0.0246441\pi\)
−0.431520 + 0.902103i \(0.642023\pi\)
\(420\) 0 0
\(421\) −431.000 + 746.514i −0.0498947 + 0.0864201i −0.889894 0.456167i \(-0.849222\pi\)
0.839999 + 0.542587i \(0.182555\pi\)
\(422\) −4468.00 −0.515400
\(423\) 0 0
\(424\) 5070.00 0.580710
\(425\) 175.000 303.109i 0.0199735 0.0345952i
\(426\) 0 0
\(427\) 8904.00 + 15422.2i 1.00912 + 1.74785i
\(428\) 126.000 + 218.238i 0.0142300 + 0.0246471i
\(429\) 0 0
\(430\) 470.000 814.064i 0.0527103 0.0912969i
\(431\) 15792.0 1.76490 0.882452 0.470402i \(-0.155891\pi\)
0.882452 + 0.470402i \(0.155891\pi\)
\(432\) 0 0
\(433\) 11602.0 1.28766 0.643830 0.765169i \(-0.277345\pi\)
0.643830 + 0.765169i \(0.277345\pi\)
\(434\) −3456.00 + 5985.97i −0.382243 + 0.662064i
\(435\) 0 0
\(436\) −3395.00 5880.31i −0.372915 0.645908i
\(437\) −1680.00 2909.85i −0.183902 0.318528i
\(438\) 0 0
\(439\) 220.000 381.051i 0.0239181 0.0414273i −0.853819 0.520571i \(-0.825719\pi\)
0.877737 + 0.479143i \(0.159053\pi\)
\(440\) −3900.00 −0.422557
\(441\) 0 0
\(442\) −308.000 −0.0331449
\(443\) 5094.00 8823.07i 0.546328 0.946268i −0.452194 0.891920i \(-0.649359\pi\)
0.998522 0.0543481i \(-0.0173081\pi\)
\(444\) 0 0
\(445\) −825.000 1428.94i −0.0878848 0.152221i
\(446\) −3016.00 5223.87i −0.320206 0.554613i
\(447\) 0 0
\(448\) −2004.00 + 3471.03i −0.211340 + 0.366051i
\(449\) −13310.0 −1.39897 −0.699485 0.714647i \(-0.746587\pi\)
−0.699485 + 0.714647i \(0.746587\pi\)
\(450\) 0 0
\(451\) 6344.00 0.662367
\(452\) 3647.00 6316.79i 0.379514 0.657338i
\(453\) 0 0
\(454\) −1318.00 2282.84i −0.136248 0.235989i
\(455\) 1320.00 + 2286.31i 0.136006 + 0.235569i
\(456\) 0 0
\(457\) −1613.00 + 2793.80i −0.165105 + 0.285970i −0.936693 0.350153i \(-0.886130\pi\)
0.771588 + 0.636123i \(0.219463\pi\)
\(458\) 4830.00 0.492775
\(459\) 0 0
\(460\) 5880.00 0.595992
\(461\) −3291.00 + 5700.18i −0.332488 + 0.575887i −0.982999 0.183610i \(-0.941222\pi\)
0.650511 + 0.759497i \(0.274555\pi\)
\(462\) 0 0
\(463\) −7536.00 13052.7i −0.756431 1.31018i −0.944660 0.328052i \(-0.893608\pi\)
0.188229 0.982125i \(-0.439725\pi\)
\(464\) −4715.00 8166.62i −0.471742 0.817081i
\(465\) 0 0
\(466\) −1341.00 + 2322.68i −0.133306 + 0.230893i
\(467\) 476.000 0.0471663 0.0235831 0.999722i \(-0.492493\pi\)
0.0235831 + 0.999722i \(0.492493\pi\)
\(468\) 0 0
\(469\) 2016.00 0.198487
\(470\) −640.000 + 1108.51i −0.0628106 + 0.108791i
\(471\) 0 0
\(472\) 750.000 + 1299.04i 0.0731389 + 0.126680i
\(473\) 4888.00 + 8466.26i 0.475160 + 0.823001i
\(474\) 0 0
\(475\) 250.000 433.013i 0.0241490 0.0418273i
\(476\) −2352.00 −0.226478
\(477\) 0 0
\(478\) 2320.00 0.221997
\(479\) 9840.00 17043.4i 0.938624 1.62575i 0.170585 0.985343i \(-0.445434\pi\)
0.768040 0.640402i \(-0.221232\pi\)
\(480\) 0 0
\(481\) 374.000 + 647.787i 0.0354531 + 0.0614065i
\(482\) −1001.00 1733.78i −0.0945940 0.163842i
\(483\) 0 0
\(484\) 4805.50 8323.37i 0.451305 0.781684i
\(485\) 4330.00 0.405392
\(486\) 0 0
\(487\) −5944.00 −0.553077 −0.276538 0.961003i \(-0.589187\pi\)
−0.276538 + 0.961003i \(0.589187\pi\)
\(488\) 5565.00 9638.86i 0.516221 0.894121i
\(489\) 0 0
\(490\) −582.500 1008.92i −0.0537034 0.0930170i
\(491\) −5386.00 9328.83i −0.495044 0.857442i 0.504939 0.863155i \(-0.331515\pi\)
−0.999984 + 0.00571287i \(0.998182\pi\)
\(492\) 0 0
\(493\) 1610.00 2788.60i 0.147081 0.254751i
\(494\) −440.000 −0.0400740
\(495\) 0 0
\(496\) −11808.0 −1.06894
\(497\) −3936.00 + 6817.35i −0.355239 + 0.615292i
\(498\) 0 0
\(499\) −4070.00 7049.45i −0.365127 0.632418i 0.623670 0.781688i \(-0.285641\pi\)
−0.988796 + 0.149270i \(0.952308\pi\)
\(500\) 437.500 + 757.772i 0.0391312 + 0.0677772i
\(501\) 0 0
\(502\) −66.0000 + 114.315i −0.00586798 + 0.0101636i
\(503\) −13768.0 −1.22045 −0.610223 0.792229i \(-0.708920\pi\)
−0.610223 + 0.792229i \(0.708920\pi\)
\(504\) 0 0
\(505\) −6090.00 −0.536637
\(506\) 4368.00 7565.60i 0.383757 0.664687i
\(507\) 0 0
\(508\) 6776.00 + 11736.4i 0.591804 + 1.02503i
\(509\) −11075.0 19182.5i −0.964422 1.67043i −0.711160 0.703030i \(-0.751830\pi\)
−0.253262 0.967398i \(-0.581503\pi\)
\(510\) 0 0
\(511\) −456.000 + 789.815i −0.0394760 + 0.0683745i
\(512\) 11521.0 0.994455
\(513\) 0 0
\(514\) −7614.00 −0.653384
\(515\) 220.000 381.051i 0.0188240 0.0326041i
\(516\) 0 0
\(517\) −6656.00 11528.5i −0.566210 0.980704i
\(518\) −408.000 706.677i −0.0346071 0.0599413i
\(519\) 0 0
\(520\) 825.000 1428.94i 0.0695743 0.120506i
\(521\) 1562.00 0.131348 0.0656741 0.997841i \(-0.479080\pi\)
0.0656741 + 0.997841i \(0.479080\pi\)
\(522\) 0 0
\(523\) −668.000 −0.0558501 −0.0279250 0.999610i \(-0.508890\pi\)
−0.0279250 + 0.999610i \(0.508890\pi\)
\(524\) 2562.00 4437.51i 0.213591 0.369950i
\(525\) 0 0
\(526\) 2444.00 + 4233.13i 0.202592 + 0.350900i
\(527\) −2016.00 3491.81i −0.166638 0.288626i
\(528\) 0 0
\(529\) −8028.50 + 13905.8i −0.659859 + 1.14291i
\(530\) −1690.00 −0.138507
\(531\) 0 0
\(532\) −3360.00 −0.273824
\(533\) −1342.00 + 2324.41i −0.109059 + 0.188896i
\(534\) 0 0
\(535\) −90.0000 155.885i −0.00727297 0.0125972i
\(536\) −630.000 1091.19i −0.0507684 0.0879334i
\(537\) 0 0
\(538\) −635.000 + 1099.85i −0.0508862 + 0.0881375i
\(539\) 12116.0 0.968225
\(540\) 0 0
\(541\) −6138.00 −0.487788 −0.243894 0.969802i \(-0.578425\pi\)
−0.243894 + 0.969802i \(0.578425\pi\)
\(542\) −536.000 + 928.379i −0.0424782 + 0.0735744i
\(543\) 0 0
\(544\) 1127.00 + 1952.02i 0.0888230 + 0.153846i
\(545\) 2425.00 + 4200.22i 0.190597 + 0.330124i
\(546\) 0 0
\(547\) 5242.00 9079.41i 0.409747 0.709703i −0.585114 0.810951i \(-0.698950\pi\)
0.994861 + 0.101248i \(0.0322836\pi\)
\(548\) 15498.0 1.20811
\(549\) 0 0
\(550\) 1300.00 0.100786
\(551\) 2300.00 3983.72i 0.177828 0.308007i
\(552\) 0 0
\(553\) −2880.00 4988.31i −0.221465 0.383588i
\(554\) 2697.00 + 4671.34i 0.206831 + 0.358242i
\(555\) 0 0
\(556\) 70.0000 121.244i 0.00533932 0.00924797i
\(557\) 3606.00 0.274311 0.137155 0.990550i \(-0.456204\pi\)
0.137155 + 0.990550i \(0.456204\pi\)
\(558\) 0 0
\(559\) −4136.00 −0.312941
\(560\) 2460.00 4260.84i 0.185632 0.321524i
\(561\) 0 0
\(562\) −1221.00 2114.83i −0.0916455 0.158735i
\(563\) −6126.00 10610.5i −0.458579 0.794283i 0.540307 0.841468i \(-0.318308\pi\)
−0.998886 + 0.0471855i \(0.984975\pi\)
\(564\) 0 0
\(565\) −2605.00 + 4511.99i −0.193970 + 0.335966i
\(566\) 2772.00 0.205858
\(567\) 0 0
\(568\) 4920.00 0.363448
\(569\) 7275.00 12600.7i 0.536000 0.928379i −0.463114 0.886298i \(-0.653268\pi\)
0.999114 0.0420803i \(-0.0133985\pi\)
\(570\) 0 0
\(571\) 12734.0 + 22055.9i 0.933277 + 1.61648i 0.777677 + 0.628663i \(0.216398\pi\)
0.155600 + 0.987820i \(0.450269\pi\)
\(572\) 4004.00 + 6935.13i 0.292685 + 0.506945i
\(573\) 0 0
\(574\) 1464.00 2535.72i 0.106457 0.184389i
\(575\) −4200.00 −0.304612
\(576\) 0 0
\(577\) 12866.0 0.928282 0.464141 0.885761i \(-0.346363\pi\)
0.464141 + 0.885761i \(0.346363\pi\)
\(578\) 2358.50 4085.04i 0.169724 0.293971i
\(579\) 0 0
\(580\) 4025.00 + 6971.50i 0.288153 + 0.499096i
\(581\) 14544.0 + 25190.9i 1.03853 + 1.79879i
\(582\) 0 0
\(583\) 8788.00 15221.3i 0.624291 1.08130i
\(584\) 570.000 0.0403883
\(585\) 0 0
\(586\) 4542.00 0.320185
\(587\) 7422.00 12855.3i 0.521872 0.903908i −0.477805 0.878466i \(-0.658567\pi\)
0.999676 0.0254422i \(-0.00809939\pi\)
\(588\) 0 0
\(589\) −2880.00 4988.31i −0.201474 0.348964i
\(590\) −250.000 433.013i −0.0174446 0.0302150i
\(591\) 0 0
\(592\) 697.000 1207.24i 0.0483894 0.0838129i
\(593\) 20402.0 1.41283 0.706416 0.707797i \(-0.250311\pi\)
0.706416 + 0.707797i \(0.250311\pi\)
\(594\) 0 0
\(595\) 1680.00 0.115753
\(596\) −4655.00 + 8062.70i −0.319927 + 0.554129i
\(597\) 0 0
\(598\) 1848.00 + 3200.83i 0.126372 + 0.218882i
\(599\) −5380.00 9318.43i −0.366980 0.635627i 0.622112 0.782928i \(-0.286275\pi\)
−0.989092 + 0.147301i \(0.952941\pi\)
\(600\) 0 0
\(601\) −7141.00 + 12368.6i −0.484671 + 0.839475i −0.999845 0.0176105i \(-0.994394\pi\)
0.515174 + 0.857086i \(0.327727\pi\)
\(602\) 4512.00 0.305474
\(603\) 0 0
\(604\) 8456.00 0.569652
\(605\) −3432.50 + 5945.26i −0.230663 + 0.399520i
\(606\) 0 0
\(607\) −5528.00 9574.78i −0.369645 0.640244i 0.619865 0.784709i \(-0.287187\pi\)
−0.989510 + 0.144464i \(0.953854\pi\)
\(608\) 1610.00 + 2788.60i 0.107392 + 0.186008i
\(609\) 0 0
\(610\) −1855.00 + 3212.95i −0.123126 + 0.213260i
\(611\) 5632.00 0.372907
\(612\) 0 0
\(613\) −16418.0 −1.08176 −0.540878 0.841101i \(-0.681908\pi\)
−0.540878 + 0.841101i \(0.681908\pi\)
\(614\) −2558.00 + 4430.59i −0.168131 + 0.291212i
\(615\) 0 0
\(616\) −9360.00 16212.0i −0.612216 1.06039i
\(617\) 5187.00 + 8984.15i 0.338445 + 0.586204i 0.984140 0.177391i \(-0.0567657\pi\)
−0.645695 + 0.763595i \(0.723432\pi\)
\(618\) 0 0
\(619\) 2630.00 4555.29i 0.170773 0.295788i −0.767917 0.640549i \(-0.778707\pi\)
0.938690 + 0.344761i \(0.112040\pi\)
\(620\) 10080.0 0.652940
\(621\) 0 0
\(622\) −2808.00 −0.181014
\(623\) 3960.00 6858.92i 0.254661 0.441086i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 3659.00 + 6337.57i 0.233615 + 0.404633i
\(627\) 0 0
\(628\) −12299.0 + 21302.5i −0.781502 + 1.35360i
\(629\) 476.000 0.0301739
\(630\) 0 0
\(631\) 21352.0 1.34708 0.673542 0.739149i \(-0.264772\pi\)
0.673542 + 0.739149i \(0.264772\pi\)
\(632\) −1800.00 + 3117.69i −0.113291 + 0.196226i
\(633\) 0 0
\(634\) −1123.00 1945.09i −0.0703470 0.121845i
\(635\) −4840.00 8383.13i −0.302472 0.523896i
\(636\) 0 0
\(637\) −2563.00 + 4439.25i −0.159419 + 0.276121i
\(638\) 11960.0 0.742164
\(639\) 0 0
\(640\) −7275.00 −0.449328
\(641\) 14559.0 25216.9i 0.897108 1.55384i 0.0659331 0.997824i \(-0.478998\pi\)
0.831174 0.556012i \(-0.187669\pi\)
\(642\) 0 0
\(643\) −2886.00 4998.70i −0.177003 0.306578i 0.763850 0.645394i \(-0.223307\pi\)
−0.940853 + 0.338816i \(0.889973\pi\)
\(644\) 14112.0 + 24442.7i 0.863495 + 1.49562i
\(645\) 0 0
\(646\) −140.000 + 242.487i −0.00852667 + 0.0147686i
\(647\) −14264.0 −0.866732 −0.433366 0.901218i \(-0.642674\pi\)
−0.433366 + 0.901218i \(0.642674\pi\)
\(648\) 0 0
\(649\) 5200.00 0.314511
\(650\) −275.000 + 476.314i −0.0165944 + 0.0287424i
\(651\) 0 0
\(652\) −7238.00 12536.6i −0.434758 0.753022i
\(653\) −3451.00 5977.31i −0.206812 0.358208i 0.743897 0.668295i \(-0.232975\pi\)
−0.950708 + 0.310086i \(0.899642\pi\)
\(654\) 0 0
\(655\) −1830.00 + 3169.65i −0.109166 + 0.189082i
\(656\) 5002.00 0.297706
\(657\) 0 0
\(658\) −6144.00 −0.364009
\(659\) −10070.0 + 17441.8i −0.595253 + 1.03101i 0.398258 + 0.917273i \(0.369615\pi\)
−0.993511 + 0.113735i \(0.963719\pi\)
\(660\) 0 0
\(661\) 1609.00 + 2786.87i 0.0946790 + 0.163989i 0.909475 0.415759i \(-0.136484\pi\)
−0.814796 + 0.579748i \(0.803151\pi\)
\(662\) −666.000 1153.55i −0.0391009 0.0677248i
\(663\) 0 0
\(664\) 9090.00 15744.3i 0.531266 0.920179i
\(665\) 2400.00 0.139952
\(666\) 0 0
\(667\) −38640.0 −2.24310
\(668\) −84.0000 + 145.492i −0.00486536 + 0.00842704i
\(669\) 0 0
\(670\) 210.000 + 363.731i 0.0121090 + 0.0209733i
\(671\) −19292.0 33414.7i −1.10992 1.92245i
\(672\) 0 0
\(673\) 3759.00 6510.78i 0.215303 0.372915i −0.738063 0.674731i \(-0.764259\pi\)
0.953366 + 0.301816i \(0.0975928\pi\)
\(674\) −11534.0 −0.659159
\(675\) 0 0
\(676\) 11991.0 0.682237
\(677\) 9057.00 15687.2i 0.514164 0.890558i −0.485701 0.874125i \(-0.661436\pi\)
0.999865 0.0164327i \(-0.00523093\pi\)
\(678\) 0 0
\(679\) 10392.0 + 17999.5i 0.587347 + 1.01731i
\(680\) −525.000 909.327i −0.0296071 0.0512810i
\(681\) 0 0
\(682\) 7488.00 12969.6i 0.420426 0.728199i
\(683\) −23868.0 −1.33716 −0.668582 0.743638i \(-0.733099\pi\)
−0.668582 + 0.743638i \(0.733099\pi\)
\(684\) 0 0
\(685\) −11070.0 −0.617464
\(686\) −1320.00 + 2286.31i −0.0734662 + 0.127247i
\(687\) 0 0
\(688\) 3854.00 + 6675.32i 0.213564 + 0.369905i
\(689\) 3718.00 + 6439.76i 0.205580 + 0.356075i
\(690\) 0 0
\(691\) −86.0000 + 148.956i −0.00473458 + 0.00820053i −0.868383 0.495894i \(-0.834840\pi\)
0.863648 + 0.504095i \(0.168174\pi\)
\(692\) 4326.00 0.237644
\(693\) 0 0
\(694\) 11956.0 0.653953
\(695\) −50.0000 + 86.6025i −0.00272893 + 0.00472665i
\(696\) 0 0
\(697\) 854.000 + 1479.17i 0.0464097 + 0.0803839i
\(698\) −2435.00 4217.54i −0.132043 0.228705i
\(699\) 0 0
\(700\) −2100.00 + 3637.31i −0.113389 + 0.196396i
\(701\) −22138.0 −1.19278 −0.596391 0.802694i \(-0.703399\pi\)
−0.596391 + 0.802694i \(0.703399\pi\)
\(702\) 0 0
\(703\) 680.000 0.0364818
\(704\) 4342.00 7520.56i 0.232451 0.402616i
\(705\) 0 0
\(706\) −5361.00 9285.52i −0.285785 0.494993i
\(707\) −14616.0 25315.7i −0.777498 1.34667i
\(708\) 0 0
\(709\) −1535.00 + 2658.70i −0.0813091 + 0.140831i −0.903812 0.427929i \(-0.859243\pi\)
0.822503 + 0.568760i \(0.192577\pi\)
\(710\) −1640.00 −0.0866875
\(711\) 0 0
\(712\) −4950.00 −0.260546
\(713\) −24192.0 + 41901.8i −1.27068 + 2.20089i
\(714\) 0 0
\(715\) −2860.00 4953.67i −0.149592 0.259100i
\(716\) 11690.0 + 20247.7i 0.610162 + 1.05683i
\(717\) 0 0
\(718\) −60.0000 + 103.923i −0.00311864 + 0.00540163i
\(719\) 15600.0 0.809154 0.404577 0.914504i \(-0.367419\pi\)
0.404577 + 0.914504i \(0.367419\pi\)
\(720\) 0 0
\(721\) 2112.00 0.109092
\(722\) 3229.50 5593.66i 0.166468 0.288330i
\(723\) 0 0
\(724\) −623.000 1079.07i −0.0319801 0.0553912i
\(725\) −2875.00 4979.65i −0.147276 0.255089i
\(726\) 0 0
\(727\) −10348.0 + 17923.3i −0.527904 + 0.914356i 0.471567 + 0.881830i \(0.343689\pi\)
−0.999471 + 0.0325260i \(0.989645\pi\)
\(728\) 7920.00 0.403207
\(729\) 0 0
\(730\) −190.000 −0.00963317
\(731\) −1316.00 + 2279.38i −0.0665855 + 0.115330i
\(732\) 0 0
\(733\) 15389.0 + 26654.5i 0.775451 + 1.34312i 0.934541 + 0.355857i \(0.115811\pi\)
−0.159089 + 0.987264i \(0.550856\pi\)
\(734\) −1968.00 3408.68i −0.0989649 0.171412i
\(735\) 0 0
\(736\) 13524.0 23424.3i 0.677311 1.17314i
\(737\) −4368.00 −0.218314
\(738\) 0 0
\(739\) 11740.0 0.584388 0.292194 0.956359i \(-0.405615\pi\)
0.292194 + 0.956359i \(0.405615\pi\)
\(740\) −595.000 + 1030.57i −0.0295576 + 0.0511953i
\(741\) 0 0
\(742\) −4056.00 7025.20i −0.200674 0.347578i
\(743\) −1316.00 2279.38i −0.0649789 0.112547i 0.831706 0.555217i \(-0.187365\pi\)
−0.896685 + 0.442670i \(0.854031\pi\)
\(744\) 0 0
\(745\) 3325.00 5759.07i 0.163515 0.283216i
\(746\) 3022.00 0.148315
\(747\) 0 0
\(748\) 5096.00 0.249102
\(749\) 432.000 748.246i 0.0210747 0.0365024i
\(750\) 0 0
\(751\) 10264.0 + 17777.8i 0.498720 + 0.863808i 0.999999 0.00147745i \(-0.000470287\pi\)
−0.501279 + 0.865286i \(0.667137\pi\)
\(752\) −5248.00 9089.80i −0.254488 0.440786i
\(753\) 0 0
\(754\) −2530.00 + 4382.09i −0.122198 + 0.211653i
\(755\) −6040.00 −0.291150
\(756\) 0 0
\(757\) 21646.0 1.03928 0.519642 0.854384i \(-0.326066\pi\)
0.519642 + 0.854384i \(0.326066\pi\)
\(758\) 6670.00 11552.8i 0.319611 0.553583i
\(759\) 0 0
\(760\) −750.000 1299.04i −0.0357965 0.0620014i
\(761\) −9141.00 15832.7i −0.435428 0.754184i 0.561902 0.827204i \(-0.310070\pi\)
−0.997331 + 0.0730197i \(0.976736\pi\)
\(762\) 0 0
\(763\) −11640.0 + 20161.1i −0.552289 + 0.956592i
\(764\) 13216.0 0.625835
\(765\) 0 0
\(766\) −1008.00 −0.0475464
\(767\) −1100.00 + 1905.26i −0.0517845 + 0.0896934i
\(768\) 0 0
\(769\) 12095.0 + 20949.2i 0.567174 + 0.982374i 0.996844 + 0.0793882i \(0.0252967\pi\)
−0.429670 + 0.902986i \(0.641370\pi\)
\(770\) 3120.00 + 5404.00i 0.146022 + 0.252918i
\(771\) 0 0
\(772\) 6727.00 11651.5i 0.313614 0.543195i
\(773\) −25698.0 −1.19572 −0.597861 0.801600i \(-0.703982\pi\)
−0.597861 + 0.801600i \(0.703982\pi\)
\(774\) 0 0
\(775\) −7200.00 −0.333718
\(776\) 6495.00 11249.7i 0.300460 0.520412i
\(777\) 0 0
\(778\) −4815.00 8339.82i −0.221884 0.384315i
\(779\) 1220.00 + 2113.10i 0.0561117 + 0.0971884i
\(780\) 0 0
\(781\) 8528.00 14770.9i 0.390724 0.676755i
\(782\) 2352.00 0.107554
\(783\) 0 0
\(784\) 9553.00 0.435177
\(785\) 8785.00 15216.1i 0.399427 0.691828i
\(786\) 0 0
\(787\) −16718.0 28956.4i −0.757220 1.31154i −0.944263 0.329192i \(-0.893224\pi\)
0.187043 0.982352i \(-0.440110\pi\)
\(788\) 8841.00 + 15313.1i 0.399680 + 0.692266i
\(789\) 0 0
\(790\) 600.000 1039.23i 0.0270216 0.0468027i
\(791\) −25008.0 −1.12412
\(792\) 0 0
\(793\) 16324.0 0.730999
\(794\) −3563.00 + 6171.30i −0.159252 + 0.275833i
\(795\) 0 0
\(796\) −4060.00 7032.13i −0.180783 0.313125i
\(797\) 18797.0 + 32557.4i 0.835413 + 1.44698i 0.893694 + 0.448677i \(0.148105\pi\)
−0.0582813 + 0.998300i \(0.518562\pi\)
\(798\) 0 0
\(799\) 1792.00 3103.84i 0.0793447 0.137429i
\(800\) 4025.00 0.177882
\(801\) 0 0
\(802\) −8718.00 −0.383844
\(803\) 988.000 1711.27i 0.0434194 0.0752046i
\(804\) 0 0
\(805\) −10080.0 17459.1i −0.441333 0.764412i
\(806\) 3168.00 + 5487.14i 0.138447 + 0.239797i
\(807\) 0 0
\(808\) −9135.00 + 15822.3i −0.397733 + 0.688894i
\(809\) 4730.00 0.205560 0.102780 0.994704i \(-0.467226\pi\)
0.102780 + 0.994704i \(0.467226\pi\)
\(810\) 0 0
\(811\) −8748.00 −0.378772 −0.189386 0.981903i \(-0.560650\pi\)
−0.189386 + 0.981903i \(0.560650\pi\)
\(812\) −19320.0 + 33463.2i −0.834974 + 1.44622i
\(813\) 0 0
\(814\) 884.000 + 1531.13i 0.0380641 + 0.0659290i
\(815\) 5170.00 + 8954.70i 0.222205 + 0.384871i
\(816\) 0 0
\(817\) −1880.00 + 3256.26i −0.0805054 + 0.139439i
\(818\) −10870.0 −0.464622
\(819\) 0 0
\(820\) −4270.00 −0.181847
\(821\) −22071.0 + 38228.1i −0.938226 + 1.62505i −0.169447 + 0.985539i \(0.554198\pi\)
−0.768779 + 0.639515i \(0.779135\pi\)
\(822\) 0 0
\(823\) −1996.00 3457.17i −0.0845397 0.146427i 0.820655 0.571424i \(-0.193609\pi\)
−0.905195 + 0.424997i \(0.860275\pi\)
\(824\) −660.000 1143.15i −0.0279031 0.0483297i
\(825\) 0 0
\(826\) 1200.00 2078.46i 0.0505488 0.0875532i
\(827\) −14444.0 −0.607336 −0.303668 0.952778i \(-0.598211\pi\)
−0.303668 + 0.952778i \(0.598211\pi\)
\(828\) 0 0
\(829\) 42150.0 1.76590 0.882949 0.469468i \(-0.155554\pi\)
0.882949 + 0.469468i \(0.155554\pi\)
\(830\) −3030.00 + 5248.11i −0.126714 + 0.219476i
\(831\) 0 0
\(832\) 1837.00 + 3181.78i 0.0765463 + 0.132582i
\(833\) 1631.00 + 2824.97i 0.0678401 + 0.117502i
\(834\) 0 0
\(835\) 60.0000 103.923i 0.00248669 0.00430707i
\(836\) 7280.00 0.301177
\(837\) 0 0
\(838\) −9700.00 −0.399858
\(839\) −6700.00 + 11604.7i −0.275697 + 0.477521i −0.970311 0.241862i \(-0.922242\pi\)
0.694614 + 0.719383i \(0.255575\pi\)
\(840\) 0 0
\(841\) −14255.5 24691.3i −0.584505 1.01239i
\(842\) −431.000 746.514i −0.0176404 0.0305541i
\(843\) 0 0
\(844\) −15638.0 + 27085.8i −0.637775 + 1.10466i
\(845\) −8565.00 −0.348692
\(846\) 0 0
\(847\) −32952.0 −1.33677
\(848\) 6929.00 12001.4i 0.280593 0.486001i
\(849\) 0 0
\(850\) 175.000 + 303.109i 0.00706171 + 0.0122312i
\(851\) −2856.00 4946.74i −0.115044 0.199262i
\(852\) 0 0
\(853\) 4329.00 7498.05i 0.173766 0.300971i −0.765968 0.642879i \(-0.777740\pi\)
0.939733 + 0.341908i \(0.111073\pi\)
\(854\) −17808.0 −0.713556
\(855\) 0 0
\(856\) −540.000 −0.0215617
\(857\) −21413.0 + 37088.4i −0.853505 + 1.47831i 0.0245192 + 0.999699i \(0.492195\pi\)
−0.878025 + 0.478615i \(0.841139\pi\)
\(858\) 0 0
\(859\) 17950.0 + 31090.3i 0.712976 + 1.23491i 0.963735 + 0.266861i \(0.0859863\pi\)
−0.250759 + 0.968049i \(0.580680\pi\)
\(860\) −3290.00 5698.45i −0.130451 0.225948i
\(861\) 0 0
\(862\) −7896.00 + 13676.3i −0.311994 + 0.540389i
\(863\) −3088.00 −0.121804 −0.0609019 0.998144i \(-0.519398\pi\)
−0.0609019 + 0.998144i \(0.519398\pi\)
\(864\) 0 0
\(865\) −3090.00 −0.121460
\(866\) −5801.00 + 10047.6i −0.227628 + 0.394264i
\(867\) 0 0
\(868\) 24192.0 + 41901.8i 0.946002 + 1.63852i
\(869\) 6240.00 + 10808.0i 0.243587 + 0.421906i
\(870\) 0 0
\(871\) 924.000 1600.41i 0.0359455 0.0622595i
\(872\) 14550.0 0.565052
\(873\) 0 0
\(874\) 3360.00 0.130039
\(875\) 1500.00 2598.08i 0.0579534 0.100378i
\(876\) 0 0
\(877\) 17637.0 + 30548.2i 0.679087 + 1.17621i 0.975256 + 0.221078i \(0.0709574\pi\)
−0.296169 + 0.955135i \(0.595709\pi\)
\(878\) 220.000 + 381.051i 0.00845631 + 0.0146468i
\(879\) 0 0
\(880\) −5330.00 + 9231.83i −0.204175 + 0.353642i
\(881\) 25042.0 0.957646 0.478823 0.877911i \(-0.341064\pi\)
0.478823 + 0.877911i \(0.341064\pi\)
\(882\) 0 0
\(883\) 12572.0 0.479141 0.239570 0.970879i \(-0.422993\pi\)
0.239570 + 0.970879i \(0.422993\pi\)
\(884\) −1078.00 + 1867.15i −0.0410148 + 0.0710397i
\(885\) 0 0
\(886\) 5094.00 + 8823.07i 0.193156 + 0.334556i
\(887\) 10932.0 + 18934.8i 0.413823 + 0.716762i 0.995304 0.0967979i \(-0.0308600\pi\)
−0.581481 + 0.813560i \(0.697527\pi\)
\(888\) 0 0
\(889\) 23232.0 40239.0i 0.876464 1.51808i
\(890\) 1650.00 0.0621440
\(891\) 0 0
\(892\) −42224.0 −1.58494
\(893\) 2560.00 4434.05i 0.0959318 0.166159i
\(894\) 0 0
\(895\) −8350.00 14462.6i −0.311854 0.540148i
\(896\) −17460.0 30241.6i −0.651002 1.12757i
\(897\) 0 0
\(898\) 6655.00 11526.8i 0.247305 0.428345i
\(899\) −66240.0 −2.45743
\(900\) 0 0
\(901\) 4732.00 0.174968
\(902\) −3172.00 + 5494.07i −0.117091 + 0.202807i
\(903\) 0 0
\(904\) 7815.00 + 13536.0i 0.287525 + 0.498009i
\(905\) 445.000 + 770.763i 0.0163451 + 0.0283105i
\(906\) 0 0
\(907\) −15618.0 + 27051.2i −0.571761 + 0.990319i 0.424624 + 0.905370i \(0.360406\pi\)
−0.996385 + 0.0849494i \(0.972927\pi\)
\(908\) −18452.0 −0.674396
\(909\) 0 0
\(910\) −2640.00 −0.0961705
\(911\) −4136.00 + 7163.76i −0.150419 + 0.260534i −0.931382 0.364044i \(-0.881396\pi\)
0.780962 + 0.624578i \(0.214729\pi\)
\(912\) 0 0
\(913\) −31512.0 54580.4i −1.14227 1.97847i
\(914\) −1613.00 2793.80i −0.0583734 0.101106i
\(915\) 0 0
\(916\) 16905.0 29280.3i 0.609778 1.05617i
\(917\) −17568.0 −0.632657
\(918\) 0 0
\(919\) 20200.0 0.725067 0.362533 0.931971i \(-0.381912\pi\)
0.362533 + 0.931971i \(0.381912\pi\)
\(920\) −6300.00 + 10911.9i −0.225766 + 0.391038i
\(921\) 0 0
\(922\) −3291.00 5700.18i −0.117552 0.203607i
\(923\) 3608.00 + 6249.24i 0.128666 + 0.222856i
\(924\) 0 0
\(925\) 425.000 736.122i 0.0151069 0.0261660i
\(926\) 15072.0 0.534878
\(927\) 0 0
\(928\) 37030.0 1.30988
\(929\) −15505.0 + 26855.4i −0.547581 + 0.948438i 0.450859 + 0.892595i \(0.351118\pi\)
−0.998440 + 0.0558425i \(0.982216\pi\)
\(930\) 0 0
\(931\) 2330.00 + 4035.68i 0.0820222 + 0.142067i
\(932\) 9387.00 + 16258.8i 0.329916 + 0.571431i
\(933\) 0 0
\(934\) −238.000 + 412.228i −0.00833790 + 0.0144417i
\(935\) −3640.00 −0.127316
\(936\) 0 0
\(937\) −39174.0 −1.36580 −0.682902 0.730510i \(-0.739283\pi\)
−0.682902 + 0.730510i \(0.739283\pi\)
\(938\) −1008.00 + 1745.91i −0.0350878 + 0.0607739i
\(939\) 0 0
\(940\) 4480.00 + 7759.59i 0.155448 + 0.269245i
\(941\) 2069.00 + 3583.61i 0.0716764 + 0.124147i 0.899636 0.436640i \(-0.143832\pi\)
−0.827960 + 0.560788i \(0.810498\pi\)
\(942\) 0 0
\(943\) 10248.0 17750.1i 0.353893 0.612960i
\(944\) 4100.00 0.141360
\(945\) 0 0
\(946\) −9776.00 −0.335989
\(947\) −11838.0 + 20504.0i −0.406213 + 0.703581i −0.994462 0.105099i \(-0.966484\pi\)
0.588249 + 0.808680i \(0.299817\pi\)
\(948\) 0 0
\(949\) 418.000 + 723.997i 0.0142981 + 0.0247650i
\(950\) 250.000 + 433.013i 0.00853797 + 0.0147882i
\(951\) 0 0
\(952\) 2520.00 4364.77i 0.0857917 0.148596i
\(953\) 18922.0 0.643173 0.321586 0.946880i \(-0.395784\pi\)
0.321586 + 0.946880i \(0.395784\pi\)
\(954\) 0 0
\(955\) −9440.00 −0.319865
\(956\) 8120.00 14064.3i 0.274707 0.475806i
\(957\) 0 0
\(958\) 9840.00 + 17043.4i 0.331854 + 0.574788i
\(959\) −26568.0 46017.1i −0.894604 1.54950i
\(960\) 0 0
\(961\) −26576.5 + 46031.8i −0.892098 + 1.54516i
\(962\) −748.000 −0.0250691
\(963\) 0 0
\(964\) −14014.0 −0.468216
\(965\) −4805.00 + 8322.50i −0.160289 + 0.277628i
\(966\) 0 0
\(967\) −19828.0 34343.1i −0.659385 1.14209i −0.980775 0.195142i \(-0.937483\pi\)
0.321390 0.946947i \(-0.395850\pi\)
\(968\) 10297.5 + 17835.8i 0.341915 + 0.592215i
\(969\) 0 0
\(970\) −2165.00 + 3749.89i −0.0716639 + 0.124125i
\(971\) −33228.0 −1.09818 −0.549092 0.835762i \(-0.685026\pi\)
−0.549092 + 0.835762i \(0.685026\pi\)
\(972\) 0 0
\(973\) −480.000 −0.0158151
\(974\) 2972.00 5147.66i 0.0977711 0.169344i
\(975\) 0 0
\(976\) −15211.0 26346.2i −0.498865 0.864060i
\(977\) 487.000 + 843.509i 0.0159473 + 0.0276215i 0.873889 0.486126i \(-0.161590\pi\)
−0.857942 + 0.513747i \(0.828257\pi\)
\(978\) 0 0
\(979\) −8580.00 + 14861.0i −0.280100 + 0.485148i
\(980\) −8155.00 −0.265818
\(981\) 0 0
\(982\) 10772.0 0.350049
\(983\) 6804.00 11784.9i 0.220767 0.382380i −0.734274 0.678853i \(-0.762477\pi\)
0.955041 + 0.296474i \(0.0958107\pi\)
\(984\) 0 0
\(985\) −6315.00 10937.9i −0.204277 0.353818i
\(986\) 1610.00 + 2788.60i 0.0520009 + 0.0900681i
\(987\) 0 0
\(988\) −1540.00 + 2667.36i −0.0495890 + 0.0858907i
\(989\) 31584.0 1.01548
\(990\) 0 0
\(991\) 13472.0 0.431839 0.215919 0.976411i \(-0.430725\pi\)
0.215919 + 0.976411i \(0.430725\pi\)
\(992\) 23184.0 40155.9i 0.742029 1.28523i
\(993\) 0 0
\(994\) −3936.00 6817.35i −0.125596 0.217539i
\(995\) 2900.00 + 5022.95i 0.0923982 + 0.160038i
\(996\) 0 0
\(997\) 1617.00 2800.73i 0.0513650 0.0889668i −0.839200 0.543823i \(-0.816976\pi\)
0.890565 + 0.454857i \(0.150309\pi\)
\(998\) 8140.00 0.258184
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.4.e.g.136.1 2
3.2 odd 2 405.4.e.i.136.1 2
9.2 odd 6 45.4.a.c.1.1 1
9.4 even 3 inner 405.4.e.g.271.1 2
9.5 odd 6 405.4.e.i.271.1 2
9.7 even 3 15.4.a.a.1.1 1
36.7 odd 6 240.4.a.e.1.1 1
36.11 even 6 720.4.a.n.1.1 1
45.2 even 12 225.4.b.e.199.1 2
45.7 odd 12 75.4.b.b.49.2 2
45.29 odd 6 225.4.a.f.1.1 1
45.34 even 6 75.4.a.b.1.1 1
45.38 even 12 225.4.b.e.199.2 2
45.43 odd 12 75.4.b.b.49.1 2
63.20 even 6 2205.4.a.l.1.1 1
63.34 odd 6 735.4.a.e.1.1 1
72.43 odd 6 960.4.a.ba.1.1 1
72.61 even 6 960.4.a.b.1.1 1
99.43 odd 6 1815.4.a.e.1.1 1
180.7 even 12 1200.4.f.b.49.2 2
180.43 even 12 1200.4.f.b.49.1 2
180.79 odd 6 1200.4.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.4.a.a.1.1 1 9.7 even 3
45.4.a.c.1.1 1 9.2 odd 6
75.4.a.b.1.1 1 45.34 even 6
75.4.b.b.49.1 2 45.43 odd 12
75.4.b.b.49.2 2 45.7 odd 12
225.4.a.f.1.1 1 45.29 odd 6
225.4.b.e.199.1 2 45.2 even 12
225.4.b.e.199.2 2 45.38 even 12
240.4.a.e.1.1 1 36.7 odd 6
405.4.e.g.136.1 2 1.1 even 1 trivial
405.4.e.g.271.1 2 9.4 even 3 inner
405.4.e.i.136.1 2 3.2 odd 2
405.4.e.i.271.1 2 9.5 odd 6
720.4.a.n.1.1 1 36.11 even 6
735.4.a.e.1.1 1 63.34 odd 6
960.4.a.b.1.1 1 72.61 even 6
960.4.a.ba.1.1 1 72.43 odd 6
1200.4.a.t.1.1 1 180.79 odd 6
1200.4.f.b.49.1 2 180.43 even 12
1200.4.f.b.49.2 2 180.7 even 12
1815.4.a.e.1.1 1 99.43 odd 6
2205.4.a.l.1.1 1 63.20 even 6