Properties

Label 405.4.e.d
Level $405$
Weight $4$
Character orbit 405.e
Analytic conductor $23.896$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(136,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.136");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \zeta_{6} - 3) q^{2} - \zeta_{6} q^{4} + 5 \zeta_{6} q^{5} + (20 \zeta_{6} - 20) q^{7} - 21 q^{8} - 15 q^{10} + ( - 24 \zeta_{6} + 24) q^{11} - 74 \zeta_{6} q^{13} - 60 \zeta_{6} q^{14} + ( - 71 \zeta_{6} + 71) q^{16} + \cdots + 171 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - q^{4} + 5 q^{5} - 20 q^{7} - 42 q^{8} - 30 q^{10} + 24 q^{11} - 74 q^{13} - 60 q^{14} + 71 q^{16} + 108 q^{17} - 248 q^{19} + 5 q^{20} + 72 q^{22} + 120 q^{23} - 25 q^{25} + 444 q^{26}+ \cdots + 342 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
136.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.50000 + 2.59808i 0 −0.500000 0.866025i 2.50000 + 4.33013i 0 −10.0000 + 17.3205i −21.0000 0 −15.0000
271.1 −1.50000 2.59808i 0 −0.500000 + 0.866025i 2.50000 4.33013i 0 −10.0000 17.3205i −21.0000 0 −15.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.e.d 2
3.b odd 2 1 405.4.e.k 2
9.c even 3 1 15.4.a.b 1
9.c even 3 1 inner 405.4.e.d 2
9.d odd 6 1 45.4.a.b 1
9.d odd 6 1 405.4.e.k 2
36.f odd 6 1 240.4.a.f 1
36.h even 6 1 720.4.a.r 1
45.h odd 6 1 225.4.a.g 1
45.j even 6 1 75.4.a.a 1
45.k odd 12 2 75.4.b.a 2
45.l even 12 2 225.4.b.d 2
63.l odd 6 1 735.4.a.i 1
63.o even 6 1 2205.4.a.c 1
72.n even 6 1 960.4.a.bi 1
72.p odd 6 1 960.4.a.l 1
99.h odd 6 1 1815.4.a.a 1
180.p odd 6 1 1200.4.a.o 1
180.x even 12 2 1200.4.f.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.4.a.b 1 9.c even 3 1
45.4.a.b 1 9.d odd 6 1
75.4.a.a 1 45.j even 6 1
75.4.b.a 2 45.k odd 12 2
225.4.a.g 1 45.h odd 6 1
225.4.b.d 2 45.l even 12 2
240.4.a.f 1 36.f odd 6 1
405.4.e.d 2 1.a even 1 1 trivial
405.4.e.d 2 9.c even 3 1 inner
405.4.e.k 2 3.b odd 2 1
405.4.e.k 2 9.d odd 6 1
720.4.a.r 1 36.h even 6 1
735.4.a.i 1 63.l odd 6 1
960.4.a.l 1 72.p odd 6 1
960.4.a.bi 1 72.n even 6 1
1200.4.a.o 1 180.p odd 6 1
1200.4.f.m 2 180.x even 12 2
1815.4.a.a 1 99.h odd 6 1
2205.4.a.c 1 63.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(405, [\chi])\):

\( T_{2}^{2} + 3T_{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} + 20T_{7} + 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} + 20T + 400 \) Copy content Toggle raw display
$11$ \( T^{2} - 24T + 576 \) Copy content Toggle raw display
$13$ \( T^{2} + 74T + 5476 \) Copy content Toggle raw display
$17$ \( (T - 54)^{2} \) Copy content Toggle raw display
$19$ \( (T + 124)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 120T + 14400 \) Copy content Toggle raw display
$29$ \( T^{2} - 78T + 6084 \) Copy content Toggle raw display
$31$ \( T^{2} + 200T + 40000 \) Copy content Toggle raw display
$37$ \( (T + 70)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 330T + 108900 \) Copy content Toggle raw display
$43$ \( T^{2} + 92T + 8464 \) Copy content Toggle raw display
$47$ \( T^{2} - 24T + 576 \) Copy content Toggle raw display
$53$ \( (T - 450)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 24T + 576 \) Copy content Toggle raw display
$61$ \( T^{2} - 322T + 103684 \) Copy content Toggle raw display
$67$ \( T^{2} - 196T + 38416 \) Copy content Toggle raw display
$71$ \( (T + 288)^{2} \) Copy content Toggle raw display
$73$ \( (T + 430)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 520T + 270400 \) Copy content Toggle raw display
$83$ \( T^{2} + 156T + 24336 \) Copy content Toggle raw display
$89$ \( (T - 1026)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 286T + 81796 \) Copy content Toggle raw display
show more
show less