Properties

Label 405.4.a.m
Level $405$
Weight $4$
Character orbit 405.a
Self dual yes
Analytic conductor $23.896$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,4,Mod(1,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-2,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 44x^{5} + 74x^{4} + 479x^{3} - 460x^{2} - 1200x + 288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{5} \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 5) q^{4} - 5 q^{5} + ( - \beta_{5} + 3) q^{7} + ( - \beta_{3} - 7 \beta_1 - 1) q^{8} + 5 \beta_1 q^{10} + ( - \beta_{4} - 3 \beta_1 - 2) q^{11} + (\beta_{6} - \beta_{5} - \beta_{4} + \cdots + 15) q^{13}+ \cdots + ( - 5 \beta_{6} + 9 \beta_{5} + \cdots - 188) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{2} + 36 q^{4} - 35 q^{5} + 22 q^{7} - 18 q^{8} + 10 q^{10} - 23 q^{11} + 96 q^{13} + 21 q^{14} + 324 q^{16} - 161 q^{17} + 279 q^{19} - 180 q^{20} + 311 q^{22} - 96 q^{23} + 175 q^{25} + 358 q^{26}+ \cdots - 1279 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 44x^{5} + 74x^{4} + 479x^{3} - 460x^{2} - 1200x + 288 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 23\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} - \nu^{5} - 39\nu^{4} + 35\nu^{3} + 310\nu^{2} - 114\nu - 240 ) / 12 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} + 4\nu^{5} + 42\nu^{4} - 140\nu^{3} - 397\nu^{2} + 756\nu + 672 ) / 24 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 2\nu^{5} - 48\nu^{4} - 82\nu^{3} + 595\nu^{2} + 732\nu - 1104 ) / 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 23\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{6} + 2\beta_{5} + 2\beta_{4} - \beta_{3} + 31\beta_{2} - 6\beta _1 + 294 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{6} + 6\beta_{5} + 2\beta_{4} + 36\beta_{3} - 2\beta_{2} + 597\beta _1 - 26 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -76\beta_{6} + 84\beta_{5} + 92\beta_{4} - 38\beta_{3} + 897\beta_{2} - 328\beta _1 + 7615 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.31551
4.26178
2.19444
0.225250
−1.57021
−3.04174
−5.38503
−5.31551 0 20.2546 −5.00000 0 −13.4337 −65.1396 0 26.5775
1.2 −4.26178 0 10.1628 −5.00000 0 30.7639 −9.21718 0 21.3089
1.3 −2.19444 0 −3.18442 −5.00000 0 2.76605 24.5436 0 10.9722
1.4 −0.225250 0 −7.94926 −5.00000 0 −31.1940 3.59257 0 1.12625
1.5 1.57021 0 −5.53444 −5.00000 0 34.2398 −21.2519 0 −7.85104
1.6 3.04174 0 1.25219 −5.00000 0 −13.7122 −20.5251 0 −15.2087
1.7 5.38503 0 20.9986 −5.00000 0 12.5702 69.9976 0 −26.9252
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.a.m 7
3.b odd 2 1 405.4.a.n 7
5.b even 2 1 2025.4.a.bb 7
9.c even 3 2 45.4.e.c 14
9.d odd 6 2 135.4.e.c 14
15.d odd 2 1 2025.4.a.ba 7
45.j even 6 2 225.4.e.d 14
45.k odd 12 4 225.4.k.d 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.4.e.c 14 9.c even 3 2
135.4.e.c 14 9.d odd 6 2
225.4.e.d 14 45.j even 6 2
225.4.k.d 28 45.k odd 12 4
405.4.a.m 7 1.a even 1 1 trivial
405.4.a.n 7 3.b odd 2 1
2025.4.a.ba 7 15.d odd 2 1
2025.4.a.bb 7 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} + 2T_{2}^{6} - 44T_{2}^{5} - 74T_{2}^{4} + 479T_{2}^{3} + 460T_{2}^{2} - 1200T_{2} - 288 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(405))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + 2 T^{6} + \cdots - 288 \) Copy content Toggle raw display
$3$ \( T^{7} \) Copy content Toggle raw display
$5$ \( (T + 5)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} - 22 T^{6} + \cdots + 210450744 \) Copy content Toggle raw display
$11$ \( T^{7} + \cdots + 20019444768 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots + 159234392576 \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots - 60588009792 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots - 1377989598400 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots + 4061042235738 \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots + 12128150971026 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots + 29481260805504 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots - 83646911884544 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 15\!\cdots\!61 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots - 13\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots - 65\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots - 11\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots + 59\!\cdots\!08 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots + 12\!\cdots\!46 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots + 29\!\cdots\!03 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 32\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots + 82\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 16\!\cdots\!08 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots + 66\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots - 32\!\cdots\!50 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots + 47\!\cdots\!76 \) Copy content Toggle raw display
show more
show less