Properties

Label 405.4.a.k
Level $405$
Weight $4$
Character orbit 405.a
Self dual yes
Analytic conductor $23.896$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(1,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.8957735523\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 38x^{4} + 42x^{3} + 393x^{2} - 72x - 432 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{3} - \beta_1 + 6) q^{4} - 5 q^{5} + ( - \beta_{4} - \beta_{2} - 2 \beta_1 + 7) q^{7} + (\beta_{4} - 2 \beta_{3} + 4 \beta_1 - 12) q^{8} + ( - 5 \beta_1 + 5) q^{10} + (\beta_{5} - \beta_{3} + 2 \beta_{2} + \cdots - 14) q^{11}+ \cdots + ( - 42 \beta_{5} + 67 \beta_{4} + \cdots - 345) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{2} + 34 q^{4} - 30 q^{5} + 40 q^{7} - 66 q^{8} + 20 q^{10} - 88 q^{11} + 20 q^{13} - 180 q^{14} + 58 q^{16} - 124 q^{17} - 46 q^{19} - 170 q^{20} - 74 q^{22} - 210 q^{23} + 150 q^{25} - 4 q^{26}+ \cdots - 1982 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 38x^{4} + 42x^{3} + 393x^{2} - 72x - 432 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 26\nu^{3} + 30\nu^{2} + 141\nu - 36 ) / 24 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 13 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{3} - \nu^{2} - 19\nu + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{4} - \nu^{3} - 21\nu^{2} + 3\nu + 30 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + 20\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} + \beta_{4} + 22\beta_{3} + 38\beta _1 + 255 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} + 28\beta_{4} + 40\beta_{3} + 24\beta_{2} + 425\beta _1 + 468 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.23336
−3.53444
−1.07326
1.14915
4.57457
5.11734
−5.23336 0 19.3881 −5.00000 0 33.0180 −59.5981 0 26.1668
1.2 −4.53444 0 12.5612 −5.00000 0 −2.63618 −20.6823 0 22.6722
1.3 −2.07326 0 −3.70159 −5.00000 0 −4.66112 24.2604 0 10.3663
1.4 0.149150 0 −7.97775 −5.00000 0 20.1424 −2.38308 0 −0.745751
1.5 3.57457 0 4.77759 −5.00000 0 14.1597 −11.5188 0 −17.8729
1.6 4.11734 0 8.95250 −5.00000 0 −20.0229 3.92177 0 −20.5867
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.a.k 6
3.b odd 2 1 405.4.a.l yes 6
5.b even 2 1 2025.4.a.z 6
9.c even 3 2 405.4.e.x 12
9.d odd 6 2 405.4.e.w 12
15.d odd 2 1 2025.4.a.y 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
405.4.a.k 6 1.a even 1 1 trivial
405.4.a.l yes 6 3.b odd 2 1
405.4.e.w 12 9.d odd 6 2
405.4.e.x 12 9.c even 3 2
2025.4.a.y 6 15.d odd 2 1
2025.4.a.z 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 4T_{2}^{5} - 33T_{2}^{4} - 110T_{2}^{3} + 286T_{2}^{2} + 684T_{2} - 108 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(405))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 4 T^{5} + \cdots - 108 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T + 5)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 40 T^{5} + \cdots - 2316924 \) Copy content Toggle raw display
$11$ \( T^{6} + 88 T^{5} + \cdots + 1197108 \) Copy content Toggle raw display
$13$ \( T^{6} - 20 T^{5} + \cdots - 185793728 \) Copy content Toggle raw display
$17$ \( T^{6} + 124 T^{5} + \cdots + 105966288 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 36821611175 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 332569842768 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 635447099088 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 69859854216 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 12008297128192 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 86213802377403 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 180465347194400 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 49451750433900 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 168320389359483 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 20\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 11\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 15\!\cdots\!72 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 41\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 16\!\cdots\!48 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 97\!\cdots\!24 \) Copy content Toggle raw display
show more
show less