Properties

 Label 405.4.a.j Level $405$ Weight $4$ Character orbit 405.a Self dual yes Analytic conductor $23.896$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$405 = 3^{4} \cdot 5$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 405.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$23.8957735523$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.2292.1 Defining polynomial: $$x^{3} - x^{2} - 13 x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$3$$ Twist minimal: no (minimal twist has level 45) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{2} q^{2} + ( 3 - \beta_{1} - \beta_{2} ) q^{4} -5 q^{5} + ( -14 + 2 \beta_{1} - \beta_{2} ) q^{7} + ( 8 - \beta_{1} - 2 \beta_{2} ) q^{8} +O(q^{10})$$ $$q -\beta_{2} q^{2} + ( 3 - \beta_{1} - \beta_{2} ) q^{4} -5 q^{5} + ( -14 + 2 \beta_{1} - \beta_{2} ) q^{7} + ( 8 - \beta_{1} - 2 \beta_{2} ) q^{8} + 5 \beta_{2} q^{10} + ( 3 \beta_{1} + 11 \beta_{2} ) q^{11} + ( 18 + \beta_{1} + 13 \beta_{2} ) q^{13} + ( 17 - \beta_{1} + 25 \beta_{2} ) q^{14} + ( -5 + 6 \beta_{1} - 8 \beta_{2} ) q^{16} + ( 56 - \beta_{1} + 3 \beta_{2} ) q^{17} + ( -58 - 3 \beta_{1} - 7 \beta_{2} ) q^{19} + ( -15 + 5 \beta_{1} + 5 \beta_{2} ) q^{20} + ( -112 + 11 \beta_{1} + 29 \beta_{2} ) q^{22} + ( -60 - 12 \beta_{1} + 3 \beta_{2} ) q^{23} + 25 q^{25} + ( -140 + 13 \beta_{1} + \beta_{2} ) q^{26} + ( -166 + 9 \beta_{1} + 10 \beta_{2} ) q^{28} + ( 107 - 10 \beta_{1} - 4 \beta_{2} ) q^{29} + ( -138 - 11 \beta_{1} - 51 \beta_{2} ) q^{31} + ( 42 + 49 \beta_{2} ) q^{32} + ( -36 + 3 \beta_{1} - 59 \beta_{2} ) q^{34} + ( 70 - 10 \beta_{1} + 5 \beta_{2} ) q^{35} + ( 126 - 17 \beta_{1} - 7 \beta_{2} ) q^{37} + ( 68 - 7 \beta_{1} + 33 \beta_{2} ) q^{38} + ( -40 + 5 \beta_{1} + 10 \beta_{2} ) q^{40} + ( -49 + 23 \beta_{1} + 17 \beta_{2} ) q^{41} + ( -198 - 29 \beta_{1} + 37 \beta_{2} ) q^{43} + ( -286 + 5 \beta_{1} + 119 \beta_{2} ) q^{44} + ( -69 + 3 \beta_{1} - 9 \beta_{2} ) q^{46} + ( -202 + 5 \beta_{1} + 54 \beta_{2} ) q^{47} + ( 152 - 37 \beta_{1} + 63 \beta_{2} ) q^{49} -25 \beta_{2} q^{50} + ( -116 - 7 \beta_{1} + 115 \beta_{2} ) q^{52} + ( 220 - 8 \beta_{1} - 62 \beta_{2} ) q^{53} + ( -15 \beta_{1} - 55 \beta_{2} ) q^{55} + ( -219 + 18 \beta_{1} + 30 \beta_{2} ) q^{56} + ( 14 - 4 \beta_{1} - 171 \beta_{2} ) q^{58} + ( 72 + 36 \beta_{1} - 118 \beta_{2} ) q^{59} + ( -473 - 25 \beta_{1} + 45 \beta_{2} ) q^{61} + ( 528 - 51 \beta_{1} + 21 \beta_{2} ) q^{62} + ( -499 + \beta_{1} + 71 \beta_{2} ) q^{64} + ( -90 - 5 \beta_{1} - 65 \beta_{2} ) q^{65} + ( -630 + 7 \beta_{1} - 48 \beta_{2} ) q^{67} + ( 210 - 51 \beta_{1} - 29 \beta_{2} ) q^{68} + ( -85 + 5 \beta_{1} - 125 \beta_{2} ) q^{70} + ( 2 + 83 \beta_{1} - 7 \beta_{2} ) q^{71} + ( -108 + 64 \beta_{1} - 20 \beta_{2} ) q^{73} + ( 26 - 7 \beta_{1} - 235 \beta_{2} ) q^{74} + ( 80 + 57 \beta_{1} - 21 \beta_{2} ) q^{76} + ( 236 - \beta_{1} - 239 \beta_{2} ) q^{77} + ( -90 + 64 \beta_{1} + 48 \beta_{2} ) q^{79} + ( 25 - 30 \beta_{1} + 40 \beta_{2} ) q^{80} + ( -118 + 17 \beta_{1} + 204 \beta_{2} ) q^{82} + ( 242 - 118 \beta_{1} + 13 \beta_{2} ) q^{83} + ( -280 + 5 \beta_{1} - 15 \beta_{2} ) q^{85} + ( -494 + 37 \beta_{1} + 61 \beta_{2} ) q^{86} + ( -398 + 31 \beta_{1} + 203 \beta_{2} ) q^{88} + ( -629 - 80 \beta_{1} - 88 \beta_{2} ) q^{89} + ( -332 + 45 \beta_{1} - 331 \beta_{2} ) q^{91} + ( 588 + 87 \beta_{1} + 54 \beta_{2} ) q^{92} + ( -579 + 54 \beta_{1} + 286 \beta_{2} ) q^{94} + ( 290 + 15 \beta_{1} + 35 \beta_{2} ) q^{95} + ( -120 - 20 \beta_{1} - 58 \beta_{2} ) q^{97} + ( -804 + 63 \beta_{1} - 311 \beta_{2} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + q^{2} + 11 q^{4} - 15 q^{5} - 43 q^{7} + 27 q^{8} + O(q^{10})$$ $$3 q + q^{2} + 11 q^{4} - 15 q^{5} - 43 q^{7} + 27 q^{8} - 5 q^{10} - 14 q^{11} + 40 q^{13} + 27 q^{14} - 13 q^{16} + 166 q^{17} - 164 q^{19} - 55 q^{20} - 376 q^{22} - 171 q^{23} + 75 q^{25} - 434 q^{26} - 517 q^{28} + 335 q^{29} - 352 q^{31} + 77 q^{32} - 52 q^{34} + 215 q^{35} + 402 q^{37} + 178 q^{38} - 135 q^{40} - 187 q^{41} - 602 q^{43} - 982 q^{44} - 201 q^{46} - 665 q^{47} + 430 q^{49} + 25 q^{50} - 456 q^{52} + 730 q^{53} + 70 q^{55} - 705 q^{56} + 217 q^{58} + 298 q^{59} - 1439 q^{61} + 1614 q^{62} - 1569 q^{64} - 200 q^{65} - 1849 q^{67} + 710 q^{68} - 135 q^{70} - 70 q^{71} - 368 q^{73} + 320 q^{74} + 204 q^{76} + 948 q^{77} - 382 q^{79} + 65 q^{80} - 575 q^{82} + 831 q^{83} - 830 q^{85} - 1580 q^{86} - 1428 q^{88} - 1719 q^{89} - 710 q^{91} + 1623 q^{92} - 2077 q^{94} + 820 q^{95} - 282 q^{97} - 2164 q^{98} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 13 x + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$\nu^{2} + 4 \nu - 11$$$$)/2$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{2} - 2 \nu - 9$$$$)/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$-\beta_{2} + \beta_{1} + 1$$$$)/3$$ $$\nu^{2}$$ $$=$$ $$($$$$4 \beta_{2} + 2 \beta_{1} + 29$$$$)/3$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −3.18296 4.10645 0.0765073
−3.74857 0 6.05174 −5.00000 0 −31.3492 7.30318 0 18.7428
1.2 0.174985 0 −7.96938 −5.00000 0 8.46371 −2.79440 0 −0.874923
1.3 4.57358 0 12.9176 −5.00000 0 −20.1145 22.4912 0 −22.8679
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.a.j 3
3.b odd 2 1 405.4.a.h 3
5.b even 2 1 2025.4.a.q 3
9.c even 3 2 135.4.e.b 6
9.d odd 6 2 45.4.e.b 6
15.d odd 2 1 2025.4.a.s 3
45.h odd 6 2 225.4.e.c 6
45.l even 12 4 225.4.k.c 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.4.e.b 6 9.d odd 6 2
135.4.e.b 6 9.c even 3 2
225.4.e.c 6 45.h odd 6 2
225.4.k.c 12 45.l even 12 4
405.4.a.h 3 3.b odd 2 1
405.4.a.j 3 1.a even 1 1 trivial
2025.4.a.q 3 5.b even 2 1
2025.4.a.s 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{3} - T_{2}^{2} - 17 T_{2} + 3$$ acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(405))$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$3 - 17 T - T^{2} + T^{3}$$
$3$ $$T^{3}$$
$5$ $$( 5 + T )^{3}$$
$7$ $$-5337 + 195 T + 43 T^{2} + T^{3}$$
$11$ $$43548 - 2816 T + 14 T^{2} + T^{3}$$
$13$ $$75364 - 2452 T - 40 T^{2} + T^{3}$$
$17$ $$-156324 + 8920 T - 166 T^{2} + T^{3}$$
$19$ $$57316 + 7292 T + 164 T^{2} + T^{3}$$
$23$ $$-61209 - 4833 T + 171 T^{2} + T^{3}$$
$29$ $$107067 + 27331 T - 335 T^{2} + T^{3}$$
$31$ $$-9860940 - 13932 T + 352 T^{2} + T^{3}$$
$37$ $$3335284 + 24708 T - 402 T^{2} + T^{3}$$
$41$ $$-7228275 - 44597 T + 187 T^{2} + T^{3}$$
$43$ $$-15444524 + 9956 T + 602 T^{2} + T^{3}$$
$47$ $$2487483 + 95281 T + 665 T^{2} + T^{3}$$
$53$ $$-3250536 + 106300 T - 730 T^{2} + T^{3}$$
$59$ $$127375896 - 354644 T - 298 T^{2} + T^{3}$$
$61$ $$55613497 + 589307 T + 1439 T^{2} + T^{3}$$
$67$ $$208776159 + 1093677 T + 1849 T^{2} + T^{3}$$
$71$ $$-223775052 - 685460 T + 70 T^{2} + T^{3}$$
$73$ $$-134927744 - 372928 T + 368 T^{2} + T^{3}$$
$79$ $$-138322584 - 387924 T + 382 T^{2} + T^{3}$$
$83$ $$955843821 - 1160973 T - 831 T^{2} + T^{3}$$
$89$ $$-125506395 + 238491 T + 1719 T^{2} + T^{3}$$
$97$ $$-16898264 - 67668 T + 282 T^{2} + T^{3}$$