Newspace parameters
Level: | \( N \) | \(=\) | \( 405 = 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 405.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(23.8957735523\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.2292.1 |
Defining polynomial: |
\( x^{3} - x^{2} - 13x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 45) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 13x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{2} + 4\nu - 11 ) / 2 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} - 2\nu - 9 ) / 2 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{2} + \beta _1 + 1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 4\beta_{2} + 2\beta _1 + 29 ) / 3 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−4.57358 | 0 | 12.9176 | 5.00000 | 0 | −20.1145 | −22.4912 | 0 | −22.8679 | |||||||||||||||||||||||||||
1.2 | −0.174985 | 0 | −7.96938 | 5.00000 | 0 | 8.46371 | 2.79440 | 0 | −0.874923 | ||||||||||||||||||||||||||||
1.3 | 3.74857 | 0 | 6.05174 | 5.00000 | 0 | −31.3492 | −7.30318 | 0 | 18.7428 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(5\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 405.4.a.h | 3 | |
3.b | odd | 2 | 1 | 405.4.a.j | 3 | ||
5.b | even | 2 | 1 | 2025.4.a.s | 3 | ||
9.c | even | 3 | 2 | 45.4.e.b | ✓ | 6 | |
9.d | odd | 6 | 2 | 135.4.e.b | 6 | ||
15.d | odd | 2 | 1 | 2025.4.a.q | 3 | ||
45.j | even | 6 | 2 | 225.4.e.c | 6 | ||
45.k | odd | 12 | 4 | 225.4.k.c | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.4.e.b | ✓ | 6 | 9.c | even | 3 | 2 | |
135.4.e.b | 6 | 9.d | odd | 6 | 2 | ||
225.4.e.c | 6 | 45.j | even | 6 | 2 | ||
225.4.k.c | 12 | 45.k | odd | 12 | 4 | ||
405.4.a.h | 3 | 1.a | even | 1 | 1 | trivial | |
405.4.a.j | 3 | 3.b | odd | 2 | 1 | ||
2025.4.a.q | 3 | 15.d | odd | 2 | 1 | ||
2025.4.a.s | 3 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} + T_{2}^{2} - 17T_{2} - 3 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(405))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} + T^{2} - 17T - 3 \)
$3$
\( T^{3} \)
$5$
\( (T - 5)^{3} \)
$7$
\( T^{3} + 43 T^{2} + 195 T - 5337 \)
$11$
\( T^{3} - 14 T^{2} - 2816 T - 43548 \)
$13$
\( T^{3} - 40 T^{2} - 2452 T + 75364 \)
$17$
\( T^{3} + 166 T^{2} + 8920 T + 156324 \)
$19$
\( T^{3} + 164 T^{2} + 7292 T + 57316 \)
$23$
\( T^{3} - 171 T^{2} - 4833 T + 61209 \)
$29$
\( T^{3} + 335 T^{2} + 27331 T - 107067 \)
$31$
\( T^{3} + 352 T^{2} - 13932 T - 9860940 \)
$37$
\( T^{3} - 402 T^{2} + 24708 T + 3335284 \)
$41$
\( T^{3} - 187 T^{2} - 44597 T + 7228275 \)
$43$
\( T^{3} + 602 T^{2} + \cdots - 15444524 \)
$47$
\( T^{3} - 665 T^{2} + 95281 T - 2487483 \)
$53$
\( T^{3} + 730 T^{2} + 106300 T + 3250536 \)
$59$
\( T^{3} + 298 T^{2} + \cdots - 127375896 \)
$61$
\( T^{3} + 1439 T^{2} + \cdots + 55613497 \)
$67$
\( T^{3} + 1849 T^{2} + \cdots + 208776159 \)
$71$
\( T^{3} - 70 T^{2} + \cdots + 223775052 \)
$73$
\( T^{3} + 368 T^{2} + \cdots - 134927744 \)
$79$
\( T^{3} + 382 T^{2} + \cdots - 138322584 \)
$83$
\( T^{3} + 831 T^{2} + \cdots - 955843821 \)
$89$
\( T^{3} - 1719 T^{2} + \cdots + 125506395 \)
$97$
\( T^{3} + 282 T^{2} + \cdots - 16898264 \)
show more
show less