Properties

Label 405.4.a.h
Level $405$
Weight $4$
Character orbit 405.a
Self dual yes
Analytic conductor $23.896$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,4,Mod(1,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,0,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.8957735523\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2292.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 13x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( - \beta_{2} - \beta_1 + 3) q^{4} + 5 q^{5} + ( - \beta_{2} + 2 \beta_1 - 14) q^{7} + (2 \beta_{2} + \beta_1 - 8) q^{8} + 5 \beta_{2} q^{10} + ( - 11 \beta_{2} - 3 \beta_1) q^{11}+ \cdots + (311 \beta_{2} - 63 \beta_1 + 804) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 11 q^{4} + 15 q^{5} - 43 q^{7} - 27 q^{8} - 5 q^{10} + 14 q^{11} + 40 q^{13} - 27 q^{14} - 13 q^{16} - 166 q^{17} - 164 q^{19} + 55 q^{20} - 376 q^{22} + 171 q^{23} + 75 q^{25} + 434 q^{26}+ \cdots + 2164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 13x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + 4\nu - 11 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 2\nu - 9 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{2} + 2\beta _1 + 29 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.0765073
4.10645
−3.18296
−4.57358 0 12.9176 5.00000 0 −20.1145 −22.4912 0 −22.8679
1.2 −0.174985 0 −7.96938 5.00000 0 8.46371 2.79440 0 −0.874923
1.3 3.74857 0 6.05174 5.00000 0 −31.3492 −7.30318 0 18.7428
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.a.h 3
3.b odd 2 1 405.4.a.j 3
5.b even 2 1 2025.4.a.s 3
9.c even 3 2 45.4.e.b 6
9.d odd 6 2 135.4.e.b 6
15.d odd 2 1 2025.4.a.q 3
45.j even 6 2 225.4.e.c 6
45.k odd 12 4 225.4.k.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.4.e.b 6 9.c even 3 2
135.4.e.b 6 9.d odd 6 2
225.4.e.c 6 45.j even 6 2
225.4.k.c 12 45.k odd 12 4
405.4.a.h 3 1.a even 1 1 trivial
405.4.a.j 3 3.b odd 2 1
2025.4.a.q 3 15.d odd 2 1
2025.4.a.s 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + T_{2}^{2} - 17T_{2} - 3 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(405))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 17T - 3 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T - 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 43 T^{2} + \cdots - 5337 \) Copy content Toggle raw display
$11$ \( T^{3} - 14 T^{2} + \cdots - 43548 \) Copy content Toggle raw display
$13$ \( T^{3} - 40 T^{2} + \cdots + 75364 \) Copy content Toggle raw display
$17$ \( T^{3} + 166 T^{2} + \cdots + 156324 \) Copy content Toggle raw display
$19$ \( T^{3} + 164 T^{2} + \cdots + 57316 \) Copy content Toggle raw display
$23$ \( T^{3} - 171 T^{2} + \cdots + 61209 \) Copy content Toggle raw display
$29$ \( T^{3} + 335 T^{2} + \cdots - 107067 \) Copy content Toggle raw display
$31$ \( T^{3} + 352 T^{2} + \cdots - 9860940 \) Copy content Toggle raw display
$37$ \( T^{3} - 402 T^{2} + \cdots + 3335284 \) Copy content Toggle raw display
$41$ \( T^{3} - 187 T^{2} + \cdots + 7228275 \) Copy content Toggle raw display
$43$ \( T^{3} + 602 T^{2} + \cdots - 15444524 \) Copy content Toggle raw display
$47$ \( T^{3} - 665 T^{2} + \cdots - 2487483 \) Copy content Toggle raw display
$53$ \( T^{3} + 730 T^{2} + \cdots + 3250536 \) Copy content Toggle raw display
$59$ \( T^{3} + 298 T^{2} + \cdots - 127375896 \) Copy content Toggle raw display
$61$ \( T^{3} + 1439 T^{2} + \cdots + 55613497 \) Copy content Toggle raw display
$67$ \( T^{3} + 1849 T^{2} + \cdots + 208776159 \) Copy content Toggle raw display
$71$ \( T^{3} - 70 T^{2} + \cdots + 223775052 \) Copy content Toggle raw display
$73$ \( T^{3} + 368 T^{2} + \cdots - 134927744 \) Copy content Toggle raw display
$79$ \( T^{3} + 382 T^{2} + \cdots - 138322584 \) Copy content Toggle raw display
$83$ \( T^{3} + 831 T^{2} + \cdots - 955843821 \) Copy content Toggle raw display
$89$ \( T^{3} - 1719 T^{2} + \cdots + 125506395 \) Copy content Toggle raw display
$97$ \( T^{3} + 282 T^{2} + \cdots - 16898264 \) Copy content Toggle raw display
show more
show less