Newspace parameters
Level: | \( N \) | \(=\) | \( 405 = 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 405.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(23.8957735523\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.7032.1 |
Defining polynomial: |
\( x^{3} - x^{2} - 14x + 18 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 14x + 18 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + \nu - 10 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - \beta _1 + 10 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−3.52348 | 0 | 4.41489 | 5.00000 | 0 | 25.4325 | 12.6321 | 0 | −17.6174 | |||||||||||||||||||||||||||
1.2 | −1.32681 | 0 | −6.23958 | 5.00000 | 0 | −24.1043 | 18.8932 | 0 | −6.63404 | ||||||||||||||||||||||||||||
1.3 | 3.85028 | 0 | 6.82469 | 5.00000 | 0 | −26.3282 | −4.52526 | 0 | 19.2514 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(5\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 405.4.a.g | ✓ | 3 |
3.b | odd | 2 | 1 | 405.4.a.i | yes | 3 | |
5.b | even | 2 | 1 | 2025.4.a.r | 3 | ||
9.c | even | 3 | 2 | 405.4.e.u | 6 | ||
9.d | odd | 6 | 2 | 405.4.e.s | 6 | ||
15.d | odd | 2 | 1 | 2025.4.a.p | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
405.4.a.g | ✓ | 3 | 1.a | even | 1 | 1 | trivial |
405.4.a.i | yes | 3 | 3.b | odd | 2 | 1 | |
405.4.e.s | 6 | 9.d | odd | 6 | 2 | ||
405.4.e.u | 6 | 9.c | even | 3 | 2 | ||
2025.4.a.p | 3 | 15.d | odd | 2 | 1 | ||
2025.4.a.r | 3 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} + T_{2}^{2} - 14T_{2} - 18 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(405))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} + T^{2} - 14 T - 18 \)
$3$
\( T^{3} \)
$5$
\( (T - 5)^{3} \)
$7$
\( T^{3} + 25 T^{2} - 648 T - 16140 \)
$11$
\( T^{3} + 58 T^{2} - 911 T + 3000 \)
$13$
\( T^{3} + 47 T^{2} - 7432 T - 370352 \)
$17$
\( T^{3} + 34 T^{2} - 2708 T - 90984 \)
$19$
\( T^{3} + 5 T^{2} - 10777 T - 299645 \)
$23$
\( T^{3} - 51 T^{2} - 15240 T + 1041156 \)
$29$
\( T^{3} + 350 T^{2} + \cdots - 11237760 \)
$31$
\( T^{3} - 638 T^{2} + 135321 T - 9539064 \)
$37$
\( T^{3} + 414 T^{2} + 16032 T - 577760 \)
$41$
\( T^{3} + 179 T^{2} + \cdots - 17799627 \)
$43$
\( T^{3} + 836 T^{2} + \cdots + 18692992 \)
$47$
\( T^{3} + 235 T^{2} - 69680 T - 9005376 \)
$53$
\( T^{3} + 505 T^{2} + 35128 T - 1500684 \)
$59$
\( T^{3} + 535 T^{2} + \cdots + 22317657 \)
$61$
\( T^{3} + 104 T^{2} + \cdots - 23542832 \)
$67$
\( T^{3} + 40 T^{2} - 375180 T - 15716208 \)
$71$
\( T^{3} + 452 T^{2} + \cdots - 116183454 \)
$73$
\( T^{3} + 710 T^{2} + 144236 T + 8707528 \)
$79$
\( T^{3} + 634 T^{2} - 120288 T + 5053056 \)
$83$
\( T^{3} + 1734 T^{2} + \cdots - 222334848 \)
$89$
\( T^{3} - 852 T^{2} + \cdots - 17926434 \)
$97$
\( T^{3} - 1575168 T - 703275008 \)
show more
show less