Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [405,3,Mod(28,405)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(405, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([4, 9]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("405.28");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 405 = 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 405.l (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.0354507066\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 135) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 | −3.44665 | − | 0.923527i | 0 | 7.56239 | + | 4.36615i | 4.98625 | − | 0.370516i | 0 | 5.99870 | + | 1.60735i | −11.9402 | − | 11.9402i | 0 | −17.5280 | − | 3.32790i | ||||||
28.2 | −2.53204 | − | 0.678458i | 0 | 2.48682 | + | 1.43577i | −1.78324 | + | 4.67119i | 0 | −2.47213 | − | 0.662404i | 2.09171 | + | 2.09171i | 0 | 7.68445 | − | 10.6178i | ||||||
28.3 | −1.57943 | − | 0.423208i | 0 | −1.14859 | − | 0.663141i | −3.80216 | − | 3.24709i | 0 | −10.5405 | − | 2.82431i | 6.15839 | + | 6.15839i | 0 | 4.63107 | + | 6.73767i | ||||||
28.4 | −0.821011 | − | 0.219989i | 0 | −2.83844 | − | 1.63877i | 2.19088 | − | 4.49445i | 0 | 9.74596 | + | 2.61142i | 4.37397 | + | 4.37397i | 0 | −2.78747 | + | 3.20802i | ||||||
28.5 | 0.821011 | + | 0.219989i | 0 | −2.83844 | − | 1.63877i | −2.19088 | + | 4.49445i | 0 | 9.74596 | + | 2.61142i | −4.37397 | − | 4.37397i | 0 | −2.78747 | + | 3.20802i | ||||||
28.6 | 1.57943 | + | 0.423208i | 0 | −1.14859 | − | 0.663141i | 3.80216 | + | 3.24709i | 0 | −10.5405 | − | 2.82431i | −6.15839 | − | 6.15839i | 0 | 4.63107 | + | 6.73767i | ||||||
28.7 | 2.53204 | + | 0.678458i | 0 | 2.48682 | + | 1.43577i | 1.78324 | − | 4.67119i | 0 | −2.47213 | − | 0.662404i | −2.09171 | − | 2.09171i | 0 | 7.68445 | − | 10.6178i | ||||||
28.8 | 3.44665 | + | 0.923527i | 0 | 7.56239 | + | 4.36615i | −4.98625 | + | 0.370516i | 0 | 5.99870 | + | 1.60735i | 11.9402 | + | 11.9402i | 0 | −17.5280 | − | 3.32790i | ||||||
217.1 | −3.44665 | + | 0.923527i | 0 | 7.56239 | − | 4.36615i | 4.98625 | + | 0.370516i | 0 | 5.99870 | − | 1.60735i | −11.9402 | + | 11.9402i | 0 | −17.5280 | + | 3.32790i | ||||||
217.2 | −2.53204 | + | 0.678458i | 0 | 2.48682 | − | 1.43577i | −1.78324 | − | 4.67119i | 0 | −2.47213 | + | 0.662404i | 2.09171 | − | 2.09171i | 0 | 7.68445 | + | 10.6178i | ||||||
217.3 | −1.57943 | + | 0.423208i | 0 | −1.14859 | + | 0.663141i | −3.80216 | + | 3.24709i | 0 | −10.5405 | + | 2.82431i | 6.15839 | − | 6.15839i | 0 | 4.63107 | − | 6.73767i | ||||||
217.4 | −0.821011 | + | 0.219989i | 0 | −2.83844 | + | 1.63877i | 2.19088 | + | 4.49445i | 0 | 9.74596 | − | 2.61142i | 4.37397 | − | 4.37397i | 0 | −2.78747 | − | 3.20802i | ||||||
217.5 | 0.821011 | − | 0.219989i | 0 | −2.83844 | + | 1.63877i | −2.19088 | − | 4.49445i | 0 | 9.74596 | − | 2.61142i | −4.37397 | + | 4.37397i | 0 | −2.78747 | − | 3.20802i | ||||||
217.6 | 1.57943 | − | 0.423208i | 0 | −1.14859 | + | 0.663141i | 3.80216 | − | 3.24709i | 0 | −10.5405 | + | 2.82431i | −6.15839 | + | 6.15839i | 0 | 4.63107 | − | 6.73767i | ||||||
217.7 | 2.53204 | − | 0.678458i | 0 | 2.48682 | − | 1.43577i | 1.78324 | + | 4.67119i | 0 | −2.47213 | + | 0.662404i | −2.09171 | + | 2.09171i | 0 | 7.68445 | + | 10.6178i | ||||||
217.8 | 3.44665 | − | 0.923527i | 0 | 7.56239 | − | 4.36615i | −4.98625 | − | 0.370516i | 0 | 5.99870 | − | 1.60735i | 11.9402 | − | 11.9402i | 0 | −17.5280 | + | 3.32790i | ||||||
298.1 | −0.923527 | − | 3.44665i | 0 | −7.56239 | + | 4.36615i | 2.17225 | − | 4.50348i | 0 | −1.60735 | − | 5.99870i | 11.9402 | + | 11.9402i | 0 | −17.5280 | − | 3.32790i | ||||||
298.2 | −0.678458 | − | 2.53204i | 0 | −2.48682 | + | 1.43577i | 3.15375 | + | 3.87993i | 0 | 0.662404 | + | 2.47213i | −2.09171 | − | 2.09171i | 0 | 7.68445 | − | 10.6178i | ||||||
298.3 | −0.423208 | − | 1.57943i | 0 | 1.14859 | − | 0.663141i | −4.71314 | + | 1.66922i | 0 | 2.82431 | + | 10.5405i | −6.15839 | − | 6.15839i | 0 | 4.63107 | + | 6.73767i | ||||||
298.4 | −0.219989 | − | 0.821011i | 0 | 2.83844 | − | 1.63877i | −2.79686 | − | 4.14458i | 0 | −2.61142 | − | 9.74596i | −4.37397 | − | 4.37397i | 0 | −2.78747 | + | 3.20802i | ||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
15.e | even | 4 | 1 | inner |
45.k | odd | 12 | 1 | inner |
45.l | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 405.3.l.o | 32 | |
3.b | odd | 2 | 1 | inner | 405.3.l.o | 32 | |
5.c | odd | 4 | 1 | inner | 405.3.l.o | 32 | |
9.c | even | 3 | 1 | 135.3.g.a | ✓ | 16 | |
9.c | even | 3 | 1 | inner | 405.3.l.o | 32 | |
9.d | odd | 6 | 1 | 135.3.g.a | ✓ | 16 | |
9.d | odd | 6 | 1 | inner | 405.3.l.o | 32 | |
15.e | even | 4 | 1 | inner | 405.3.l.o | 32 | |
45.h | odd | 6 | 1 | 675.3.g.k | 16 | ||
45.j | even | 6 | 1 | 675.3.g.k | 16 | ||
45.k | odd | 12 | 1 | 135.3.g.a | ✓ | 16 | |
45.k | odd | 12 | 1 | inner | 405.3.l.o | 32 | |
45.k | odd | 12 | 1 | 675.3.g.k | 16 | ||
45.l | even | 12 | 1 | 135.3.g.a | ✓ | 16 | |
45.l | even | 12 | 1 | inner | 405.3.l.o | 32 | |
45.l | even | 12 | 1 | 675.3.g.k | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
135.3.g.a | ✓ | 16 | 9.c | even | 3 | 1 | |
135.3.g.a | ✓ | 16 | 9.d | odd | 6 | 1 | |
135.3.g.a | ✓ | 16 | 45.k | odd | 12 | 1 | |
135.3.g.a | ✓ | 16 | 45.l | even | 12 | 1 | |
405.3.l.o | 32 | 1.a | even | 1 | 1 | trivial | |
405.3.l.o | 32 | 3.b | odd | 2 | 1 | inner | |
405.3.l.o | 32 | 5.c | odd | 4 | 1 | inner | |
405.3.l.o | 32 | 9.c | even | 3 | 1 | inner | |
405.3.l.o | 32 | 9.d | odd | 6 | 1 | inner | |
405.3.l.o | 32 | 15.e | even | 4 | 1 | inner | |
405.3.l.o | 32 | 45.k | odd | 12 | 1 | inner | |
405.3.l.o | 32 | 45.l | even | 12 | 1 | inner | |
675.3.g.k | 16 | 45.h | odd | 6 | 1 | ||
675.3.g.k | 16 | 45.j | even | 6 | 1 | ||
675.3.g.k | 16 | 45.k | odd | 12 | 1 | ||
675.3.g.k | 16 | 45.l | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{32} - 217 T_{2}^{28} + 37825 T_{2}^{24} - 1891294 T_{2}^{20} + 72882286 T_{2}^{16} + \cdots + 815730721 \) acting on \(S_{3}^{\mathrm{new}}(405, [\chi])\).