Properties

Label 405.3.l.h.217.1
Level $405$
Weight $3$
Character 405.217
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(28,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 9])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.28"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,0,4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 217.1
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 405.217
Dual form 405.3.l.h.28.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.307007 + 0.0822623i) q^{2} +(-3.37662 + 1.94949i) q^{4} +(3.87453 + 3.16038i) q^{5} +(-4.71209 + 1.26260i) q^{7} +(1.77526 - 1.77526i) q^{8} +(-1.44949 - 0.651531i) q^{10} +(-5.67423 + 9.82806i) q^{11} +(7.58214 + 2.03163i) q^{13} +(1.34278 - 0.775255i) q^{14} +(7.39898 - 12.8154i) q^{16} +(-17.3485 - 17.3485i) q^{17} +8.69694i q^{19} +(-19.2439 - 3.11802i) q^{20} +(0.933552 - 3.48406i) q^{22} +(-15.7783 - 4.22778i) q^{23} +(5.02402 + 24.4900i) q^{25} -2.49490 q^{26} +(13.4495 - 13.4495i) q^{28} +(-30.4377 - 17.5732i) q^{29} +(-5.34847 - 9.26382i) q^{31} +(-3.81647 + 14.2433i) q^{32} +(6.75323 + 3.89898i) q^{34} +(-22.2474 - 10.0000i) q^{35} +(-6.04541 - 6.04541i) q^{37} +(-0.715430 - 2.67002i) q^{38} +(12.4888 - 1.26781i) q^{40} +(-0.348469 - 0.603566i) q^{41} +(-9.69781 - 36.1927i) q^{43} -44.2474i q^{44} +5.19184 q^{46} +(-60.4431 + 16.1957i) q^{47} +(-21.8256 + 12.6010i) q^{49} +(-3.55701 - 7.10531i) q^{50} +(-29.5626 + 7.92127i) q^{52} +(-0.696938 + 0.696938i) q^{53} +(-53.0454 + 20.1464i) q^{55} +(-6.12372 + 10.6066i) q^{56} +(10.7902 + 2.89123i) q^{58} +(-34.5840 + 19.9671i) q^{59} +(-2.95459 + 5.11750i) q^{61} +(2.40408 + 2.40408i) q^{62} +54.5051i q^{64} +(22.9565 + 31.8340i) q^{65} +(-16.5081 + 61.6091i) q^{67} +(92.3998 + 24.7584i) q^{68} +(7.65275 + 1.23995i) q^{70} -68.0000 q^{71} +(77.7878 - 77.7878i) q^{73} +(2.35329 + 1.35867i) q^{74} +(-16.9546 - 29.3662i) q^{76} +(14.3286 - 53.4750i) q^{77} +(21.2132 + 12.2474i) q^{79} +(69.1691 - 26.2702i) q^{80} +(0.156633 + 0.156633i) q^{82} +(4.81193 + 17.9584i) q^{83} +(-12.3895 - 122.045i) q^{85} +(5.95459 + 10.3137i) q^{86} +(7.37410 + 27.5205i) q^{88} +82.1816i q^{89} -38.2929 q^{91} +(61.5192 - 16.4840i) q^{92} +(17.2242 - 9.94439i) q^{94} +(-27.4856 + 33.6966i) q^{95} +(33.5986 - 9.00273i) q^{97} +(5.66403 - 5.66403i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{5} - 4 q^{7} + 24 q^{8} + 8 q^{10} - 16 q^{11} + 32 q^{13} + 20 q^{16} - 80 q^{17} + 36 q^{20} - 20 q^{22} - 56 q^{23} - 16 q^{25} + 176 q^{26} + 88 q^{28} + 16 q^{31} + 76 q^{32} - 80 q^{35}+ \cdots - 376 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.307007 + 0.0822623i −0.153504 + 0.0411312i −0.334752 0.942306i \(-0.608653\pi\)
0.181249 + 0.983437i \(0.441986\pi\)
\(3\) 0 0
\(4\) −3.37662 + 1.94949i −0.844154 + 0.487372i
\(5\) 3.87453 + 3.16038i 0.774907 + 0.632076i
\(6\) 0 0
\(7\) −4.71209 + 1.26260i −0.673156 + 0.180372i −0.579176 0.815203i \(-0.696626\pi\)
−0.0939798 + 0.995574i \(0.529959\pi\)
\(8\) 1.77526 1.77526i 0.221907 0.221907i
\(9\) 0 0
\(10\) −1.44949 0.651531i −0.144949 0.0651531i
\(11\) −5.67423 + 9.82806i −0.515840 + 0.893460i 0.483991 + 0.875073i \(0.339187\pi\)
−0.999831 + 0.0183875i \(0.994147\pi\)
\(12\) 0 0
\(13\) 7.58214 + 2.03163i 0.583241 + 0.156279i 0.538362 0.842713i \(-0.319043\pi\)
0.0448789 + 0.998992i \(0.485710\pi\)
\(14\) 1.34278 0.775255i 0.0959129 0.0553754i
\(15\) 0 0
\(16\) 7.39898 12.8154i 0.462436 0.800963i
\(17\) −17.3485 17.3485i −1.02050 1.02050i −0.999785 0.0207127i \(-0.993406\pi\)
−0.0207127 0.999785i \(-0.506594\pi\)
\(18\) 0 0
\(19\) 8.69694i 0.457734i 0.973458 + 0.228867i \(0.0735020\pi\)
−0.973458 + 0.228867i \(0.926498\pi\)
\(20\) −19.2439 3.11802i −0.962197 0.155901i
\(21\) 0 0
\(22\) 0.933552 3.48406i 0.0424342 0.158366i
\(23\) −15.7783 4.22778i −0.686013 0.183817i −0.101056 0.994881i \(-0.532222\pi\)
−0.584957 + 0.811064i \(0.698889\pi\)
\(24\) 0 0
\(25\) 5.02402 + 24.4900i 0.200961 + 0.979599i
\(26\) −2.49490 −0.0959576
\(27\) 0 0
\(28\) 13.4495 13.4495i 0.480339 0.480339i
\(29\) −30.4377 17.5732i −1.04958 0.605973i −0.127045 0.991897i \(-0.540549\pi\)
−0.922531 + 0.385924i \(0.873883\pi\)
\(30\) 0 0
\(31\) −5.34847 9.26382i −0.172531 0.298833i 0.766773 0.641918i \(-0.221861\pi\)
−0.939304 + 0.343086i \(0.888528\pi\)
\(32\) −3.81647 + 14.2433i −0.119265 + 0.445102i
\(33\) 0 0
\(34\) 6.75323 + 3.89898i 0.198624 + 0.114676i
\(35\) −22.2474 10.0000i −0.635641 0.285714i
\(36\) 0 0
\(37\) −6.04541 6.04541i −0.163389 0.163389i 0.620677 0.784066i \(-0.286858\pi\)
−0.784066 + 0.620677i \(0.786858\pi\)
\(38\) −0.715430 2.67002i −0.0188271 0.0702638i
\(39\) 0 0
\(40\) 12.4888 1.26781i 0.312219 0.0316952i
\(41\) −0.348469 0.603566i −0.00849925 0.0147211i 0.861744 0.507343i \(-0.169372\pi\)
−0.870244 + 0.492621i \(0.836039\pi\)
\(42\) 0 0
\(43\) −9.69781 36.1927i −0.225530 0.841691i −0.982191 0.187883i \(-0.939837\pi\)
0.756661 0.653807i \(-0.226829\pi\)
\(44\) 44.2474i 1.00562i
\(45\) 0 0
\(46\) 5.19184 0.112866
\(47\) −60.4431 + 16.1957i −1.28602 + 0.344589i −0.836149 0.548502i \(-0.815198\pi\)
−0.449875 + 0.893091i \(0.648532\pi\)
\(48\) 0 0
\(49\) −21.8256 + 12.6010i −0.445421 + 0.257164i
\(50\) −3.55701 7.10531i −0.0711403 0.142106i
\(51\) 0 0
\(52\) −29.5626 + 7.92127i −0.568512 + 0.152332i
\(53\) −0.696938 + 0.696938i −0.0131498 + 0.0131498i −0.713651 0.700501i \(-0.752960\pi\)
0.700501 + 0.713651i \(0.252960\pi\)
\(54\) 0 0
\(55\) −53.0454 + 20.1464i −0.964462 + 0.366299i
\(56\) −6.12372 + 10.6066i −0.109352 + 0.189404i
\(57\) 0 0
\(58\) 10.7902 + 2.89123i 0.186038 + 0.0498487i
\(59\) −34.5840 + 19.9671i −0.586170 + 0.338425i −0.763582 0.645711i \(-0.776561\pi\)
0.177412 + 0.984137i \(0.443228\pi\)
\(60\) 0 0
\(61\) −2.95459 + 5.11750i −0.0484359 + 0.0838935i −0.889227 0.457466i \(-0.848757\pi\)
0.840791 + 0.541360i \(0.182090\pi\)
\(62\) 2.40408 + 2.40408i 0.0387755 + 0.0387755i
\(63\) 0 0
\(64\) 54.5051i 0.851642i
\(65\) 22.9565 + 31.8340i 0.353177 + 0.489754i
\(66\) 0 0
\(67\) −16.5081 + 61.6091i −0.246390 + 0.919539i 0.726290 + 0.687388i \(0.241243\pi\)
−0.972680 + 0.232151i \(0.925424\pi\)
\(68\) 92.3998 + 24.7584i 1.35882 + 0.364095i
\(69\) 0 0
\(70\) 7.65275 + 1.23995i 0.109325 + 0.0177135i
\(71\) −68.0000 −0.957746 −0.478873 0.877884i \(-0.658955\pi\)
−0.478873 + 0.877884i \(0.658955\pi\)
\(72\) 0 0
\(73\) 77.7878 77.7878i 1.06559 1.06559i 0.0678931 0.997693i \(-0.478372\pi\)
0.997693 0.0678931i \(-0.0216277\pi\)
\(74\) 2.35329 + 1.35867i 0.0318013 + 0.0183605i
\(75\) 0 0
\(76\) −16.9546 29.3662i −0.223087 0.386398i
\(77\) 14.3286 53.4750i 0.186086 0.694481i
\(78\) 0 0
\(79\) 21.2132 + 12.2474i 0.268522 + 0.155031i 0.628216 0.778039i \(-0.283786\pi\)
−0.359694 + 0.933070i \(0.617119\pi\)
\(80\) 69.1691 26.2702i 0.864614 0.328377i
\(81\) 0 0
\(82\) 0.156633 + 0.156633i 0.00191016 + 0.00191016i
\(83\) 4.81193 + 17.9584i 0.0579750 + 0.216366i 0.988836 0.149008i \(-0.0476079\pi\)
−0.930861 + 0.365373i \(0.880941\pi\)
\(84\) 0 0
\(85\) −12.3895 122.045i −0.145759 1.43582i
\(86\) 5.95459 + 10.3137i 0.0692394 + 0.119926i
\(87\) 0 0
\(88\) 7.37410 + 27.5205i 0.0837966 + 0.312733i
\(89\) 82.1816i 0.923389i 0.887039 + 0.461695i \(0.152758\pi\)
−0.887039 + 0.461695i \(0.847242\pi\)
\(90\) 0 0
\(91\) −38.2929 −0.420801
\(92\) 61.5192 16.4840i 0.668687 0.179174i
\(93\) 0 0
\(94\) 17.2242 9.94439i 0.183236 0.105791i
\(95\) −27.4856 + 33.6966i −0.289322 + 0.354701i
\(96\) 0 0
\(97\) 33.5986 9.00273i 0.346378 0.0928117i −0.0814359 0.996679i \(-0.525951\pi\)
0.427814 + 0.903867i \(0.359284\pi\)
\(98\) 5.66403 5.66403i 0.0577962 0.0577962i
\(99\) 0 0
\(100\) −64.7071 72.8990i −0.647071 0.728990i
\(101\) 52.8105 91.4704i 0.522876 0.905647i −0.476770 0.879028i \(-0.658192\pi\)
0.999646 0.0266193i \(-0.00847419\pi\)
\(102\) 0 0
\(103\) 121.914 + 32.6668i 1.18363 + 0.317154i 0.796367 0.604814i \(-0.206753\pi\)
0.387267 + 0.921968i \(0.373419\pi\)
\(104\) 17.0669 9.85357i 0.164105 0.0947459i
\(105\) 0 0
\(106\) 0.156633 0.271297i 0.00147767 0.00255940i
\(107\) 68.7423 + 68.7423i 0.642452 + 0.642452i 0.951158 0.308706i \(-0.0998958\pi\)
−0.308706 + 0.951158i \(0.599896\pi\)
\(108\) 0 0
\(109\) 68.6969i 0.630247i 0.949051 + 0.315124i \(0.102046\pi\)
−0.949051 + 0.315124i \(0.897954\pi\)
\(110\) 14.6280 10.5487i 0.132982 0.0958976i
\(111\) 0 0
\(112\) −18.6839 + 69.7293i −0.166821 + 0.622583i
\(113\) −133.381 35.7392i −1.18036 0.316276i −0.385290 0.922796i \(-0.625899\pi\)
−0.795069 + 0.606519i \(0.792565\pi\)
\(114\) 0 0
\(115\) −47.7721 66.2460i −0.415410 0.576053i
\(116\) 137.035 1.18134
\(117\) 0 0
\(118\) 8.97500 8.97500i 0.0760593 0.0760593i
\(119\) 103.652 + 59.8434i 0.871023 + 0.502885i
\(120\) 0 0
\(121\) −3.89388 6.74439i −0.0321808 0.0557388i
\(122\) 0.486103 1.81416i 0.00398445 0.0148702i
\(123\) 0 0
\(124\) 36.1194 + 20.8536i 0.291286 + 0.168174i
\(125\) −57.9319 + 110.765i −0.463455 + 0.886120i
\(126\) 0 0
\(127\) 164.621 + 164.621i 1.29623 + 1.29623i 0.930865 + 0.365362i \(0.119055\pi\)
0.365362 + 0.930865i \(0.380945\pi\)
\(128\) −19.7496 73.7065i −0.154294 0.575832i
\(129\) 0 0
\(130\) −9.66656 7.88482i −0.0743582 0.0606525i
\(131\) −53.0681 91.9167i −0.405100 0.701654i 0.589233 0.807963i \(-0.299430\pi\)
−0.994333 + 0.106309i \(0.966097\pi\)
\(132\) 0 0
\(133\) −10.9808 40.9808i −0.0825621 0.308126i
\(134\) 20.2724i 0.151287i
\(135\) 0 0
\(136\) −61.5959 −0.452911
\(137\) 227.622 60.9912i 1.66148 0.445191i 0.698684 0.715431i \(-0.253769\pi\)
0.962793 + 0.270239i \(0.0871028\pi\)
\(138\) 0 0
\(139\) −165.559 + 95.5857i −1.19107 + 0.687667i −0.958550 0.284924i \(-0.908032\pi\)
−0.232524 + 0.972591i \(0.574698\pi\)
\(140\) 94.6160 9.60502i 0.675828 0.0686073i
\(141\) 0 0
\(142\) 20.8765 5.59384i 0.147018 0.0393932i
\(143\) −62.9898 + 62.9898i −0.440488 + 0.440488i
\(144\) 0 0
\(145\) −62.3939 164.283i −0.430303 1.13298i
\(146\) −17.4824 + 30.2804i −0.119742 + 0.207400i
\(147\) 0 0
\(148\) 32.1985 + 8.62756i 0.217557 + 0.0582943i
\(149\) 73.4853 42.4268i 0.493190 0.284744i −0.232707 0.972547i \(-0.574758\pi\)
0.725897 + 0.687803i \(0.241425\pi\)
\(150\) 0 0
\(151\) −74.4847 + 129.011i −0.493276 + 0.854379i −0.999970 0.00774676i \(-0.997534\pi\)
0.506694 + 0.862126i \(0.330867\pi\)
\(152\) 15.4393 + 15.4393i 0.101574 + 0.101574i
\(153\) 0 0
\(154\) 17.5959i 0.114259i
\(155\) 8.55436 52.7962i 0.0551894 0.340620i
\(156\) 0 0
\(157\) 6.16884 23.0224i 0.0392919 0.146640i −0.943493 0.331392i \(-0.892482\pi\)
0.982785 + 0.184753i \(0.0591484\pi\)
\(158\) −7.52011 2.01501i −0.0475956 0.0127532i
\(159\) 0 0
\(160\) −59.8011 + 43.1245i −0.373757 + 0.269528i
\(161\) 79.6867 0.494949
\(162\) 0 0
\(163\) 130.606 130.606i 0.801265 0.801265i −0.182029 0.983293i \(-0.558266\pi\)
0.983293 + 0.182029i \(0.0582664\pi\)
\(164\) 2.35329 + 1.35867i 0.0143493 + 0.00828460i
\(165\) 0 0
\(166\) −2.95459 5.11750i −0.0177987 0.0308283i
\(167\) −16.4840 + 61.5192i −0.0987068 + 0.368379i −0.997555 0.0698806i \(-0.977738\pi\)
0.898849 + 0.438259i \(0.144405\pi\)
\(168\) 0 0
\(169\) −92.9970 53.6918i −0.550278 0.317703i
\(170\) 13.8434 + 36.4495i 0.0814316 + 0.214409i
\(171\) 0 0
\(172\) 103.303 + 103.303i 0.600599 + 0.600599i
\(173\) 53.6707 + 200.302i 0.310235 + 1.15781i 0.928344 + 0.371722i \(0.121232\pi\)
−0.618109 + 0.786092i \(0.712101\pi\)
\(174\) 0 0
\(175\) −54.5947 109.056i −0.311970 0.623175i
\(176\) 83.9671 + 145.435i 0.477086 + 0.826337i
\(177\) 0 0
\(178\) −6.76045 25.2304i −0.0379801 0.141744i
\(179\) 183.712i 1.02632i 0.858292 + 0.513161i \(0.171526\pi\)
−0.858292 + 0.513161i \(0.828474\pi\)
\(180\) 0 0
\(181\) −286.272 −1.58162 −0.790808 0.612064i \(-0.790339\pi\)
−0.790808 + 0.612064i \(0.790339\pi\)
\(182\) 11.7562 3.15006i 0.0645944 0.0173080i
\(183\) 0 0
\(184\) −35.5159 + 20.5051i −0.193021 + 0.111441i
\(185\) −4.31736 42.5289i −0.0233371 0.229886i
\(186\) 0 0
\(187\) 268.941 72.0626i 1.43819 0.385361i
\(188\) 172.520 172.520i 0.917659 0.917659i
\(189\) 0 0
\(190\) 5.66632 12.6061i 0.0298228 0.0663480i
\(191\) −24.0454 + 41.6479i −0.125892 + 0.218052i −0.922081 0.386996i \(-0.873513\pi\)
0.796189 + 0.605048i \(0.206846\pi\)
\(192\) 0 0
\(193\) 349.109 + 93.5434i 1.80885 + 0.484681i 0.995303 0.0968131i \(-0.0308649\pi\)
0.813551 + 0.581494i \(0.197532\pi\)
\(194\) −9.57444 + 5.52781i −0.0493528 + 0.0284938i
\(195\) 0 0
\(196\) 49.1311 85.0976i 0.250669 0.434171i
\(197\) −96.6969 96.6969i −0.490847 0.490847i 0.417726 0.908573i \(-0.362827\pi\)
−0.908573 + 0.417726i \(0.862827\pi\)
\(198\) 0 0
\(199\) 192.606i 0.967870i 0.875104 + 0.483935i \(0.160793\pi\)
−0.875104 + 0.483935i \(0.839207\pi\)
\(200\) 52.3949 + 34.5571i 0.261974 + 0.172785i
\(201\) 0 0
\(202\) −8.68862 + 32.4264i −0.0430130 + 0.160527i
\(203\) 165.613 + 44.3759i 0.815828 + 0.218601i
\(204\) 0 0
\(205\) 0.557343 3.43983i 0.00271874 0.0167797i
\(206\) −40.1158 −0.194737
\(207\) 0 0
\(208\) 82.1362 82.1362i 0.394886 0.394886i
\(209\) −85.4741 49.3485i −0.408967 0.236117i
\(210\) 0 0
\(211\) −73.6061 127.490i −0.348844 0.604216i 0.637200 0.770698i \(-0.280092\pi\)
−0.986044 + 0.166482i \(0.946759\pi\)
\(212\) 0.994619 3.71197i 0.00469160 0.0175093i
\(213\) 0 0
\(214\) −26.7593 15.4495i −0.125043 0.0721939i
\(215\) 76.8082 170.879i 0.357247 0.794784i
\(216\) 0 0
\(217\) 36.8990 + 36.8990i 0.170041 + 0.170041i
\(218\) −5.65117 21.0905i −0.0259228 0.0967452i
\(219\) 0 0
\(220\) 139.839 171.438i 0.635630 0.779265i
\(221\) −96.2929 166.784i −0.435714 0.754679i
\(222\) 0 0
\(223\) 61.2833 + 228.712i 0.274813 + 1.02562i 0.955967 + 0.293475i \(0.0948119\pi\)
−0.681154 + 0.732141i \(0.738521\pi\)
\(224\) 71.9342i 0.321135i
\(225\) 0 0
\(226\) 43.8888 0.194198
\(227\) −345.839 + 92.6672i −1.52352 + 0.408225i −0.920898 0.389803i \(-0.872543\pi\)
−0.602620 + 0.798028i \(0.705876\pi\)
\(228\) 0 0
\(229\) −194.165 + 112.101i −0.847881 + 0.489524i −0.859935 0.510403i \(-0.829496\pi\)
0.0120546 + 0.999927i \(0.496163\pi\)
\(230\) 20.1159 + 16.4082i 0.0874606 + 0.0713399i
\(231\) 0 0
\(232\) −85.2316 + 22.8377i −0.367378 + 0.0984386i
\(233\) −205.712 + 205.712i −0.882883 + 0.882883i −0.993827 0.110944i \(-0.964613\pi\)
0.110944 + 0.993827i \(0.464613\pi\)
\(234\) 0 0
\(235\) −285.373 128.272i −1.21436 0.545840i
\(236\) 77.8513 134.842i 0.329878 0.571366i
\(237\) 0 0
\(238\) −36.7447 9.84571i −0.154389 0.0413685i
\(239\) −299.470 + 172.899i −1.25301 + 0.723427i −0.971706 0.236192i \(-0.924101\pi\)
−0.281305 + 0.959618i \(0.590767\pi\)
\(240\) 0 0
\(241\) −50.7878 + 87.9670i −0.210738 + 0.365008i −0.951946 0.306267i \(-0.900920\pi\)
0.741208 + 0.671275i \(0.234253\pi\)
\(242\) 1.75026 + 1.75026i 0.00723247 + 0.00723247i
\(243\) 0 0
\(244\) 23.0398i 0.0944254i
\(245\) −124.388 20.1541i −0.507706 0.0822616i
\(246\) 0 0
\(247\) −17.6689 + 65.9414i −0.0715342 + 0.266969i
\(248\) −25.9405 6.95075i −0.104599 0.0280272i
\(249\) 0 0
\(250\) 8.67372 38.7713i 0.0346949 0.155085i
\(251\) −331.258 −1.31975 −0.659876 0.751375i \(-0.729391\pi\)
−0.659876 + 0.751375i \(0.729391\pi\)
\(252\) 0 0
\(253\) 131.081 131.081i 0.518105 0.518105i
\(254\) −64.0819 36.9977i −0.252291 0.145660i
\(255\) 0 0
\(256\) −96.8837 167.807i −0.378452 0.655498i
\(257\) 12.1657 45.4029i 0.0473373 0.176665i −0.938210 0.346067i \(-0.887517\pi\)
0.985547 + 0.169402i \(0.0541836\pi\)
\(258\) 0 0
\(259\) 36.1194 + 20.8536i 0.139457 + 0.0805157i
\(260\) −139.576 62.7378i −0.536829 0.241299i
\(261\) 0 0
\(262\) 23.8536 + 23.8536i 0.0910442 + 0.0910442i
\(263\) −101.812 379.969i −0.387119 1.44475i −0.834799 0.550555i \(-0.814416\pi\)
0.447679 0.894194i \(-0.352251\pi\)
\(264\) 0 0
\(265\) −4.90290 + 0.497722i −0.0185015 + 0.00187820i
\(266\) 6.74235 + 11.6781i 0.0253472 + 0.0439026i
\(267\) 0 0
\(268\) −64.3648 240.213i −0.240167 0.896316i
\(269\) 488.499i 1.81598i −0.418988 0.907992i \(-0.637615\pi\)
0.418988 0.907992i \(-0.362385\pi\)
\(270\) 0 0
\(271\) 131.576 0.485518 0.242759 0.970087i \(-0.421947\pi\)
0.242759 + 0.970087i \(0.421947\pi\)
\(272\) −350.689 + 93.9668i −1.28930 + 0.345466i
\(273\) 0 0
\(274\) −64.8644 + 37.4495i −0.236731 + 0.136677i
\(275\) −269.197 89.5856i −0.978896 0.325766i
\(276\) 0 0
\(277\) −138.665 + 37.1551i −0.500595 + 0.134134i −0.500276 0.865866i \(-0.666768\pi\)
−0.000318873 1.00000i \(0.500102\pi\)
\(278\) 42.9648 42.9648i 0.154550 0.154550i
\(279\) 0 0
\(280\) −57.2474 + 21.7423i −0.204455 + 0.0776512i
\(281\) −171.652 + 297.309i −0.610860 + 1.05804i 0.380236 + 0.924889i \(0.375843\pi\)
−0.991096 + 0.133150i \(0.957491\pi\)
\(282\) 0 0
\(283\) −1.62808 0.436242i −0.00575293 0.00154149i 0.255941 0.966692i \(-0.417615\pi\)
−0.261694 + 0.965151i \(0.584281\pi\)
\(284\) 229.610 132.565i 0.808485 0.466779i
\(285\) 0 0
\(286\) 14.1566 24.5200i 0.0494987 0.0857343i
\(287\) 2.40408 + 2.40408i 0.00837659 + 0.00837659i
\(288\) 0 0
\(289\) 312.939i 1.08283i
\(290\) 32.6696 + 45.3033i 0.112654 + 0.156218i
\(291\) 0 0
\(292\) −111.013 + 414.306i −0.380181 + 1.41886i
\(293\) −131.911 35.3454i −0.450207 0.120633i 0.0265892 0.999646i \(-0.491535\pi\)
−0.476796 + 0.879014i \(0.658202\pi\)
\(294\) 0 0
\(295\) −197.100 31.9354i −0.668137 0.108256i
\(296\) −21.4643 −0.0725145
\(297\) 0 0
\(298\) −19.0704 + 19.0704i −0.0639946 + 0.0639946i
\(299\) −111.044 64.1112i −0.371384 0.214419i
\(300\) 0 0
\(301\) 91.3939 + 158.299i 0.303634 + 0.525910i
\(302\) 12.2546 45.7347i 0.0405780 0.151439i
\(303\) 0 0
\(304\) 111.455 + 64.3485i 0.366628 + 0.211673i
\(305\) −27.6209 + 10.4903i −0.0905604 + 0.0343945i
\(306\) 0 0
\(307\) −124.969 124.969i −0.407066 0.407066i 0.473648 0.880714i \(-0.342937\pi\)
−0.880714 + 0.473648i \(0.842937\pi\)
\(308\) 55.8669 + 208.498i 0.181386 + 0.676942i
\(309\) 0 0
\(310\) 1.71689 + 16.9125i 0.00553835 + 0.0545565i
\(311\) 293.151 + 507.752i 0.942608 + 1.63264i 0.760472 + 0.649371i \(0.224968\pi\)
0.182136 + 0.983273i \(0.441699\pi\)
\(312\) 0 0
\(313\) −37.4713 139.845i −0.119717 0.446788i 0.879880 0.475196i \(-0.157623\pi\)
−0.999596 + 0.0284079i \(0.990956\pi\)
\(314\) 7.57551i 0.0241258i
\(315\) 0 0
\(316\) −95.5051 −0.302231
\(317\) 148.601 39.8174i 0.468772 0.125607i −0.0166979 0.999861i \(-0.505315\pi\)
0.485469 + 0.874254i \(0.338649\pi\)
\(318\) 0 0
\(319\) 345.421 199.429i 1.08283 0.625170i
\(320\) −172.257 + 211.182i −0.538302 + 0.659943i
\(321\) 0 0
\(322\) −24.4644 + 6.55522i −0.0759764 + 0.0203578i
\(323\) 150.879 150.879i 0.467116 0.467116i
\(324\) 0 0
\(325\) −11.6617 + 195.893i −0.0358823 + 0.602749i
\(326\) −29.3531 + 50.8410i −0.0900401 + 0.155954i
\(327\) 0 0
\(328\) −1.69011 0.452863i −0.00515276 0.00138068i
\(329\) 264.365 152.631i 0.803541 0.463924i
\(330\) 0 0
\(331\) 122.712 212.543i 0.370730 0.642124i −0.618948 0.785432i \(-0.712441\pi\)
0.989678 + 0.143308i \(0.0457741\pi\)
\(332\) −51.2577 51.2577i −0.154391 0.154391i
\(333\) 0 0
\(334\) 20.2429i 0.0606074i
\(335\) −258.669 + 186.535i −0.772148 + 0.556820i
\(336\) 0 0
\(337\) 78.2592 292.067i 0.232223 0.866669i −0.747158 0.664647i \(-0.768582\pi\)
0.979381 0.202022i \(-0.0647513\pi\)
\(338\) 32.9676 + 8.83363i 0.0975372 + 0.0261350i
\(339\) 0 0
\(340\) 279.760 + 387.946i 0.822823 + 1.14102i
\(341\) 121.394 0.355994
\(342\) 0 0
\(343\) 255.959 255.959i 0.746237 0.746237i
\(344\) −81.4674 47.0352i −0.236824 0.136730i
\(345\) 0 0
\(346\) −32.9546 57.0790i −0.0952445 0.164968i
\(347\) −58.5824 + 218.632i −0.168825 + 0.630064i 0.828696 + 0.559699i \(0.189083\pi\)
−0.997521 + 0.0703655i \(0.977583\pi\)
\(348\) 0 0
\(349\) 258.084 + 149.005i 0.739494 + 0.426947i 0.821885 0.569653i \(-0.192922\pi\)
−0.0823911 + 0.996600i \(0.526256\pi\)
\(350\) 25.7321 + 28.9898i 0.0735204 + 0.0828280i
\(351\) 0 0
\(352\) −118.328 118.328i −0.336159 0.336159i
\(353\) −8.24285 30.7627i −0.0233509 0.0871466i 0.953267 0.302129i \(-0.0976973\pi\)
−0.976618 + 0.214982i \(0.931031\pi\)
\(354\) 0 0
\(355\) −263.468 214.906i −0.742164 0.605368i
\(356\) −160.212 277.496i −0.450034 0.779482i
\(357\) 0 0
\(358\) −15.1126 56.4008i −0.0422138 0.157544i
\(359\) 48.2724i 0.134464i 0.997737 + 0.0672318i \(0.0214167\pi\)
−0.997737 + 0.0672318i \(0.978583\pi\)
\(360\) 0 0
\(361\) 285.363 0.790480
\(362\) 87.8877 23.5494i 0.242784 0.0650537i
\(363\) 0 0
\(364\) 129.300 74.6515i 0.355220 0.205087i
\(365\) 547.230 55.5525i 1.49926 0.152199i
\(366\) 0 0
\(367\) −200.136 + 53.6263i −0.545330 + 0.146121i −0.520958 0.853582i \(-0.674425\pi\)
−0.0243716 + 0.999703i \(0.507759\pi\)
\(368\) −170.924 + 170.924i −0.464467 + 0.464467i
\(369\) 0 0
\(370\) 4.82399 + 12.7015i 0.0130378 + 0.0343284i
\(371\) 2.40408 4.16399i 0.00648001 0.0112237i
\(372\) 0 0
\(373\) −117.760 31.5538i −0.315712 0.0845947i 0.0974836 0.995237i \(-0.468921\pi\)
−0.413195 + 0.910642i \(0.635587\pi\)
\(374\) −76.6388 + 44.2474i −0.204917 + 0.118309i
\(375\) 0 0
\(376\) −78.5505 + 136.053i −0.208911 + 0.361844i
\(377\) −195.081 195.081i −0.517455 0.517455i
\(378\) 0 0
\(379\) 210.000i 0.554090i −0.960857 0.277045i \(-0.910645\pi\)
0.960857 0.277045i \(-0.0893551\pi\)
\(380\) 27.1172 167.363i 0.0713611 0.440430i
\(381\) 0 0
\(382\) 3.95606 14.7642i 0.0103562 0.0386498i
\(383\) 14.5224 + 3.89126i 0.0379174 + 0.0101599i 0.277728 0.960660i \(-0.410419\pi\)
−0.239810 + 0.970820i \(0.577085\pi\)
\(384\) 0 0
\(385\) 224.518 161.907i 0.583163 0.420538i
\(386\) −114.874 −0.297601
\(387\) 0 0
\(388\) −95.8990 + 95.8990i −0.247162 + 0.247162i
\(389\) 463.616 + 267.669i 1.19181 + 0.688094i 0.958718 0.284360i \(-0.0917809\pi\)
0.233096 + 0.972454i \(0.425114\pi\)
\(390\) 0 0
\(391\) 200.384 + 347.075i 0.512490 + 0.887659i
\(392\) −16.3760 + 61.1160i −0.0417755 + 0.155908i
\(393\) 0 0
\(394\) 37.6412 + 21.7321i 0.0955360 + 0.0551577i
\(395\) 43.4847 + 114.495i 0.110088 + 0.289860i
\(396\) 0 0
\(397\) 118.742 + 118.742i 0.299099 + 0.299099i 0.840661 0.541562i \(-0.182167\pi\)
−0.541562 + 0.840661i \(0.682167\pi\)
\(398\) −15.8442 59.1315i −0.0398096 0.148572i
\(399\) 0 0
\(400\) 351.022 + 116.816i 0.877554 + 0.292040i
\(401\) −210.151 363.992i −0.524067 0.907711i −0.999607 0.0280172i \(-0.991081\pi\)
0.475540 0.879694i \(-0.342253\pi\)
\(402\) 0 0
\(403\) −21.7322 81.1057i −0.0539260 0.201255i
\(404\) 411.814i 1.01934i
\(405\) 0 0
\(406\) −54.4949 −0.134224
\(407\) 93.7177 25.1116i 0.230265 0.0616992i
\(408\) 0 0
\(409\) −446.099 + 257.555i −1.09071 + 0.629719i −0.933764 0.357889i \(-0.883497\pi\)
−0.156941 + 0.987608i \(0.550163\pi\)
\(410\) 0.111860 + 1.10190i 0.000272830 + 0.00268757i
\(411\) 0 0
\(412\) −475.341 + 127.367i −1.15374 + 0.309144i
\(413\) 137.753 137.753i 0.333541 0.333541i
\(414\) 0 0
\(415\) −38.1112 + 84.7878i −0.0918343 + 0.204308i
\(416\) −57.8740 + 100.241i −0.139120 + 0.240963i
\(417\) 0 0
\(418\) 30.3007 + 8.11904i 0.0724896 + 0.0194235i
\(419\) −76.7312 + 44.3008i −0.183129 + 0.105730i −0.588762 0.808306i \(-0.700385\pi\)
0.405633 + 0.914036i \(0.367051\pi\)
\(420\) 0 0
\(421\) 128.576 222.699i 0.305405 0.528977i −0.671946 0.740600i \(-0.734541\pi\)
0.977351 + 0.211623i \(0.0678748\pi\)
\(422\) 33.0852 + 33.0852i 0.0784009 + 0.0784009i
\(423\) 0 0
\(424\) 2.47449i 0.00583605i
\(425\) 337.705 512.023i 0.794599 1.20476i
\(426\) 0 0
\(427\) 7.46094 27.8446i 0.0174729 0.0652099i
\(428\) −366.129 98.1040i −0.855441 0.229215i
\(429\) 0 0
\(430\) −9.52379 + 58.7794i −0.0221483 + 0.136696i
\(431\) 804.636 1.86690 0.933452 0.358702i \(-0.116781\pi\)
0.933452 + 0.358702i \(0.116781\pi\)
\(432\) 0 0
\(433\) −344.848 + 344.848i −0.796416 + 0.796416i −0.982528 0.186113i \(-0.940411\pi\)
0.186113 + 0.982528i \(0.440411\pi\)
\(434\) −14.3636 8.29286i −0.0330960 0.0191080i
\(435\) 0 0
\(436\) −133.924 231.963i −0.307165 0.532026i
\(437\) 36.7687 137.223i 0.0841390 0.314011i
\(438\) 0 0
\(439\) −374.927 216.464i −0.854048 0.493085i 0.00796652 0.999968i \(-0.497464\pi\)
−0.862015 + 0.506883i \(0.830797\pi\)
\(440\) −58.4041 + 129.934i −0.132737 + 0.295305i
\(441\) 0 0
\(442\) 43.2827 + 43.2827i 0.0979246 + 0.0979246i
\(443\) 89.7240 + 334.855i 0.202537 + 0.755880i 0.990186 + 0.139755i \(0.0446315\pi\)
−0.787649 + 0.616124i \(0.788702\pi\)
\(444\) 0 0
\(445\) −259.725 + 318.415i −0.583652 + 0.715540i
\(446\) −37.6288 65.1750i −0.0843696 0.146132i
\(447\) 0 0
\(448\) −68.8182 256.833i −0.153612 0.573288i
\(449\) 386.091i 0.859890i 0.902855 + 0.429945i \(0.141467\pi\)
−0.902855 + 0.429945i \(0.858533\pi\)
\(450\) 0 0
\(451\) 7.90918 0.0175370
\(452\) 520.048 139.346i 1.15055 0.308289i
\(453\) 0 0
\(454\) 98.5519 56.8990i 0.217075 0.125328i
\(455\) −148.367 121.020i −0.326081 0.265978i
\(456\) 0 0
\(457\) 305.644 81.8971i 0.668805 0.179206i 0.0915887 0.995797i \(-0.470806\pi\)
0.577217 + 0.816591i \(0.304139\pi\)
\(458\) 50.3883 50.3883i 0.110018 0.110018i
\(459\) 0 0
\(460\) 290.454 + 130.556i 0.631422 + 0.283818i
\(461\) 361.310 625.807i 0.783753 1.35750i −0.145989 0.989286i \(-0.546636\pi\)
0.929741 0.368213i \(-0.120030\pi\)
\(462\) 0 0
\(463\) 177.176 + 47.4741i 0.382669 + 0.102536i 0.445025 0.895518i \(-0.353195\pi\)
−0.0623562 + 0.998054i \(0.519861\pi\)
\(464\) −450.416 + 260.048i −0.970724 + 0.560448i
\(465\) 0 0
\(466\) 46.2327 80.0773i 0.0992117 0.171840i
\(467\) 415.258 + 415.258i 0.889203 + 0.889203i 0.994446 0.105244i \(-0.0335623\pi\)
−0.105244 + 0.994446i \(0.533562\pi\)
\(468\) 0 0
\(469\) 311.151i 0.663435i
\(470\) 98.1637 + 15.9051i 0.208859 + 0.0338406i
\(471\) 0 0
\(472\) −25.9488 + 96.8421i −0.0549762 + 0.205174i
\(473\) 410.732 + 110.055i 0.868355 + 0.232675i
\(474\) 0 0
\(475\) −212.988 + 43.6936i −0.448396 + 0.0919865i
\(476\) −466.656 −0.980370
\(477\) 0 0
\(478\) 77.7163 77.7163i 0.162586 0.162586i
\(479\) −264.094 152.474i −0.551344 0.318318i 0.198320 0.980137i \(-0.436451\pi\)
−0.749664 + 0.661819i \(0.769785\pi\)
\(480\) 0 0
\(481\) −33.5551 58.1191i −0.0697611 0.120830i
\(482\) 8.35584 31.1844i 0.0173358 0.0646980i
\(483\) 0 0
\(484\) 26.2962 + 15.1821i 0.0543311 + 0.0313681i
\(485\) 158.631 + 71.3031i 0.327074 + 0.147017i
\(486\) 0 0
\(487\) −429.318 429.318i −0.881556 0.881556i 0.112137 0.993693i \(-0.464231\pi\)
−0.993693 + 0.112137i \(0.964231\pi\)
\(488\) 3.83972 + 14.3300i 0.00786828 + 0.0293648i
\(489\) 0 0
\(490\) 39.8459 4.04499i 0.0813183 0.00825509i
\(491\) 207.159 + 358.810i 0.421912 + 0.730773i 0.996127 0.0879316i \(-0.0280257\pi\)
−0.574214 + 0.818705i \(0.694692\pi\)
\(492\) 0 0
\(493\) 223.179 + 832.916i 0.452696 + 1.68948i
\(494\) 21.6980i 0.0439230i
\(495\) 0 0
\(496\) −158.293 −0.319139
\(497\) 320.422 85.8569i 0.644713 0.172750i
\(498\) 0 0
\(499\) 318.338 183.792i 0.637951 0.368321i −0.145874 0.989303i \(-0.546599\pi\)
0.783825 + 0.620982i \(0.213266\pi\)
\(500\) −20.3216 486.949i −0.0406433 0.973897i
\(501\) 0 0
\(502\) 101.698 27.2500i 0.202587 0.0542829i
\(503\) −9.59133 + 9.59133i −0.0190683 + 0.0190683i −0.716577 0.697508i \(-0.754292\pi\)
0.697508 + 0.716577i \(0.254292\pi\)
\(504\) 0 0
\(505\) 493.697 187.504i 0.977618 0.371295i
\(506\) −29.4597 + 51.0257i −0.0582207 + 0.100841i
\(507\) 0 0
\(508\) −876.788 234.935i −1.72596 0.462470i
\(509\) 673.325 388.745i 1.32284 0.763742i 0.338659 0.940909i \(-0.390027\pi\)
0.984181 + 0.177167i \(0.0566933\pi\)
\(510\) 0 0
\(511\) −268.328 + 464.758i −0.525104 + 0.909507i
\(512\) 259.376 + 259.376i 0.506593 + 0.506593i
\(513\) 0 0
\(514\) 14.9398i 0.0290658i
\(515\) 369.121 + 511.864i 0.716741 + 0.993911i
\(516\) 0 0
\(517\) 183.796 685.937i 0.355505 1.32676i
\(518\) −12.8044 3.43093i −0.0247189 0.00662341i
\(519\) 0 0
\(520\) 97.2672 + 15.7598i 0.187052 + 0.0303074i
\(521\) 321.605 0.617284 0.308642 0.951178i \(-0.400125\pi\)
0.308642 + 0.951178i \(0.400125\pi\)
\(522\) 0 0
\(523\) −582.454 + 582.454i −1.11368 + 1.11368i −0.121030 + 0.992649i \(0.538620\pi\)
−0.992649 + 0.121030i \(0.961380\pi\)
\(524\) 358.381 + 206.911i 0.683934 + 0.394869i
\(525\) 0 0
\(526\) 62.5143 + 108.278i 0.118848 + 0.205852i
\(527\) −67.9254 + 253.501i −0.128891 + 0.481026i
\(528\) 0 0
\(529\) −227.047 131.086i −0.429201 0.247799i
\(530\) 1.46428 0.556128i 0.00276280 0.00104930i
\(531\) 0 0
\(532\) 116.969 + 116.969i 0.219867 + 0.219867i
\(533\) −1.41592 5.28428i −0.00265651 0.00991423i
\(534\) 0 0
\(535\) 49.0927 + 483.596i 0.0917620 + 0.903918i
\(536\) 80.0658 + 138.678i 0.149377 + 0.258728i
\(537\) 0 0
\(538\) 40.1851 + 149.973i 0.0746935 + 0.278760i
\(539\) 286.005i 0.530621i
\(540\) 0 0
\(541\) 460.697 0.851566 0.425783 0.904825i \(-0.359999\pi\)
0.425783 + 0.904825i \(0.359999\pi\)
\(542\) −40.3946 + 10.8237i −0.0745288 + 0.0199699i
\(543\) 0 0
\(544\) 313.309 180.889i 0.575935 0.332516i
\(545\) −217.108 + 266.169i −0.398364 + 0.488383i
\(546\) 0 0
\(547\) 904.005 242.227i 1.65266 0.442829i 0.692304 0.721606i \(-0.256596\pi\)
0.960356 + 0.278777i \(0.0899291\pi\)
\(548\) −649.691 + 649.691i −1.18557 + 1.18557i
\(549\) 0 0
\(550\) 90.0148 + 5.35867i 0.163663 + 0.00974304i
\(551\) 152.833 264.715i 0.277374 0.480426i
\(552\) 0 0
\(553\) −115.422 30.9273i −0.208720 0.0559264i
\(554\) 39.5146 22.8138i 0.0713260 0.0411801i
\(555\) 0 0
\(556\) 372.687 645.512i 0.670300 1.16099i
\(557\) 125.909 + 125.909i 0.226049 + 0.226049i 0.811040 0.584991i \(-0.198902\pi\)
−0.584991 + 0.811040i \(0.698902\pi\)
\(558\) 0 0
\(559\) 294.120i 0.526155i
\(560\) −292.763 + 211.120i −0.522790 + 0.377001i
\(561\) 0 0
\(562\) 28.2409 105.397i 0.0502507 0.187538i
\(563\) 273.218 + 73.2084i 0.485289 + 0.130033i 0.493164 0.869936i \(-0.335840\pi\)
−0.00787538 + 0.999969i \(0.502507\pi\)
\(564\) 0 0
\(565\) −403.838 560.006i −0.714757 0.991161i
\(566\) 0.535718 0.000946498
\(567\) 0 0
\(568\) −120.717 + 120.717i −0.212531 + 0.212531i
\(569\) 519.476 + 299.919i 0.912962 + 0.527099i 0.881383 0.472402i \(-0.156613\pi\)
0.0315793 + 0.999501i \(0.489946\pi\)
\(570\) 0 0
\(571\) 123.985 + 214.749i 0.217137 + 0.376092i 0.953932 0.300024i \(-0.0969948\pi\)
−0.736795 + 0.676117i \(0.763662\pi\)
\(572\) 89.8943 335.490i 0.157158 0.586521i
\(573\) 0 0
\(574\) −0.935836 0.540305i −0.00163038 0.000941298i
\(575\) 24.2679 407.650i 0.0422050 0.708957i
\(576\) 0 0
\(577\) −292.121 292.121i −0.506276 0.506276i 0.407105 0.913381i \(-0.366538\pi\)
−0.913381 + 0.407105i \(0.866538\pi\)
\(578\) −25.7431 96.0745i −0.0445382 0.166219i
\(579\) 0 0
\(580\) 530.947 + 433.083i 0.915427 + 0.746695i
\(581\) −45.3485 78.5459i −0.0780524 0.135191i
\(582\) 0 0
\(583\) −2.89496 10.8041i −0.00496563 0.0185320i
\(584\) 276.186i 0.472922i
\(585\) 0 0
\(586\) 43.4051 0.0740702
\(587\) −834.938 + 223.721i −1.42238 + 0.381126i −0.886328 0.463058i \(-0.846752\pi\)
−0.536053 + 0.844184i \(0.680085\pi\)
\(588\) 0 0
\(589\) 80.5669 46.5153i 0.136786 0.0789734i
\(590\) 63.1384 6.40954i 0.107014 0.0108636i
\(591\) 0 0
\(592\) −122.204 + 32.7445i −0.206426 + 0.0553117i
\(593\) 524.742 524.742i 0.884894 0.884894i −0.109133 0.994027i \(-0.534807\pi\)
0.994027 + 0.109133i \(0.0348074\pi\)
\(594\) 0 0
\(595\) 212.474 + 559.444i 0.357100 + 0.940242i
\(596\) −165.421 + 286.518i −0.277552 + 0.480735i
\(597\) 0 0
\(598\) 39.3652 + 10.5479i 0.0658281 + 0.0176386i
\(599\) −319.441 + 184.429i −0.533290 + 0.307895i −0.742355 0.670007i \(-0.766291\pi\)
0.209065 + 0.977902i \(0.432958\pi\)
\(600\) 0 0
\(601\) −466.242 + 807.555i −0.775777 + 1.34368i 0.158580 + 0.987346i \(0.449308\pi\)
−0.934357 + 0.356339i \(0.884025\pi\)
\(602\) −41.0806 41.0806i −0.0682402 0.0682402i
\(603\) 0 0
\(604\) 580.829i 0.961637i
\(605\) 6.22788 38.4375i 0.0102940 0.0635331i
\(606\) 0 0
\(607\) 187.995 701.605i 0.309711 1.15586i −0.619103 0.785310i \(-0.712504\pi\)
0.928814 0.370547i \(-0.120830\pi\)
\(608\) −123.873 33.1916i −0.203738 0.0545914i
\(609\) 0 0
\(610\) 7.61686 5.49276i 0.0124867 0.00900453i
\(611\) −491.192 −0.803915
\(612\) 0 0
\(613\) −615.287 + 615.287i −1.00373 + 1.00373i −0.00373821 + 0.999993i \(0.501190\pi\)
−0.999993 + 0.00373821i \(0.998810\pi\)
\(614\) 48.6468 + 28.0862i 0.0792293 + 0.0457430i
\(615\) 0 0
\(616\) −69.4949 120.369i −0.112816 0.195404i
\(617\) 200.125 746.876i 0.324352 1.21050i −0.590610 0.806957i \(-0.701113\pi\)
0.914962 0.403540i \(-0.132220\pi\)
\(618\) 0 0
\(619\) −132.389 76.4347i −0.213875 0.123481i 0.389236 0.921138i \(-0.372739\pi\)
−0.603111 + 0.797657i \(0.706072\pi\)
\(620\) 74.0408 + 194.949i 0.119421 + 0.314434i
\(621\) 0 0
\(622\) −131.768 131.768i −0.211846 0.211846i
\(623\) −103.763 387.247i −0.166553 0.621585i
\(624\) 0 0
\(625\) −574.519 + 246.076i −0.919230 + 0.393722i
\(626\) 23.0079 + 39.8509i 0.0367539 + 0.0636595i
\(627\) 0 0
\(628\) 24.0522 + 89.7639i 0.0382996 + 0.142936i
\(629\) 209.757i 0.333477i
\(630\) 0 0
\(631\) −41.4847 −0.0657444 −0.0328722 0.999460i \(-0.510465\pi\)
−0.0328722 + 0.999460i \(0.510465\pi\)
\(632\) 59.4012 15.9165i 0.0939892 0.0251843i
\(633\) 0 0
\(634\) −42.3460 + 24.4485i −0.0667918 + 0.0385622i
\(635\) 117.565 + 1158.09i 0.185141 + 1.82377i
\(636\) 0 0
\(637\) −191.085 + 51.2012i −0.299977 + 0.0803786i
\(638\) −89.6413 + 89.6413i −0.140504 + 0.140504i
\(639\) 0 0
\(640\) 156.420 347.994i 0.244406 0.543741i
\(641\) −23.6061 + 40.8870i −0.0368270 + 0.0637863i −0.883851 0.467768i \(-0.845058\pi\)
0.847024 + 0.531554i \(0.178392\pi\)
\(642\) 0 0
\(643\) −628.880 168.508i −0.978041 0.262065i −0.265822 0.964022i \(-0.585643\pi\)
−0.712219 + 0.701957i \(0.752310\pi\)
\(644\) −269.071 + 155.348i −0.417813 + 0.241224i
\(645\) 0 0
\(646\) −33.9092 + 58.7324i −0.0524910 + 0.0909171i
\(647\) −281.287 281.287i −0.434756 0.434756i 0.455487 0.890243i \(-0.349465\pi\)
−0.890243 + 0.455487i \(0.849465\pi\)
\(648\) 0 0
\(649\) 453.192i 0.698293i
\(650\) −12.5344 61.1000i −0.0192837 0.0940000i
\(651\) 0 0
\(652\) −186.391 + 695.622i −0.285876 + 1.06690i
\(653\) −122.700 32.8775i −0.187903 0.0503484i 0.163641 0.986520i \(-0.447676\pi\)
−0.351543 + 0.936172i \(0.614343\pi\)
\(654\) 0 0
\(655\) 84.8773 523.849i 0.129584 0.799770i
\(656\) −10.3133 −0.0157214
\(657\) 0 0
\(658\) −68.6061 + 68.6061i −0.104265 + 0.104265i
\(659\) −936.379 540.619i −1.42091 0.820362i −0.424532 0.905413i \(-0.639561\pi\)
−0.996377 + 0.0850507i \(0.972895\pi\)
\(660\) 0 0
\(661\) 316.196 + 547.668i 0.478361 + 0.828545i 0.999692 0.0248092i \(-0.00789783\pi\)
−0.521332 + 0.853354i \(0.674564\pi\)
\(662\) −20.1891 + 75.3468i −0.0304971 + 0.113817i
\(663\) 0 0
\(664\) 40.4231 + 23.3383i 0.0608781 + 0.0351480i
\(665\) 86.9694 193.485i 0.130781 0.290954i
\(666\) 0 0
\(667\) 405.959 + 405.959i 0.608634 + 0.608634i
\(668\) −64.2709 239.862i −0.0962139 0.359075i
\(669\) 0 0
\(670\) 64.0686 78.5463i 0.0956248 0.117233i
\(671\) −33.5301 58.0758i −0.0499703 0.0865512i
\(672\) 0 0
\(673\) 85.3911 + 318.684i 0.126881 + 0.473527i 0.999900 0.0141597i \(-0.00450734\pi\)
−0.873018 + 0.487687i \(0.837841\pi\)
\(674\) 96.1046i 0.142588i
\(675\) 0 0
\(676\) 418.687 0.619359
\(677\) 66.0996 17.7113i 0.0976360 0.0261615i −0.209670 0.977772i \(-0.567239\pi\)
0.307306 + 0.951611i \(0.400572\pi\)
\(678\) 0 0
\(679\) −146.953 + 84.8434i −0.216426 + 0.124953i
\(680\) −238.655 194.666i −0.350964 0.286274i
\(681\) 0 0
\(682\) −37.2688 + 9.98614i −0.0546463 + 0.0146424i
\(683\) 213.410 213.410i 0.312459 0.312459i −0.533402 0.845862i \(-0.679087\pi\)
0.845862 + 0.533402i \(0.179087\pi\)
\(684\) 0 0
\(685\) 1074.69 + 483.060i 1.56888 + 0.705197i
\(686\) −57.5255 + 99.6371i −0.0838564 + 0.145244i
\(687\) 0 0
\(688\) −535.578 143.508i −0.778457 0.208587i
\(689\) −6.70020 + 3.86836i −0.00972453 + 0.00561446i
\(690\) 0 0
\(691\) −75.5607 + 130.875i −0.109350 + 0.189399i −0.915507 0.402302i \(-0.868210\pi\)
0.806157 + 0.591701i \(0.201544\pi\)
\(692\) −571.712 571.712i −0.826173 0.826173i
\(693\) 0 0
\(694\) 71.9408i 0.103661i
\(695\) −943.552 152.880i −1.35763 0.219971i
\(696\) 0 0
\(697\) −4.42555 + 16.5164i −0.00634942 + 0.0236964i
\(698\) −91.4910 24.5149i −0.131076 0.0351217i
\(699\) 0 0
\(700\) 396.948 + 261.807i 0.567069 + 0.374010i
\(701\) −745.680 −1.06374 −0.531869 0.846827i \(-0.678510\pi\)
−0.531869 + 0.846827i \(0.678510\pi\)
\(702\) 0 0
\(703\) 52.5765 52.5765i 0.0747888 0.0747888i
\(704\) −535.680 309.275i −0.760908 0.439311i
\(705\) 0 0
\(706\) 5.06123 + 8.76631i 0.00716888 + 0.0124169i
\(707\) −133.357 + 497.695i −0.188624 + 0.703954i
\(708\) 0 0
\(709\) −622.715 359.524i −0.878300 0.507087i −0.00820246 0.999966i \(-0.502611\pi\)
−0.870097 + 0.492880i \(0.835944\pi\)
\(710\) 98.5653 + 44.3041i 0.138824 + 0.0624001i
\(711\) 0 0
\(712\) 145.893 + 145.893i 0.204906 + 0.204906i
\(713\) 45.2243 + 168.779i 0.0634282 + 0.236717i
\(714\) 0 0
\(715\) −443.128 + 44.9845i −0.619759 + 0.0629154i
\(716\) −358.144 620.324i −0.500201 0.866374i
\(717\) 0 0
\(718\) −3.97100 14.8200i −0.00553065 0.0206407i
\(719\) 605.271i 0.841824i −0.907101 0.420912i \(-0.861710\pi\)
0.907101 0.420912i \(-0.138290\pi\)
\(720\) 0 0
\(721\) −615.716 −0.853975
\(722\) −87.6086 + 23.4746i −0.121342 + 0.0325134i
\(723\) 0 0
\(724\) 966.632 558.085i 1.33513 0.770836i
\(725\) 277.448 833.707i 0.382687 1.14994i
\(726\) 0 0
\(727\) 336.214 90.0884i 0.462468 0.123918i −0.0200593 0.999799i \(-0.506386\pi\)
0.482528 + 0.875881i \(0.339719\pi\)
\(728\) −67.9796 + 67.9796i −0.0933786 + 0.0933786i
\(729\) 0 0
\(730\) −163.434 + 62.0714i −0.223882 + 0.0850294i
\(731\) −459.646 + 796.130i −0.628791 + 1.08910i
\(732\) 0 0
\(733\) 369.869 + 99.1060i 0.504596 + 0.135206i 0.502132 0.864791i \(-0.332549\pi\)
0.00246376 + 0.999997i \(0.499216\pi\)
\(734\) 57.0318 32.9273i 0.0776999 0.0448601i
\(735\) 0 0
\(736\) 120.435 208.599i 0.163634 0.283423i
\(737\) −511.828 511.828i −0.694474 0.694474i
\(738\) 0 0
\(739\) 515.666i 0.697789i −0.937162 0.348895i \(-0.886557\pi\)
0.937162 0.348895i \(-0.113443\pi\)
\(740\) 97.4877 + 135.187i 0.131740 + 0.182685i
\(741\) 0 0
\(742\) −0.395531 + 1.47614i −0.000533060 + 0.00198941i
\(743\) −574.689 153.987i −0.773471 0.207251i −0.149567 0.988752i \(-0.547788\pi\)
−0.623904 + 0.781501i \(0.714455\pi\)
\(744\) 0 0
\(745\) 418.806 + 67.8575i 0.562156 + 0.0910839i
\(746\) 38.7490 0.0519424
\(747\) 0 0
\(748\) −767.626 + 767.626i −1.02624 + 1.02624i
\(749\) −410.714 237.126i −0.548350 0.316590i
\(750\) 0 0
\(751\) 429.893 + 744.597i 0.572428 + 0.991474i 0.996316 + 0.0857596i \(0.0273317\pi\)
−0.423888 + 0.905715i \(0.639335\pi\)
\(752\) −239.663 + 894.435i −0.318701 + 1.18941i
\(753\) 0 0
\(754\) 75.9389 + 43.8434i 0.100715 + 0.0581477i
\(755\) −696.318 + 264.459i −0.922275 + 0.350276i
\(756\) 0 0
\(757\) −956.075 956.075i −1.26298 1.26298i −0.949642 0.313337i \(-0.898553\pi\)
−0.313337 0.949642i \(-0.601447\pi\)
\(758\) 17.2751 + 64.4715i 0.0227904 + 0.0850548i
\(759\) 0 0
\(760\) 11.0260 + 108.614i 0.0145080 + 0.142913i
\(761\) 161.379 + 279.517i 0.212062 + 0.367302i 0.952360 0.304977i \(-0.0986488\pi\)
−0.740298 + 0.672279i \(0.765315\pi\)
\(762\) 0 0
\(763\) −86.7368 323.706i −0.113679 0.424255i
\(764\) 187.505i 0.245426i
\(765\) 0 0
\(766\) −4.77858 −0.00623835
\(767\) −302.786 + 81.1314i −0.394767 + 0.105778i
\(768\) 0 0
\(769\) 599.638 346.201i 0.779763 0.450196i −0.0565833 0.998398i \(-0.518021\pi\)
0.836346 + 0.548202i \(0.184687\pi\)
\(770\) −55.6098 + 68.1760i −0.0722205 + 0.0885402i
\(771\) 0 0
\(772\) −1361.17 + 364.724i −1.76317 + 0.472440i
\(773\) 375.226 375.226i 0.485415 0.485415i −0.421441 0.906856i \(-0.638475\pi\)
0.906856 + 0.421441i \(0.138475\pi\)
\(774\) 0 0
\(775\) 200.000 177.526i 0.258065 0.229065i
\(776\) 43.6640 75.6283i 0.0562681 0.0974592i
\(777\) 0 0
\(778\) −164.352 44.0381i −0.211250 0.0566042i
\(779\) 5.24918 3.03062i 0.00673836 0.00389039i
\(780\) 0 0
\(781\) 385.848 668.308i 0.494043 0.855708i
\(782\) −90.0704 90.0704i −0.115180 0.115180i
\(783\) 0 0
\(784\) 372.939i 0.475687i
\(785\) 96.6609 69.7052i 0.123135 0.0887965i
\(786\) 0 0
\(787\) 333.445 1244.44i 0.423692 1.58124i −0.343072 0.939309i \(-0.611467\pi\)
0.766763 0.641930i \(-0.221866\pi\)
\(788\) 515.018 + 137.999i 0.653576 + 0.175125i
\(789\) 0 0
\(790\) −22.7687 31.5736i −0.0288212 0.0399666i
\(791\) 673.626 0.851613
\(792\) 0 0
\(793\) −32.7990 + 32.7990i −0.0413606 + 0.0413606i
\(794\) −46.2228 26.6867i −0.0582151 0.0336105i
\(795\) 0 0
\(796\) −375.484 650.357i −0.471713 0.817031i
\(797\) −2.64154 + 9.85838i −0.00331436 + 0.0123694i −0.967563 0.252629i \(-0.918705\pi\)
0.964249 + 0.264998i \(0.0853714\pi\)
\(798\) 0 0
\(799\) 1329.57 + 767.626i 1.66404 + 0.960733i
\(800\) −367.991 21.9069i −0.459989 0.0273836i
\(801\) 0 0
\(802\) 94.4607 + 94.4607i 0.117781 + 0.117781i
\(803\) 323.117 + 1205.89i 0.402387 + 1.50173i
\(804\) 0 0
\(805\) 308.749 + 251.840i 0.383539 + 0.312845i
\(806\) 13.3439 + 23.1123i 0.0165557 + 0.0286753i
\(807\) 0 0
\(808\) −68.6313 256.135i −0.0849397 0.316999i
\(809\) 150.000i 0.185414i −0.995693 0.0927070i \(-0.970448\pi\)
0.995693 0.0927070i \(-0.0295520\pi\)
\(810\) 0 0
\(811\) 1336.85 1.64839 0.824197 0.566304i \(-0.191627\pi\)
0.824197 + 0.566304i \(0.191627\pi\)
\(812\) −645.722 + 173.021i −0.795224 + 0.213080i
\(813\) 0 0
\(814\) −26.7063 + 15.4189i −0.0328087 + 0.0189421i
\(815\) 918.803 93.2730i 1.12737 0.114445i
\(816\) 0 0
\(817\) 314.766 84.3412i 0.385270 0.103233i
\(818\) 115.768 115.768i 0.141526 0.141526i
\(819\) 0 0
\(820\) 4.82399 + 12.7015i 0.00588291 + 0.0154897i
\(821\) 16.9467 29.3525i 0.0206415 0.0357521i −0.855520 0.517770i \(-0.826762\pi\)
0.876162 + 0.482017i \(0.160096\pi\)
\(822\) 0 0
\(823\) −657.920 176.289i −0.799417 0.214203i −0.164089 0.986446i \(-0.552468\pi\)
−0.635328 + 0.772242i \(0.719135\pi\)
\(824\) 274.421 158.437i 0.333035 0.192278i
\(825\) 0 0
\(826\) −30.9592 + 53.6229i −0.0374808 + 0.0649187i
\(827\) 350.756 + 350.756i 0.424131 + 0.424131i 0.886623 0.462492i \(-0.153045\pi\)
−0.462492 + 0.886623i \(0.653045\pi\)
\(828\) 0 0
\(829\) 697.423i 0.841283i −0.907227 0.420641i \(-0.861805\pi\)
0.907227 0.420641i \(-0.138195\pi\)
\(830\) 4.72558 29.1656i 0.00569347 0.0351392i
\(831\) 0 0
\(832\) −110.734 + 413.265i −0.133094 + 0.496713i
\(833\) 597.249 + 160.032i 0.716986 + 0.192116i
\(834\) 0 0
\(835\) −258.292 + 186.263i −0.309332 + 0.223069i
\(836\) 384.817 0.460308
\(837\) 0 0
\(838\) 19.9127 19.9127i 0.0237622 0.0237622i
\(839\) −62.6764 36.1862i −0.0747037 0.0431302i 0.462183 0.886785i \(-0.347066\pi\)
−0.536887 + 0.843654i \(0.680400\pi\)
\(840\) 0 0
\(841\) 197.136 + 341.449i 0.234406 + 0.406004i
\(842\) −21.1538 + 78.9472i −0.0251233 + 0.0937615i
\(843\) 0 0
\(844\) 497.079 + 286.989i 0.588956 + 0.340034i
\(845\) −190.633 501.936i −0.225602 0.594008i
\(846\) 0 0
\(847\) 26.8638 + 26.8638i 0.0317164 + 0.0317164i
\(848\) 3.77492 + 14.0882i 0.00445155 + 0.0166134i
\(849\) 0 0
\(850\) −61.5576 + 184.975i −0.0724207 + 0.217618i
\(851\) 69.8275 + 120.945i 0.0820535 + 0.142121i
\(852\) 0 0
\(853\) −27.2945 101.864i −0.0319982 0.119419i 0.948079 0.318034i \(-0.103022\pi\)
−0.980078 + 0.198615i \(0.936356\pi\)
\(854\) 9.16225i 0.0107286i
\(855\) 0 0
\(856\) 244.070 0.285129
\(857\) 400.486 107.310i 0.467311 0.125216i −0.0174768 0.999847i \(-0.505563\pi\)
0.484788 + 0.874632i \(0.338897\pi\)
\(858\) 0 0
\(859\) −681.447 + 393.434i −0.793303 + 0.458014i −0.841124 0.540842i \(-0.818106\pi\)
0.0478212 + 0.998856i \(0.484772\pi\)
\(860\) 73.7744 + 726.728i 0.0857842 + 0.845032i
\(861\) 0 0
\(862\) −247.029 + 66.1912i −0.286577 + 0.0767879i
\(863\) −1072.68 + 1072.68i −1.24297 + 1.24297i −0.284204 + 0.958764i \(0.591729\pi\)
−0.958764 + 0.284204i \(0.908271\pi\)
\(864\) 0 0
\(865\) −425.081 + 945.696i −0.491423 + 1.09329i
\(866\) 77.5028 134.239i 0.0894952 0.155010i
\(867\) 0 0
\(868\) −196.528 52.6595i −0.226415 0.0606676i
\(869\) −240.737 + 138.990i −0.277028 + 0.159942i
\(870\) 0 0
\(871\) −250.334 + 433.591i −0.287410 + 0.497808i
\(872\) 121.955 + 121.955i 0.139856 + 0.139856i
\(873\) 0 0
\(874\) 45.1531i 0.0516626i
\(875\) 133.128 595.080i 0.152147 0.680091i
\(876\) 0 0
\(877\) 87.6483 327.108i 0.0999411 0.372985i −0.897781 0.440442i \(-0.854822\pi\)
0.997722 + 0.0674567i \(0.0214884\pi\)
\(878\) 132.912 + 35.6137i 0.151381 + 0.0405623i
\(879\) 0 0
\(880\) −134.297 + 828.862i −0.152610 + 0.941888i
\(881\) 62.8490 0.0713382 0.0356691 0.999364i \(-0.488644\pi\)
0.0356691 + 0.999364i \(0.488644\pi\)
\(882\) 0 0
\(883\) −158.061 + 158.061i −0.179005 + 0.179005i −0.790922 0.611917i \(-0.790399\pi\)
0.611917 + 0.790922i \(0.290399\pi\)
\(884\) 650.288 + 375.444i 0.735620 + 0.424710i
\(885\) 0 0
\(886\) −55.0918 95.4219i −0.0621804 0.107700i
\(887\) 11.0564 41.2630i 0.0124649 0.0465198i −0.959413 0.282004i \(-0.909001\pi\)
0.971878 + 0.235484i \(0.0756676\pi\)
\(888\) 0 0
\(889\) −983.559 567.858i −1.10637 0.638761i
\(890\) 53.5439 119.121i 0.0601616 0.133844i
\(891\) 0 0
\(892\) −652.803 652.803i −0.731841 0.731841i
\(893\) −140.853 525.670i −0.157730 0.588657i
\(894\) 0 0
\(895\) −580.599 + 711.797i −0.648713 + 0.795304i
\(896\) 186.124 + 322.376i 0.207727 + 0.359794i
\(897\) 0 0
\(898\) −31.7607 118.533i −0.0353683 0.131996i
\(899\) 375.959i 0.418197i
\(900\) 0 0
\(901\) 24.1816 0.0268387
\(902\) −2.42818 + 0.650628i −0.00269199 + 0.000721317i
\(903\) 0 0
\(904\) −300.231 + 173.338i −0.332114 + 0.191746i
\(905\) −1109.17 904.729i −1.22560 0.999701i
\(906\) 0 0
\(907\) −780.467 + 209.126i −0.860493 + 0.230568i −0.661972 0.749528i \(-0.730280\pi\)
−0.198521 + 0.980097i \(0.563614\pi\)
\(908\) 987.110 987.110i 1.08713 1.08713i
\(909\) 0 0
\(910\) 55.5051 + 24.9490i 0.0609946 + 0.0274165i
\(911\) −86.6811 + 150.136i −0.0951494 + 0.164804i −0.909671 0.415330i \(-0.863666\pi\)
0.814522 + 0.580133i \(0.197000\pi\)
\(912\) 0 0
\(913\) −203.800 54.6080i −0.223220 0.0598116i
\(914\) −87.0979 + 50.2860i −0.0952931 + 0.0550175i
\(915\) 0 0
\(916\) 437.080 757.044i 0.477161 0.826467i
\(917\) 366.116 + 366.116i 0.399254 + 0.399254i
\(918\) 0 0
\(919\) 1147.42i 1.24856i 0.781202 + 0.624278i \(0.214607\pi\)
−0.781202 + 0.624278i \(0.785393\pi\)
\(920\) −202.411 32.7959i −0.220012 0.0356477i
\(921\) 0 0
\(922\) −59.4444 + 221.850i −0.0644733 + 0.240618i
\(923\) −515.585 138.151i −0.558597 0.149676i
\(924\) 0 0
\(925\) 117.680 178.424i 0.127221 0.192891i
\(926\) −58.2995 −0.0629584
\(927\) 0 0
\(928\) 366.464 366.464i 0.394897 0.394897i
\(929\) 190.779 + 110.146i 0.205360 + 0.118565i 0.599153 0.800635i \(-0.295504\pi\)
−0.393793 + 0.919199i \(0.628837\pi\)
\(930\) 0 0
\(931\) −109.590 189.816i −0.117712 0.203884i
\(932\) 293.576 1095.64i 0.314996 1.17558i
\(933\) 0 0
\(934\) −161.647 93.3270i −0.173070 0.0999219i
\(935\) 1269.77 + 570.747i 1.35804 + 0.610425i
\(936\) 0 0
\(937\) −396.090 396.090i −0.422721 0.422721i 0.463418 0.886140i \(-0.346623\pi\)
−0.886140 + 0.463418i \(0.846623\pi\)
\(938\) 25.5960 + 95.5256i 0.0272879 + 0.101840i
\(939\) 0 0
\(940\) 1213.66 123.206i 1.29113 0.131070i
\(941\) −92.8854 160.882i −0.0987093 0.170970i 0.812441 0.583043i \(-0.198138\pi\)
−0.911151 + 0.412073i \(0.864805\pi\)
\(942\) 0 0
\(943\) 2.94650 + 10.9965i 0.00312461 + 0.0116612i
\(944\) 590.944i 0.626000i
\(945\) 0 0
\(946\) −135.151 −0.142866
\(947\) 1154.55 309.361i 1.21917 0.326675i 0.408814 0.912618i \(-0.365942\pi\)
0.810352 + 0.585943i \(0.199276\pi\)
\(948\) 0 0
\(949\) 747.833 431.762i 0.788022 0.454965i
\(950\) 61.7945 30.9351i 0.0650468 0.0325633i
\(951\) 0 0
\(952\) 290.246 77.7711i 0.304880 0.0816923i
\(953\) −630.499 + 630.499i −0.661594 + 0.661594i −0.955756 0.294161i \(-0.904960\pi\)
0.294161 + 0.955756i \(0.404960\pi\)
\(954\) 0 0
\(955\) −224.788 + 85.3735i −0.235380 + 0.0893963i
\(956\) 674.130 1167.63i 0.705156 1.22137i
\(957\) 0 0
\(958\) 93.6215 + 25.0858i 0.0977260 + 0.0261856i
\(959\) −995.570 + 574.792i −1.03813 + 0.599366i
\(960\) 0 0
\(961\) 423.288 733.156i 0.440466 0.762909i
\(962\) 15.0827 + 15.0827i 0.0156785 + 0.0156785i
\(963\) 0 0
\(964\) 396.041i 0.410831i
\(965\) 1057.00 + 1465.75i 1.09534 + 1.51891i
\(966\) 0 0
\(967\) −139.708 + 521.399i −0.144476 + 0.539192i 0.855302 + 0.518130i \(0.173372\pi\)
−0.999778 + 0.0210624i \(0.993295\pi\)
\(968\) −18.8856 5.06039i −0.0195100 0.00522768i
\(969\) 0 0
\(970\) −54.5665 8.84119i −0.0562541 0.00911463i
\(971\) −1000.44 −1.03032 −0.515159 0.857095i \(-0.672267\pi\)
−0.515159 + 0.857095i \(0.672267\pi\)
\(972\) 0 0
\(973\) 659.444 659.444i 0.677743 0.677743i
\(974\) 167.120 + 96.4870i 0.171581 + 0.0990626i
\(975\) 0 0
\(976\) 43.7219 + 75.7286i 0.0447971 + 0.0775908i
\(977\) 217.295 810.957i 0.222411 0.830048i −0.761015 0.648735i \(-0.775298\pi\)
0.983425 0.181313i \(-0.0580348\pi\)
\(978\) 0 0
\(979\) −807.686 466.318i −0.825011 0.476321i
\(980\) 459.301 174.441i 0.468674 0.178001i
\(981\) 0 0
\(982\) −93.1158 93.1158i −0.0948226 0.0948226i
\(983\) −445.576 1662.91i −0.453282 1.69167i −0.693090 0.720852i \(-0.743751\pi\)
0.239807 0.970820i \(-0.422916\pi\)
\(984\) 0 0
\(985\) −69.0566 680.254i −0.0701082 0.690614i
\(986\) −137.035 237.352i −0.138981 0.240722i
\(987\) 0 0
\(988\) −68.8908 257.104i −0.0697276 0.260227i
\(989\) 612.059i 0.618867i
\(990\) 0 0
\(991\) −544.061 −0.549002 −0.274501 0.961587i \(-0.588513\pi\)
−0.274501 + 0.961587i \(0.588513\pi\)
\(992\) 152.359 40.8245i 0.153588 0.0411538i
\(993\) 0 0
\(994\) −91.3091 + 52.7173i −0.0918603 + 0.0530356i
\(995\) −608.708 + 746.259i −0.611767 + 0.750009i
\(996\) 0 0
\(997\) 432.666 115.932i 0.433967 0.116281i −0.0352205 0.999380i \(-0.511213\pi\)
0.469188 + 0.883098i \(0.344547\pi\)
\(998\) −82.6128 + 82.6128i −0.0827783 + 0.0827783i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.h.217.1 8
3.2 odd 2 405.3.l.f.217.2 8
5.3 odd 4 inner 405.3.l.h.298.2 8
9.2 odd 6 45.3.g.b.37.1 4
9.4 even 3 inner 405.3.l.h.352.2 8
9.5 odd 6 405.3.l.f.352.1 8
9.7 even 3 15.3.f.a.7.2 4
15.8 even 4 405.3.l.f.298.1 8
36.7 odd 6 240.3.bg.a.97.2 4
36.11 even 6 720.3.bh.k.577.2 4
45.2 even 12 225.3.g.a.118.2 4
45.7 odd 12 75.3.f.c.43.1 4
45.13 odd 12 inner 405.3.l.h.28.1 8
45.23 even 12 405.3.l.f.28.2 8
45.29 odd 6 225.3.g.a.82.2 4
45.34 even 6 75.3.f.c.7.1 4
45.38 even 12 45.3.g.b.28.1 4
45.43 odd 12 15.3.f.a.13.2 yes 4
72.43 odd 6 960.3.bg.h.577.1 4
72.61 even 6 960.3.bg.i.577.2 4
180.7 even 12 1200.3.bg.k.193.1 4
180.43 even 12 240.3.bg.a.193.2 4
180.79 odd 6 1200.3.bg.k.1057.1 4
180.83 odd 12 720.3.bh.k.433.2 4
360.43 even 12 960.3.bg.h.193.1 4
360.133 odd 12 960.3.bg.i.193.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.3.f.a.7.2 4 9.7 even 3
15.3.f.a.13.2 yes 4 45.43 odd 12
45.3.g.b.28.1 4 45.38 even 12
45.3.g.b.37.1 4 9.2 odd 6
75.3.f.c.7.1 4 45.34 even 6
75.3.f.c.43.1 4 45.7 odd 12
225.3.g.a.82.2 4 45.29 odd 6
225.3.g.a.118.2 4 45.2 even 12
240.3.bg.a.97.2 4 36.7 odd 6
240.3.bg.a.193.2 4 180.43 even 12
405.3.l.f.28.2 8 45.23 even 12
405.3.l.f.217.2 8 3.2 odd 2
405.3.l.f.298.1 8 15.8 even 4
405.3.l.f.352.1 8 9.5 odd 6
405.3.l.h.28.1 8 45.13 odd 12 inner
405.3.l.h.217.1 8 1.1 even 1 trivial
405.3.l.h.298.2 8 5.3 odd 4 inner
405.3.l.h.352.2 8 9.4 even 3 inner
720.3.bh.k.433.2 4 180.83 odd 12
720.3.bh.k.577.2 4 36.11 even 6
960.3.bg.h.193.1 4 360.43 even 12
960.3.bg.h.577.1 4 72.43 odd 6
960.3.bg.i.193.2 4 360.133 odd 12
960.3.bg.i.577.2 4 72.61 even 6
1200.3.bg.k.193.1 4 180.7 even 12
1200.3.bg.k.1057.1 4 180.79 odd 6