Properties

Label 405.3.l.g.298.1
Level $405$
Weight $3$
Character 405.298
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 298.1
Root \(2.15988 - 0.578737i\) of defining polynomial
Character \(\chi\) \(=\) 405.298
Dual form 405.3.l.g.352.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.578737 - 2.15988i) q^{2} +(-0.866025 + 0.500000i) q^{4} +(4.89849 - 1.00240i) q^{5} +(-1.83013 - 6.83013i) q^{7} +(-4.74342 - 4.74342i) q^{8} +(-5.00000 - 10.0000i) q^{10} +(-7.90569 + 13.6931i) q^{11} +(3.66025 - 13.6603i) q^{13} +(-13.6931 + 7.90569i) q^{14} +(-9.50000 + 16.4545i) q^{16} +(3.16228 - 3.16228i) q^{17} -18.0000i q^{19} +(-3.74101 + 3.31735i) q^{20} +(34.1506 + 9.15064i) q^{22} +(1.15747 - 4.31975i) q^{23} +(22.9904 - 9.82051i) q^{25} -31.6228 q^{26} +(5.00000 + 5.00000i) q^{28} +(-41.0792 - 23.7171i) q^{29} +(-4.00000 - 6.92820i) q^{31} +(15.1191 + 4.05116i) q^{32} +(-8.66025 - 5.00000i) q^{34} +(-15.8114 - 31.6228i) q^{35} +(10.0000 - 10.0000i) q^{37} +(-38.8778 + 10.4173i) q^{38} +(-27.9904 - 18.4808i) q^{40} +(15.8114 + 27.3861i) q^{41} +(-13.6603 + 3.66025i) q^{43} -15.8114i q^{44} -10.0000 q^{46} +(15.0472 + 56.1568i) q^{47} +(-0.866025 + 0.500000i) q^{49} +(-34.5165 - 43.9729i) q^{50} +(3.66025 + 13.6603i) q^{52} +(-25.2982 - 25.2982i) q^{53} +(-25.0000 + 75.0000i) q^{55} +(-23.7171 + 41.0792i) q^{56} +(-27.4519 + 102.452i) q^{58} +(-41.0792 + 23.7171i) q^{59} +(29.0000 - 50.2295i) q^{61} +(-12.6491 + 12.6491i) q^{62} +41.0000i q^{64} +(4.23665 - 70.5836i) q^{65} +(-95.6218 - 25.6218i) q^{67} +(-1.15747 + 4.31975i) q^{68} +(-59.1506 + 52.4519i) q^{70} +63.2456 q^{71} +(55.0000 + 55.0000i) q^{73} +(-27.3861 - 15.8114i) q^{74} +(9.00000 + 15.5885i) q^{76} +(107.994 + 28.9368i) q^{77} +(10.3923 + 6.00000i) q^{79} +(-30.0416 + 90.1249i) q^{80} +(50.0000 - 50.0000i) q^{82} +(73.4358 - 19.6771i) q^{83} +(12.3205 - 18.6603i) q^{85} +(15.8114 + 27.3861i) q^{86} +(102.452 - 27.4519i) q^{88} -100.000 q^{91} +(1.15747 + 4.31975i) q^{92} +(112.583 - 65.0000i) q^{94} +(-18.0432 - 88.1728i) q^{95} +(-1.83013 - 6.83013i) q^{97} +(1.58114 + 1.58114i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 20 q^{7} - 40 q^{10} - 40 q^{13} - 76 q^{16} + 100 q^{22} + 80 q^{25} + 40 q^{28} - 32 q^{31} + 80 q^{37} - 120 q^{40} - 40 q^{43} - 80 q^{46} - 40 q^{52} - 200 q^{55} + 300 q^{58} + 232 q^{61} - 280 q^{67}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.578737 2.15988i −0.289368 1.07994i −0.945588 0.325368i \(-0.894512\pi\)
0.656219 0.754570i \(-0.272155\pi\)
\(3\) 0 0
\(4\) −0.866025 + 0.500000i −0.216506 + 0.125000i
\(5\) 4.89849 1.00240i 0.979698 0.200480i
\(6\) 0 0
\(7\) −1.83013 6.83013i −0.261447 0.975732i −0.964390 0.264486i \(-0.914798\pi\)
0.702943 0.711246i \(-0.251869\pi\)
\(8\) −4.74342 4.74342i −0.592927 0.592927i
\(9\) 0 0
\(10\) −5.00000 10.0000i −0.500000 1.00000i
\(11\) −7.90569 + 13.6931i −0.718699 + 1.24482i 0.242816 + 0.970072i \(0.421929\pi\)
−0.961515 + 0.274752i \(0.911404\pi\)
\(12\) 0 0
\(13\) 3.66025 13.6603i 0.281558 1.05079i −0.669760 0.742578i \(-0.733603\pi\)
0.951318 0.308211i \(-0.0997303\pi\)
\(14\) −13.6931 + 7.90569i −0.978076 + 0.564692i
\(15\) 0 0
\(16\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(17\) 3.16228 3.16228i 0.186016 0.186016i −0.607955 0.793971i \(-0.708010\pi\)
0.793971 + 0.607955i \(0.208010\pi\)
\(18\) 0 0
\(19\) 18.0000i 0.947368i −0.880695 0.473684i \(-0.842924\pi\)
0.880695 0.473684i \(-0.157076\pi\)
\(20\) −3.74101 + 3.31735i −0.187051 + 0.165867i
\(21\) 0 0
\(22\) 34.1506 + 9.15064i 1.55230 + 0.415938i
\(23\) 1.15747 4.31975i 0.0503250 0.187815i −0.936188 0.351501i \(-0.885672\pi\)
0.986513 + 0.163685i \(0.0523382\pi\)
\(24\) 0 0
\(25\) 22.9904 9.82051i 0.919615 0.392820i
\(26\) −31.6228 −1.21626
\(27\) 0 0
\(28\) 5.00000 + 5.00000i 0.178571 + 0.178571i
\(29\) −41.0792 23.7171i −1.41652 0.817830i −0.420532 0.907278i \(-0.638157\pi\)
−0.995992 + 0.0894471i \(0.971490\pi\)
\(30\) 0 0
\(31\) −4.00000 6.92820i −0.129032 0.223490i 0.794270 0.607565i \(-0.207854\pi\)
−0.923302 + 0.384075i \(0.874520\pi\)
\(32\) 15.1191 + 4.05116i 0.472473 + 0.126599i
\(33\) 0 0
\(34\) −8.66025 5.00000i −0.254713 0.147059i
\(35\) −15.8114 31.6228i −0.451754 0.903508i
\(36\) 0 0
\(37\) 10.0000 10.0000i 0.270270 0.270270i −0.558939 0.829209i \(-0.688791\pi\)
0.829209 + 0.558939i \(0.188791\pi\)
\(38\) −38.8778 + 10.4173i −1.02310 + 0.274139i
\(39\) 0 0
\(40\) −27.9904 18.4808i −0.699760 0.462019i
\(41\) 15.8114 + 27.3861i 0.385644 + 0.667954i 0.991858 0.127347i \(-0.0406461\pi\)
−0.606215 + 0.795301i \(0.707313\pi\)
\(42\) 0 0
\(43\) −13.6603 + 3.66025i −0.317680 + 0.0851222i −0.414136 0.910215i \(-0.635916\pi\)
0.0964555 + 0.995337i \(0.469249\pi\)
\(44\) 15.8114i 0.359350i
\(45\) 0 0
\(46\) −10.0000 −0.217391
\(47\) 15.0472 + 56.1568i 0.320152 + 1.19482i 0.919096 + 0.394034i \(0.128921\pi\)
−0.598944 + 0.800791i \(0.704413\pi\)
\(48\) 0 0
\(49\) −0.866025 + 0.500000i −0.0176740 + 0.0102041i
\(50\) −34.5165 43.9729i −0.690329 0.879458i
\(51\) 0 0
\(52\) 3.66025 + 13.6603i 0.0703895 + 0.262697i
\(53\) −25.2982 25.2982i −0.477325 0.477325i 0.426950 0.904275i \(-0.359588\pi\)
−0.904275 + 0.426950i \(0.859588\pi\)
\(54\) 0 0
\(55\) −25.0000 + 75.0000i −0.454545 + 1.36364i
\(56\) −23.7171 + 41.0792i −0.423519 + 0.733557i
\(57\) 0 0
\(58\) −27.4519 + 102.452i −0.473309 + 1.76641i
\(59\) −41.0792 + 23.7171i −0.696257 + 0.401984i −0.805952 0.591981i \(-0.798346\pi\)
0.109695 + 0.993965i \(0.465013\pi\)
\(60\) 0 0
\(61\) 29.0000 50.2295i 0.475410 0.823434i −0.524193 0.851599i \(-0.675633\pi\)
0.999603 + 0.0281652i \(0.00896646\pi\)
\(62\) −12.6491 + 12.6491i −0.204018 + 0.204018i
\(63\) 0 0
\(64\) 41.0000i 0.640625i
\(65\) 4.23665 70.5836i 0.0651792 1.08590i
\(66\) 0 0
\(67\) −95.6218 25.6218i −1.42719 0.382415i −0.539162 0.842202i \(-0.681259\pi\)
−0.888029 + 0.459788i \(0.847926\pi\)
\(68\) −1.15747 + 4.31975i −0.0170217 + 0.0635258i
\(69\) 0 0
\(70\) −59.1506 + 52.4519i −0.845009 + 0.749313i
\(71\) 63.2456 0.890782 0.445391 0.895336i \(-0.353065\pi\)
0.445391 + 0.895336i \(0.353065\pi\)
\(72\) 0 0
\(73\) 55.0000 + 55.0000i 0.753425 + 0.753425i 0.975117 0.221692i \(-0.0711580\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(74\) −27.3861 15.8114i −0.370083 0.213667i
\(75\) 0 0
\(76\) 9.00000 + 15.5885i 0.118421 + 0.205111i
\(77\) 107.994 + 28.9368i 1.40252 + 0.375803i
\(78\) 0 0
\(79\) 10.3923 + 6.00000i 0.131548 + 0.0759494i 0.564330 0.825549i \(-0.309135\pi\)
−0.432782 + 0.901499i \(0.642468\pi\)
\(80\) −30.0416 + 90.1249i −0.375520 + 1.12656i
\(81\) 0 0
\(82\) 50.0000 50.0000i 0.609756 0.609756i
\(83\) 73.4358 19.6771i 0.884768 0.237073i 0.212305 0.977203i \(-0.431903\pi\)
0.672463 + 0.740130i \(0.265236\pi\)
\(84\) 0 0
\(85\) 12.3205 18.6603i 0.144947 0.219532i
\(86\) 15.8114 + 27.3861i 0.183853 + 0.318443i
\(87\) 0 0
\(88\) 102.452 27.4519i 1.16423 0.311953i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −100.000 −1.09890
\(92\) 1.15747 + 4.31975i 0.0125812 + 0.0469538i
\(93\) 0 0
\(94\) 112.583 65.0000i 1.19769 0.691489i
\(95\) −18.0432 88.1728i −0.189929 0.928135i
\(96\) 0 0
\(97\) −1.83013 6.83013i −0.0188673 0.0704137i 0.955850 0.293854i \(-0.0949379\pi\)
−0.974718 + 0.223440i \(0.928271\pi\)
\(98\) 1.58114 + 1.58114i 0.0161341 + 0.0161341i
\(99\) 0 0
\(100\) −15.0000 + 20.0000i −0.150000 + 0.200000i
\(101\) −7.90569 + 13.6931i −0.0782742 + 0.135575i −0.902505 0.430678i \(-0.858274\pi\)
0.824231 + 0.566253i \(0.191608\pi\)
\(102\) 0 0
\(103\) −12.8109 + 47.8109i −0.124378 + 0.464183i −0.999817 0.0191450i \(-0.993906\pi\)
0.875439 + 0.483328i \(0.160572\pi\)
\(104\) −82.1584 + 47.4342i −0.789984 + 0.456098i
\(105\) 0 0
\(106\) −40.0000 + 69.2820i −0.377358 + 0.653604i
\(107\) 60.0833 60.0833i 0.561526 0.561526i −0.368215 0.929741i \(-0.620031\pi\)
0.929741 + 0.368215i \(0.120031\pi\)
\(108\) 0 0
\(109\) 162.000i 1.48624i −0.669159 0.743119i \(-0.733345\pi\)
0.669159 0.743119i \(-0.266655\pi\)
\(110\) 176.459 + 10.5916i 1.60417 + 0.0962875i
\(111\) 0 0
\(112\) 129.772 + 34.7724i 1.15868 + 0.310468i
\(113\) 42.8265 159.831i 0.378996 1.41443i −0.468422 0.883505i \(-0.655177\pi\)
0.847418 0.530927i \(-0.178156\pi\)
\(114\) 0 0
\(115\) 1.33975 22.3205i 0.0116500 0.194091i
\(116\) 47.4342 0.408915
\(117\) 0 0
\(118\) 75.0000 + 75.0000i 0.635593 + 0.635593i
\(119\) −27.3861 15.8114i −0.230136 0.132869i
\(120\) 0 0
\(121\) −64.5000 111.717i −0.533058 0.923283i
\(122\) −125.273 33.5667i −1.02683 0.275137i
\(123\) 0 0
\(124\) 6.92820 + 4.00000i 0.0558726 + 0.0322581i
\(125\) 102.774 71.1512i 0.822192 0.569210i
\(126\) 0 0
\(127\) 55.0000 55.0000i 0.433071 0.433071i −0.456601 0.889672i \(-0.650933\pi\)
0.889672 + 0.456601i \(0.150933\pi\)
\(128\) 149.031 39.9329i 1.16431 0.311975i
\(129\) 0 0
\(130\) −154.904 + 31.6987i −1.19157 + 0.243836i
\(131\) 86.9626 + 150.624i 0.663837 + 1.14980i 0.979599 + 0.200961i \(0.0644064\pi\)
−0.315762 + 0.948838i \(0.602260\pi\)
\(132\) 0 0
\(133\) −122.942 + 32.9423i −0.924378 + 0.247686i
\(134\) 221.359i 1.65194i
\(135\) 0 0
\(136\) −30.0000 −0.220588
\(137\) −5.78737 21.5988i −0.0422436 0.157655i 0.941582 0.336783i \(-0.109339\pi\)
−0.983826 + 0.179128i \(0.942672\pi\)
\(138\) 0 0
\(139\) 88.3346 51.0000i 0.635501 0.366906i −0.147379 0.989080i \(-0.547084\pi\)
0.782879 + 0.622174i \(0.213750\pi\)
\(140\) 29.5045 + 19.4804i 0.210746 + 0.139146i
\(141\) 0 0
\(142\) −36.6025 136.603i −0.257764 0.961990i
\(143\) 158.114 + 158.114i 1.10569 + 1.10569i
\(144\) 0 0
\(145\) −225.000 75.0000i −1.55172 0.517241i
\(146\) 86.9626 150.624i 0.595634 1.03167i
\(147\) 0 0
\(148\) −3.66025 + 13.6603i −0.0247314 + 0.0922990i
\(149\) −41.0792 + 23.7171i −0.275699 + 0.159175i −0.631475 0.775396i \(-0.717550\pi\)
0.355776 + 0.934571i \(0.384217\pi\)
\(150\) 0 0
\(151\) 11.0000 19.0526i 0.0728477 0.126176i −0.827301 0.561759i \(-0.810125\pi\)
0.900148 + 0.435584i \(0.143458\pi\)
\(152\) −85.3815 + 85.3815i −0.561720 + 0.561720i
\(153\) 0 0
\(154\) 250.000i 1.62338i
\(155\) −26.5388 29.9281i −0.171218 0.193085i
\(156\) 0 0
\(157\) 273.205 + 73.2051i 1.74016 + 0.466274i 0.982482 0.186355i \(-0.0596675\pi\)
0.757677 + 0.652629i \(0.226334\pi\)
\(158\) 6.94484 25.9185i 0.0439547 0.164041i
\(159\) 0 0
\(160\) 78.1218 + 4.68911i 0.488261 + 0.0293069i
\(161\) −31.6228 −0.196415
\(162\) 0 0
\(163\) 100.000 + 100.000i 0.613497 + 0.613497i 0.943856 0.330359i \(-0.107170\pi\)
−0.330359 + 0.943856i \(0.607170\pi\)
\(164\) −27.3861 15.8114i −0.166989 0.0964109i
\(165\) 0 0
\(166\) −85.0000 147.224i −0.512048 0.886893i
\(167\) 203.028 + 54.4013i 1.21574 + 0.325756i 0.809011 0.587793i \(-0.200003\pi\)
0.406727 + 0.913550i \(0.366670\pi\)
\(168\) 0 0
\(169\) −26.8468 15.5000i −0.158857 0.0917160i
\(170\) −47.4342 15.8114i −0.279024 0.0930082i
\(171\) 0 0
\(172\) 10.0000 10.0000i 0.0581395 0.0581395i
\(173\) 151.191 40.5116i 0.873938 0.234171i 0.206148 0.978521i \(-0.433907\pi\)
0.667790 + 0.744350i \(0.267240\pi\)
\(174\) 0 0
\(175\) −109.151 139.054i −0.623718 0.794597i
\(176\) −150.208 260.168i −0.853456 1.47823i
\(177\) 0 0
\(178\) 0 0
\(179\) 142.302i 0.794986i −0.917605 0.397493i \(-0.869880\pi\)
0.917605 0.397493i \(-0.130120\pi\)
\(180\) 0 0
\(181\) 218.000 1.20442 0.602210 0.798338i \(-0.294287\pi\)
0.602210 + 0.798338i \(0.294287\pi\)
\(182\) 57.8737 + 215.988i 0.317987 + 1.18674i
\(183\) 0 0
\(184\) −25.9808 + 15.0000i −0.141200 + 0.0815217i
\(185\) 38.9609 59.0089i 0.210599 0.318967i
\(186\) 0 0
\(187\) 18.3013 + 68.3013i 0.0978678 + 0.365247i
\(188\) −41.1096 41.1096i −0.218668 0.218668i
\(189\) 0 0
\(190\) −180.000 + 90.0000i −0.947368 + 0.473684i
\(191\) −79.0569 + 136.931i −0.413911 + 0.716914i −0.995313 0.0967016i \(-0.969171\pi\)
0.581403 + 0.813616i \(0.302504\pi\)
\(192\) 0 0
\(193\) −45.7532 + 170.753i −0.237063 + 0.884731i 0.740145 + 0.672447i \(0.234757\pi\)
−0.977208 + 0.212284i \(0.931910\pi\)
\(194\) −13.6931 + 7.90569i −0.0705828 + 0.0407510i
\(195\) 0 0
\(196\) 0.500000 0.866025i 0.00255102 0.00441850i
\(197\) 145.465 145.465i 0.738400 0.738400i −0.233868 0.972268i \(-0.575138\pi\)
0.972268 + 0.233868i \(0.0751385\pi\)
\(198\) 0 0
\(199\) 18.0000i 0.0904523i 0.998977 + 0.0452261i \(0.0144008\pi\)
−0.998977 + 0.0452261i \(0.985599\pi\)
\(200\) −155.636 62.4702i −0.778179 0.312351i
\(201\) 0 0
\(202\) 34.1506 + 9.15064i 0.169063 + 0.0453002i
\(203\) −86.8105 + 323.981i −0.427638 + 1.59597i
\(204\) 0 0
\(205\) 104.904 + 118.301i 0.511726 + 0.577079i
\(206\) 110.680 0.537280
\(207\) 0 0
\(208\) 190.000 + 190.000i 0.913462 + 0.913462i
\(209\) 246.475 + 142.302i 1.17931 + 0.680873i
\(210\) 0 0
\(211\) 149.000 + 258.076i 0.706161 + 1.22311i 0.966271 + 0.257528i \(0.0829079\pi\)
−0.260110 + 0.965579i \(0.583759\pi\)
\(212\) 34.5580 + 9.25979i 0.163009 + 0.0436783i
\(213\) 0 0
\(214\) −164.545 95.0000i −0.768901 0.443925i
\(215\) −63.2456 + 31.6228i −0.294165 + 0.147083i
\(216\) 0 0
\(217\) −40.0000 + 40.0000i −0.184332 + 0.184332i
\(218\) −349.900 + 93.7554i −1.60505 + 0.430071i
\(219\) 0 0
\(220\) −15.8494 77.4519i −0.0720426 0.352054i
\(221\) −31.6228 54.7723i −0.143089 0.247838i
\(222\) 0 0
\(223\) 293.695 78.6955i 1.31702 0.352894i 0.469159 0.883114i \(-0.344557\pi\)
0.847861 + 0.530219i \(0.177890\pi\)
\(224\) 110.680i 0.494106i
\(225\) 0 0
\(226\) −370.000 −1.63717
\(227\) −99.5428 371.499i −0.438514 1.63656i −0.732514 0.680752i \(-0.761653\pi\)
0.293999 0.955806i \(-0.405014\pi\)
\(228\) 0 0
\(229\) −67.5500 + 39.0000i −0.294978 + 0.170306i −0.640185 0.768221i \(-0.721142\pi\)
0.345207 + 0.938527i \(0.387809\pi\)
\(230\) −48.9849 + 10.0240i −0.212978 + 0.0435827i
\(231\) 0 0
\(232\) 82.3557 + 307.356i 0.354982 + 1.32481i
\(233\) −110.680 110.680i −0.475020 0.475020i 0.428515 0.903535i \(-0.359037\pi\)
−0.903535 + 0.428515i \(0.859037\pi\)
\(234\) 0 0
\(235\) 130.000 + 260.000i 0.553191 + 1.10638i
\(236\) 23.7171 41.0792i 0.100496 0.174064i
\(237\) 0 0
\(238\) −18.3013 + 68.3013i −0.0768961 + 0.286980i
\(239\) 328.634 189.737i 1.37504 0.793877i 0.383479 0.923550i \(-0.374726\pi\)
0.991557 + 0.129672i \(0.0413926\pi\)
\(240\) 0 0
\(241\) −106.000 + 183.597i −0.439834 + 0.761815i −0.997676 0.0681321i \(-0.978296\pi\)
0.557842 + 0.829947i \(0.311629\pi\)
\(242\) −203.967 + 203.967i −0.842838 + 0.842838i
\(243\) 0 0
\(244\) 58.0000i 0.237705i
\(245\) −3.74101 + 3.31735i −0.0152694 + 0.0135402i
\(246\) 0 0
\(247\) −245.885 65.8846i −0.995484 0.266739i
\(248\) −13.8897 + 51.8370i −0.0560068 + 0.209020i
\(249\) 0 0
\(250\) −213.157 180.801i −0.852628 0.723205i
\(251\) −363.662 −1.44885 −0.724426 0.689352i \(-0.757895\pi\)
−0.724426 + 0.689352i \(0.757895\pi\)
\(252\) 0 0
\(253\) 50.0000 + 50.0000i 0.197628 + 0.197628i
\(254\) −150.624 86.9626i −0.593007 0.342373i
\(255\) 0 0
\(256\) −90.5000 156.751i −0.353516 0.612307i
\(257\) −419.016 112.275i −1.63041 0.436868i −0.676375 0.736557i \(-0.736450\pi\)
−0.954037 + 0.299690i \(0.903117\pi\)
\(258\) 0 0
\(259\) −86.6025 50.0000i −0.334373 0.193050i
\(260\) 31.6228 + 63.2456i 0.121626 + 0.243252i
\(261\) 0 0
\(262\) 275.000 275.000i 1.04962 1.04962i
\(263\) −393.097 + 105.330i −1.49467 + 0.400495i −0.911310 0.411721i \(-0.864928\pi\)
−0.583357 + 0.812216i \(0.698261\pi\)
\(264\) 0 0
\(265\) −149.282 98.5641i −0.563328 0.371940i
\(266\) 142.302 + 246.475i 0.534972 + 0.926598i
\(267\) 0 0
\(268\) 95.6218 25.6218i 0.356798 0.0956037i
\(269\) 142.302i 0.529006i 0.964385 + 0.264503i \(0.0852078\pi\)
−0.964385 + 0.264503i \(0.914792\pi\)
\(270\) 0 0
\(271\) −178.000 −0.656827 −0.328413 0.944534i \(-0.606514\pi\)
−0.328413 + 0.944534i \(0.606514\pi\)
\(272\) 21.9920 + 82.0753i 0.0808530 + 0.301747i
\(273\) 0 0
\(274\) −43.3013 + 25.0000i −0.158034 + 0.0912409i
\(275\) −47.2821 + 392.447i −0.171935 + 1.42708i
\(276\) 0 0
\(277\) −84.1858 314.186i −0.303920 1.13424i −0.933871 0.357610i \(-0.883592\pi\)
0.629951 0.776635i \(-0.283075\pi\)
\(278\) −161.276 161.276i −0.580130 0.580130i
\(279\) 0 0
\(280\) −75.0000 + 225.000i −0.267857 + 0.803571i
\(281\) −79.0569 + 136.931i −0.281341 + 0.487298i −0.971715 0.236155i \(-0.924113\pi\)
0.690374 + 0.723453i \(0.257446\pi\)
\(282\) 0 0
\(283\) −128.109 + 478.109i −0.452682 + 1.68943i 0.242134 + 0.970243i \(0.422153\pi\)
−0.694816 + 0.719188i \(0.744514\pi\)
\(284\) −54.7723 + 31.6228i −0.192860 + 0.111348i
\(285\) 0 0
\(286\) 250.000 433.013i 0.874126 1.51403i
\(287\) 158.114 158.114i 0.550919 0.550919i
\(288\) 0 0
\(289\) 269.000i 0.930796i
\(290\) −31.7749 + 529.377i −0.109569 + 1.82544i
\(291\) 0 0
\(292\) −75.1314 20.1314i −0.257299 0.0689431i
\(293\) 74.0783 276.464i 0.252827 0.943563i −0.716459 0.697629i \(-0.754238\pi\)
0.969286 0.245935i \(-0.0790949\pi\)
\(294\) 0 0
\(295\) −177.452 + 157.356i −0.601532 + 0.533409i
\(296\) −94.8683 −0.320501
\(297\) 0 0
\(298\) 75.0000 + 75.0000i 0.251678 + 0.251678i
\(299\) −54.7723 31.6228i −0.183185 0.105762i
\(300\) 0 0
\(301\) 50.0000 + 86.6025i 0.166113 + 0.287716i
\(302\) −47.5173 12.7322i −0.157342 0.0421596i
\(303\) 0 0
\(304\) 296.181 + 171.000i 0.974279 + 0.562500i
\(305\) 91.7061 275.118i 0.300676 0.902027i
\(306\) 0 0
\(307\) 190.000 190.000i 0.618893 0.618893i −0.326355 0.945247i \(-0.605820\pi\)
0.945247 + 0.326355i \(0.105820\pi\)
\(308\) −107.994 + 28.9368i −0.350629 + 0.0939508i
\(309\) 0 0
\(310\) −49.2820 + 74.6410i −0.158974 + 0.240777i
\(311\) −126.491 219.089i −0.406724 0.704466i 0.587797 0.809009i \(-0.299996\pi\)
−0.994520 + 0.104542i \(0.966662\pi\)
\(312\) 0 0
\(313\) −198.074 + 53.0737i −0.632823 + 0.169564i −0.560951 0.827849i \(-0.689564\pi\)
−0.0718727 + 0.997414i \(0.522898\pi\)
\(314\) 632.456i 2.01419i
\(315\) 0 0
\(316\) −12.0000 −0.0379747
\(317\) −5.78737 21.5988i −0.0182567 0.0681349i 0.956197 0.292725i \(-0.0945622\pi\)
−0.974453 + 0.224591i \(0.927896\pi\)
\(318\) 0 0
\(319\) 649.519 375.000i 2.03611 1.17555i
\(320\) 41.0985 + 200.838i 0.128433 + 0.627619i
\(321\) 0 0
\(322\) 18.3013 + 68.3013i 0.0568362 + 0.212116i
\(323\) −56.9210 56.9210i −0.176226 0.176226i
\(324\) 0 0
\(325\) −50.0000 350.000i −0.153846 1.07692i
\(326\) 158.114 273.861i 0.485012 0.840065i
\(327\) 0 0
\(328\) 54.9038 204.904i 0.167390 0.624707i
\(329\) 356.020 205.548i 1.08213 0.624766i
\(330\) 0 0
\(331\) −241.000 + 417.424i −0.728097 + 1.26110i 0.229590 + 0.973287i \(0.426261\pi\)
−0.957687 + 0.287813i \(0.907072\pi\)
\(332\) −53.7587 + 53.7587i −0.161924 + 0.161924i
\(333\) 0 0
\(334\) 470.000i 1.40719i
\(335\) −494.086 29.6565i −1.47488 0.0885270i
\(336\) 0 0
\(337\) 211.734 + 56.7339i 0.628291 + 0.168350i 0.558894 0.829239i \(-0.311226\pi\)
0.0693967 + 0.997589i \(0.477893\pi\)
\(338\) −17.9408 + 66.9562i −0.0530794 + 0.198095i
\(339\) 0 0
\(340\) −1.33975 + 22.3205i −0.00394043 + 0.0656486i
\(341\) 126.491 0.370942
\(342\) 0 0
\(343\) −240.000 240.000i −0.699708 0.699708i
\(344\) 82.1584 + 47.4342i 0.238833 + 0.137890i
\(345\) 0 0
\(346\) −175.000 303.109i −0.505780 0.876037i
\(347\) −224.627 60.1886i −0.647340 0.173454i −0.0798143 0.996810i \(-0.525433\pi\)
−0.567526 + 0.823355i \(0.692099\pi\)
\(348\) 0 0
\(349\) 275.396 + 159.000i 0.789101 + 0.455587i 0.839646 0.543134i \(-0.182763\pi\)
−0.0505453 + 0.998722i \(0.516096\pi\)
\(350\) −237.171 + 316.228i −0.677631 + 0.903508i
\(351\) 0 0
\(352\) −175.000 + 175.000i −0.497159 + 0.497159i
\(353\) 306.702 82.1807i 0.868845 0.232806i 0.203257 0.979125i \(-0.434847\pi\)
0.665588 + 0.746319i \(0.268181\pi\)
\(354\) 0 0
\(355\) 309.808 63.3975i 0.872698 0.178584i
\(356\) 0 0
\(357\) 0 0
\(358\) −307.356 + 82.3557i −0.858536 + 0.230044i
\(359\) 284.605i 0.792772i 0.918084 + 0.396386i \(0.129736\pi\)
−0.918084 + 0.396386i \(0.870264\pi\)
\(360\) 0 0
\(361\) 37.0000 0.102493
\(362\) −126.165 470.853i −0.348521 1.30070i
\(363\) 0 0
\(364\) 86.6025 50.0000i 0.237919 0.137363i
\(365\) 324.549 + 214.285i 0.889175 + 0.587082i
\(366\) 0 0
\(367\) −67.7147 252.715i −0.184509 0.688596i −0.994735 0.102479i \(-0.967323\pi\)
0.810226 0.586117i \(-0.199344\pi\)
\(368\) 60.0833 + 60.0833i 0.163270 + 0.163270i
\(369\) 0 0
\(370\) −150.000 50.0000i −0.405405 0.135135i
\(371\) −126.491 + 219.089i −0.340946 + 0.590536i
\(372\) 0 0
\(373\) 36.6025 136.603i 0.0981301 0.366227i −0.899345 0.437239i \(-0.855956\pi\)
0.997475 + 0.0710125i \(0.0226230\pi\)
\(374\) 136.931 79.0569i 0.366125 0.211382i
\(375\) 0 0
\(376\) 195.000 337.750i 0.518617 0.898271i
\(377\) −474.342 + 474.342i −1.25820 + 1.25820i
\(378\) 0 0
\(379\) 558.000i 1.47230i −0.676821 0.736148i \(-0.736643\pi\)
0.676821 0.736148i \(-0.263357\pi\)
\(380\) 59.7123 + 67.3383i 0.157138 + 0.177206i
\(381\) 0 0
\(382\) 341.506 + 91.5064i 0.893996 + 0.239545i
\(383\) −103.015 + 384.458i −0.268969 + 1.00381i 0.690807 + 0.723039i \(0.257256\pi\)
−0.959776 + 0.280767i \(0.909411\pi\)
\(384\) 0 0
\(385\) 558.013 + 33.4936i 1.44938 + 0.0869965i
\(386\) 395.285 1.02405
\(387\) 0 0
\(388\) 5.00000 + 5.00000i 0.0128866 + 0.0128866i
\(389\) 451.871 + 260.888i 1.16162 + 0.670663i 0.951692 0.307053i \(-0.0993430\pi\)
0.209930 + 0.977716i \(0.432676\pi\)
\(390\) 0 0
\(391\) −10.0000 17.3205i −0.0255754 0.0442980i
\(392\) 6.47963 + 1.73621i 0.0165297 + 0.00442911i
\(393\) 0 0
\(394\) −398.372 230.000i −1.01110 0.583756i
\(395\) 56.9210 + 18.9737i 0.144104 + 0.0480346i
\(396\) 0 0
\(397\) −260.000 + 260.000i −0.654912 + 0.654912i −0.954172 0.299260i \(-0.903260\pi\)
0.299260 + 0.954172i \(0.403260\pi\)
\(398\) 38.8778 10.4173i 0.0976828 0.0261740i
\(399\) 0 0
\(400\) −56.8172 + 471.590i −0.142043 + 1.17897i
\(401\) −126.491 219.089i −0.315439 0.546357i 0.664092 0.747651i \(-0.268818\pi\)
−0.979531 + 0.201295i \(0.935485\pi\)
\(402\) 0 0
\(403\) −109.282 + 29.2820i −0.271171 + 0.0726601i
\(404\) 15.8114i 0.0391371i
\(405\) 0 0
\(406\) 750.000 1.84729
\(407\) 57.8737 + 215.988i 0.142196 + 0.530682i
\(408\) 0 0
\(409\) −301.377 + 174.000i −0.736863 + 0.425428i −0.820928 0.571032i \(-0.806543\pi\)
0.0840648 + 0.996460i \(0.473210\pi\)
\(410\) 194.804 295.045i 0.475133 0.719621i
\(411\) 0 0
\(412\) −12.8109 47.8109i −0.0310944 0.116046i
\(413\) 237.171 + 237.171i 0.574263 + 0.574263i
\(414\) 0 0
\(415\) 340.000 170.000i 0.819277 0.409639i
\(416\) 110.680 191.703i 0.266057 0.460824i
\(417\) 0 0
\(418\) 164.711 614.711i 0.394046 1.47060i
\(419\) −534.029 + 308.322i −1.27453 + 0.735852i −0.975838 0.218496i \(-0.929885\pi\)
−0.298696 + 0.954348i \(0.596552\pi\)
\(420\) 0 0
\(421\) −169.000 + 292.717i −0.401425 + 0.695289i −0.993898 0.110302i \(-0.964818\pi\)
0.592473 + 0.805590i \(0.298152\pi\)
\(422\) 471.179 471.179i 1.11654 1.11654i
\(423\) 0 0
\(424\) 240.000i 0.566038i
\(425\) 41.6468 103.757i 0.0979925 0.244134i
\(426\) 0 0
\(427\) −396.147 106.147i −0.927746 0.248589i
\(428\) −21.9920 + 82.0753i −0.0513832 + 0.191765i
\(429\) 0 0
\(430\) 104.904 + 118.301i 0.243962 + 0.275119i
\(431\) −221.359 −0.513595 −0.256797 0.966465i \(-0.582667\pi\)
−0.256797 + 0.966465i \(0.582667\pi\)
\(432\) 0 0
\(433\) 145.000 + 145.000i 0.334873 + 0.334873i 0.854434 0.519561i \(-0.173904\pi\)
−0.519561 + 0.854434i \(0.673904\pi\)
\(434\) 109.545 + 63.2456i 0.252407 + 0.145727i
\(435\) 0 0
\(436\) 81.0000 + 140.296i 0.185780 + 0.321780i
\(437\) −77.7555 20.8345i −0.177930 0.0476763i
\(438\) 0 0
\(439\) −67.5500 39.0000i −0.153872 0.0888383i 0.421087 0.907020i \(-0.361649\pi\)
−0.574959 + 0.818182i \(0.694982\pi\)
\(440\) 474.342 237.171i 1.07805 0.539025i
\(441\) 0 0
\(442\) −100.000 + 100.000i −0.226244 + 0.226244i
\(443\) 267.825 71.7634i 0.604570 0.161994i 0.0564665 0.998404i \(-0.482017\pi\)
0.548104 + 0.836410i \(0.315350\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −339.945 588.802i −0.762208 1.32018i
\(447\) 0 0
\(448\) 280.035 75.0352i 0.625079 0.167489i
\(449\) 284.605i 0.633864i 0.948448 + 0.316932i \(0.102653\pi\)
−0.948448 + 0.316932i \(0.897347\pi\)
\(450\) 0 0
\(451\) −500.000 −1.10865
\(452\) 42.8265 + 159.831i 0.0947490 + 0.353608i
\(453\) 0 0
\(454\) −744.782 + 430.000i −1.64049 + 0.947137i
\(455\) −489.849 + 100.240i −1.07659 + 0.220308i
\(456\) 0 0
\(457\) −133.599 498.599i −0.292340 1.09103i −0.943307 0.331921i \(-0.892303\pi\)
0.650967 0.759106i \(-0.274363\pi\)
\(458\) 123.329 + 123.329i 0.269277 + 0.269277i
\(459\) 0 0
\(460\) 10.0000 + 20.0000i 0.0217391 + 0.0434783i
\(461\) 419.002 725.732i 0.908898 1.57426i 0.0932994 0.995638i \(-0.470259\pi\)
0.815598 0.578619i \(-0.196408\pi\)
\(462\) 0 0
\(463\) −12.8109 + 47.8109i −0.0276693 + 0.103263i −0.978380 0.206817i \(-0.933689\pi\)
0.950710 + 0.310081i \(0.100356\pi\)
\(464\) 780.505 450.625i 1.68212 0.971174i
\(465\) 0 0
\(466\) −175.000 + 303.109i −0.375536 + 0.650448i
\(467\) 117.004 117.004i 0.250544 0.250544i −0.570649 0.821194i \(-0.693308\pi\)
0.821194 + 0.570649i \(0.193308\pi\)
\(468\) 0 0
\(469\) 700.000i 1.49254i
\(470\) 486.332 431.255i 1.03475 0.917565i
\(471\) 0 0
\(472\) 307.356 + 82.3557i 0.651177 + 0.174482i
\(473\) 57.8737 215.988i 0.122355 0.456633i
\(474\) 0 0
\(475\) −176.769 413.827i −0.372146 0.871214i
\(476\) 31.6228 0.0664344
\(477\) 0 0
\(478\) −600.000 600.000i −1.25523 1.25523i
\(479\) 328.634 + 189.737i 0.686083 + 0.396110i 0.802143 0.597132i \(-0.203693\pi\)
−0.116060 + 0.993242i \(0.537027\pi\)
\(480\) 0 0
\(481\) −100.000 173.205i −0.207900 0.360094i
\(482\) 457.894 + 122.692i 0.949987 + 0.254548i
\(483\) 0 0
\(484\) 111.717 + 64.5000i 0.230821 + 0.133264i
\(485\) −15.8114 31.6228i −0.0326008 0.0652016i
\(486\) 0 0
\(487\) −125.000 + 125.000i −0.256674 + 0.256674i −0.823700 0.567026i \(-0.808094\pi\)
0.567026 + 0.823700i \(0.308094\pi\)
\(488\) −375.818 + 100.700i −0.770120 + 0.206353i
\(489\) 0 0
\(490\) 9.33013 + 6.16025i 0.0190411 + 0.0125719i
\(491\) 229.265 + 397.099i 0.466935 + 0.808755i 0.999287 0.0377681i \(-0.0120248\pi\)
−0.532351 + 0.846523i \(0.678692\pi\)
\(492\) 0 0
\(493\) −204.904 + 54.9038i −0.415626 + 0.111367i
\(494\) 569.210i 1.15225i
\(495\) 0 0
\(496\) 152.000 0.306452
\(497\) −115.747 431.975i −0.232892 0.869165i
\(498\) 0 0
\(499\) −192.258 + 111.000i −0.385286 + 0.222445i −0.680116 0.733105i \(-0.738070\pi\)
0.294830 + 0.955550i \(0.404737\pi\)
\(500\) −53.4293 + 113.006i −0.106859 + 0.226012i
\(501\) 0 0
\(502\) 210.465 + 785.465i 0.419252 + 1.56467i
\(503\) 458.530 + 458.530i 0.911591 + 0.911591i 0.996397 0.0848065i \(-0.0270272\pi\)
−0.0848065 + 0.996397i \(0.527027\pi\)
\(504\) 0 0
\(505\) −25.0000 + 75.0000i −0.0495050 + 0.148515i
\(506\) 79.0569 136.931i 0.156239 0.270614i
\(507\) 0 0
\(508\) −20.1314 + 75.1314i −0.0396287 + 0.147896i
\(509\) 205.396 118.585i 0.403528 0.232977i −0.284477 0.958683i \(-0.591820\pi\)
0.688005 + 0.725706i \(0.258487\pi\)
\(510\) 0 0
\(511\) 275.000 476.314i 0.538160 0.932121i
\(512\) 150.208 150.208i 0.293375 0.293375i
\(513\) 0 0
\(514\) 970.000i 1.88716i
\(515\) −14.8283 + 247.043i −0.0287928 + 0.479695i
\(516\) 0 0
\(517\) −887.917 237.917i −1.71744 0.460187i
\(518\) −57.8737 + 215.988i −0.111725 + 0.416964i
\(519\) 0 0
\(520\) −354.904 + 314.711i −0.682507 + 0.605214i
\(521\) −790.569 −1.51741 −0.758704 0.651436i \(-0.774167\pi\)
−0.758704 + 0.651436i \(0.774167\pi\)
\(522\) 0 0
\(523\) 370.000 + 370.000i 0.707457 + 0.707457i 0.966000 0.258543i \(-0.0832423\pi\)
−0.258543 + 0.966000i \(0.583242\pi\)
\(524\) −150.624 86.9626i −0.287450 0.165959i
\(525\) 0 0
\(526\) 455.000 + 788.083i 0.865019 + 1.49826i
\(527\) −34.5580 9.25979i −0.0655750 0.0175708i
\(528\) 0 0
\(529\) 440.807 + 254.500i 0.833283 + 0.481096i
\(530\) −126.491 + 379.473i −0.238662 + 0.715987i
\(531\) 0 0
\(532\) 90.0000 90.0000i 0.169173 0.169173i
\(533\) 431.975 115.747i 0.810460 0.217162i
\(534\) 0 0
\(535\) 234.090 354.545i 0.437551 0.662701i
\(536\) 332.039 + 575.109i 0.619476 + 1.07296i
\(537\) 0 0
\(538\) 307.356 82.3557i 0.571293 0.153078i
\(539\) 15.8114i 0.0293347i
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) 103.015 + 384.458i 0.190065 + 0.709332i
\(543\) 0 0
\(544\) 60.6218 35.0000i 0.111437 0.0643382i
\(545\) −162.389 793.555i −0.297962 1.45606i
\(546\) 0 0
\(547\) 179.352 + 669.352i 0.327884 + 1.22368i 0.911381 + 0.411564i \(0.135017\pi\)
−0.583497 + 0.812115i \(0.698316\pi\)
\(548\) 15.8114 + 15.8114i 0.0288529 + 0.0288529i
\(549\) 0 0
\(550\) 875.000 125.000i 1.59091 0.227273i
\(551\) −426.907 + 739.425i −0.774787 + 1.34197i
\(552\) 0 0
\(553\) 21.9615 81.9615i 0.0397134 0.148213i
\(554\) −629.881 + 363.662i −1.13697 + 0.656429i
\(555\) 0 0
\(556\) −51.0000 + 88.3346i −0.0917266 + 0.158875i
\(557\) −252.982 + 252.982i −0.454187 + 0.454187i −0.896742 0.442555i \(-0.854072\pi\)
0.442555 + 0.896742i \(0.354072\pi\)
\(558\) 0 0
\(559\) 200.000i 0.357782i
\(560\) 670.545 + 40.2482i 1.19740 + 0.0718717i
\(561\) 0 0
\(562\) 341.506 + 91.5064i 0.607663 + 0.162823i
\(563\) 74.0783 276.464i 0.131578 0.491055i −0.868411 0.495846i \(-0.834858\pi\)
0.999989 + 0.00479040i \(0.00152484\pi\)
\(564\) 0 0
\(565\) 49.5706 825.859i 0.0877356 1.46170i
\(566\) 1106.80 1.95547
\(567\) 0 0
\(568\) −300.000 300.000i −0.528169 0.528169i
\(569\) −164.317 94.8683i −0.288782 0.166728i 0.348611 0.937268i \(-0.386654\pi\)
−0.637392 + 0.770539i \(0.719987\pi\)
\(570\) 0 0
\(571\) 329.000 + 569.845i 0.576182 + 0.997977i 0.995912 + 0.0903277i \(0.0287914\pi\)
−0.419730 + 0.907649i \(0.637875\pi\)
\(572\) −215.988 57.8737i −0.377601 0.101178i
\(573\) 0 0
\(574\) −433.013 250.000i −0.754378 0.435540i
\(575\) −15.8114 110.680i −0.0274981 0.192486i
\(576\) 0 0
\(577\) −35.0000 + 35.0000i −0.0606586 + 0.0606586i −0.736785 0.676127i \(-0.763657\pi\)
0.676127 + 0.736785i \(0.263657\pi\)
\(578\) 581.007 155.680i 1.00520 0.269343i
\(579\) 0 0
\(580\) 232.356 47.5481i 0.400613 0.0819795i
\(581\) −268.794 465.564i −0.462640 0.801315i
\(582\) 0 0
\(583\) 546.410 146.410i 0.937239 0.251132i
\(584\) 521.776i 0.893452i
\(585\) 0 0
\(586\) −640.000 −1.09215
\(587\) 56.7162 + 211.668i 0.0966205 + 0.360593i 0.997260 0.0739741i \(-0.0235682\pi\)
−0.900640 + 0.434567i \(0.856902\pi\)
\(588\) 0 0
\(589\) −124.708 + 72.0000i −0.211728 + 0.122241i
\(590\) 442.567 + 292.207i 0.750113 + 0.495265i
\(591\) 0 0
\(592\) 69.5448 + 259.545i 0.117474 + 0.438420i
\(593\) −167.601 167.601i −0.282632 0.282632i 0.551526 0.834158i \(-0.314046\pi\)
−0.834158 + 0.551526i \(0.814046\pi\)
\(594\) 0 0
\(595\) −150.000 50.0000i −0.252101 0.0840336i
\(596\) 23.7171 41.0792i 0.0397938 0.0689248i
\(597\) 0 0
\(598\) −36.6025 + 136.603i −0.0612083 + 0.228432i
\(599\) −903.742 + 521.776i −1.50875 + 0.871078i −0.508804 + 0.860883i \(0.669912\pi\)
−0.999948 + 0.0101955i \(0.996755\pi\)
\(600\) 0 0
\(601\) 191.000 330.822i 0.317804 0.550452i −0.662226 0.749304i \(-0.730388\pi\)
0.980029 + 0.198852i \(0.0637214\pi\)
\(602\) 158.114 158.114i 0.262648 0.262648i
\(603\) 0 0
\(604\) 22.0000i 0.0364238i
\(605\) −427.938 482.591i −0.707336 0.797671i
\(606\) 0 0
\(607\) −894.747 239.747i −1.47405 0.394970i −0.569730 0.821832i \(-0.692952\pi\)
−0.904317 + 0.426862i \(0.859619\pi\)
\(608\) 72.9209 272.144i 0.119936 0.447606i
\(609\) 0 0
\(610\) −647.295 38.8526i −1.06114 0.0636928i
\(611\) 822.192 1.34565
\(612\) 0 0
\(613\) −620.000 620.000i −1.01142 1.01142i −0.999934 0.0114852i \(-0.996344\pi\)
−0.0114852 0.999934i \(-0.503656\pi\)
\(614\) −520.336 300.416i −0.847453 0.489277i
\(615\) 0 0
\(616\) −375.000 649.519i −0.608766 1.05441i
\(617\) 47.5173 + 12.7322i 0.0770134 + 0.0206357i 0.297120 0.954840i \(-0.403974\pi\)
−0.220107 + 0.975476i \(0.570641\pi\)
\(618\) 0 0
\(619\) −223.435 129.000i −0.360961 0.208401i 0.308542 0.951211i \(-0.400159\pi\)
−0.669502 + 0.742810i \(0.733492\pi\)
\(620\) 37.9473 + 12.6491i 0.0612054 + 0.0204018i
\(621\) 0 0
\(622\) −400.000 + 400.000i −0.643087 + 0.643087i
\(623\) 0 0
\(624\) 0 0
\(625\) 432.115 451.554i 0.691384 0.722487i
\(626\) 229.265 + 397.099i 0.366238 + 0.634343i
\(627\) 0 0
\(628\) −273.205 + 73.2051i −0.435040 + 0.116569i
\(629\) 63.2456i 0.100549i
\(630\) 0 0
\(631\) 812.000 1.28685 0.643423 0.765511i \(-0.277514\pi\)
0.643423 + 0.765511i \(0.277514\pi\)
\(632\) −20.8345 77.7555i −0.0329660 0.123031i
\(633\) 0 0
\(634\) −43.3013 + 25.0000i −0.0682985 + 0.0394322i
\(635\) 214.285 324.549i 0.337456 0.511101i
\(636\) 0 0
\(637\) 3.66025 + 13.6603i 0.00574608 + 0.0214447i
\(638\) −1185.85 1185.85i −1.85871 1.85871i
\(639\) 0 0
\(640\) 690.000 345.000i 1.07812 0.539062i
\(641\) −221.359 + 383.406i −0.345335 + 0.598137i −0.985414 0.170171i \(-0.945568\pi\)
0.640080 + 0.768308i \(0.278901\pi\)
\(642\) 0 0
\(643\) 300.141 1120.14i 0.466782 1.74205i −0.184131 0.982902i \(-0.558947\pi\)
0.650913 0.759152i \(-0.274386\pi\)
\(644\) 27.3861 15.8114i 0.0425250 0.0245518i
\(645\) 0 0
\(646\) −90.0000 + 155.885i −0.139319 + 0.241307i
\(647\) −679.890 + 679.890i −1.05083 + 1.05083i −0.0521974 + 0.998637i \(0.516622\pi\)
−0.998637 + 0.0521974i \(0.983378\pi\)
\(648\) 0 0
\(649\) 750.000i 1.15562i
\(650\) −727.020 + 310.552i −1.11849 + 0.477772i
\(651\) 0 0
\(652\) −136.603 36.6025i −0.209513 0.0561389i
\(653\) 188.668 704.120i 0.288925 1.07828i −0.656998 0.753893i \(-0.728174\pi\)
0.945923 0.324391i \(-0.105159\pi\)
\(654\) 0 0
\(655\) 576.971 + 650.657i 0.880872 + 0.993369i
\(656\) −600.833 −0.915904
\(657\) 0 0
\(658\) −650.000 650.000i −0.987842 0.987842i
\(659\) −780.505 450.625i −1.18438 0.683801i −0.227354 0.973812i \(-0.573008\pi\)
−0.957023 + 0.290012i \(0.906341\pi\)
\(660\) 0 0
\(661\) 401.000 + 694.552i 0.606657 + 1.05076i 0.991787 + 0.127898i \(0.0408230\pi\)
−0.385131 + 0.922862i \(0.625844\pi\)
\(662\) 1041.06 + 278.951i 1.57260 + 0.421376i
\(663\) 0 0
\(664\) −441.673 255.000i −0.665170 0.384036i
\(665\) −569.210 + 284.605i −0.855955 + 0.427977i
\(666\) 0 0
\(667\) −150.000 + 150.000i −0.224888 + 0.224888i
\(668\) −203.028 + 54.4013i −0.303935 + 0.0814390i
\(669\) 0 0
\(670\) 221.891 + 1084.33i 0.331181 + 1.61840i
\(671\) 458.530 + 794.198i 0.683354 + 1.18360i
\(672\) 0 0
\(673\) −1058.67 + 283.670i −1.57306 + 0.421500i −0.936769 0.349948i \(-0.886199\pi\)
−0.636291 + 0.771449i \(0.719532\pi\)
\(674\) 490.153i 0.727230i
\(675\) 0 0
\(676\) 31.0000 0.0458580
\(677\) 181.723 + 678.201i 0.268425 + 1.00177i 0.960121 + 0.279585i \(0.0901970\pi\)
−0.691696 + 0.722189i \(0.743136\pi\)
\(678\) 0 0
\(679\) −43.3013 + 25.0000i −0.0637721 + 0.0368189i
\(680\) −146.955 + 30.0721i −0.216110 + 0.0442236i
\(681\) 0 0
\(682\) −73.2051 273.205i −0.107339 0.400594i
\(683\) 60.0833 + 60.0833i 0.0879697 + 0.0879697i 0.749722 0.661753i \(-0.230187\pi\)
−0.661753 + 0.749722i \(0.730187\pi\)
\(684\) 0 0
\(685\) −50.0000 100.000i −0.0729927 0.145985i
\(686\) −379.473 + 657.267i −0.553168 + 0.958115i
\(687\) 0 0
\(688\) 69.5448 259.545i 0.101083 0.377245i
\(689\) −438.178 + 252.982i −0.635962 + 0.367173i
\(690\) 0 0
\(691\) 281.000 486.706i 0.406657 0.704351i −0.587856 0.808966i \(-0.700028\pi\)
0.994513 + 0.104615i \(0.0333611\pi\)
\(692\) −110.680 + 110.680i −0.159942 + 0.159942i
\(693\) 0 0
\(694\) 520.000i 0.749280i
\(695\) 381.583 338.370i 0.549041 0.486863i
\(696\) 0 0
\(697\) 136.603 + 36.6025i 0.195986 + 0.0525144i
\(698\) 184.038 686.841i 0.263665 0.984012i
\(699\) 0 0
\(700\) 164.054 + 65.8494i 0.234363 + 0.0940705i
\(701\) −363.662 −0.518776 −0.259388 0.965773i \(-0.583521\pi\)
−0.259388 + 0.965773i \(0.583521\pi\)
\(702\) 0 0
\(703\) −180.000 180.000i −0.256046 0.256046i
\(704\) −561.416 324.133i −0.797465 0.460417i
\(705\) 0 0
\(706\) −355.000 614.878i −0.502833 0.870932i
\(707\) 107.994 + 28.9368i 0.152749 + 0.0409291i
\(708\) 0 0
\(709\) 431.281 + 249.000i 0.608294 + 0.351199i 0.772298 0.635261i \(-0.219107\pi\)
−0.164003 + 0.986460i \(0.552441\pi\)
\(710\) −316.228 632.456i −0.445391 0.890782i
\(711\) 0 0
\(712\) 0 0
\(713\) −34.5580 + 9.25979i −0.0484685 + 0.0129871i
\(714\) 0 0
\(715\) 933.013 + 616.025i 1.30491 + 0.861574i
\(716\) 71.1512 + 123.238i 0.0993733 + 0.172120i
\(717\) 0 0
\(718\) 614.711 164.711i 0.856144 0.229403i
\(719\) 569.210i 0.791669i 0.918322 + 0.395834i \(0.129545\pi\)
−0.918322 + 0.395834i \(0.870455\pi\)
\(720\) 0 0
\(721\) 350.000 0.485437
\(722\) −21.4133 79.9154i −0.0296583 0.110686i
\(723\) 0 0
\(724\) −188.794 + 109.000i −0.260765 + 0.150552i
\(725\) −1177.34 141.846i −1.62392 0.195650i
\(726\) 0 0
\(727\) −331.253 1236.25i −0.455644 1.70049i −0.686188 0.727424i \(-0.740717\pi\)
0.230545 0.973062i \(-0.425949\pi\)
\(728\) 474.342 + 474.342i 0.651568 + 0.651568i
\(729\) 0 0
\(730\) 275.000 825.000i 0.376712 1.13014i
\(731\) −31.6228 + 54.7723i −0.0432596 + 0.0749278i
\(732\) 0 0
\(733\) 201.314 751.314i 0.274644 1.02498i −0.681436 0.731878i \(-0.738644\pi\)
0.956080 0.293107i \(-0.0946892\pi\)
\(734\) −506.643 + 292.511i −0.690250 + 0.398516i
\(735\) 0 0
\(736\) 35.0000 60.6218i 0.0475543 0.0823665i
\(737\) 1106.80 1106.80i 1.50176 1.50176i
\(738\) 0 0
\(739\) 198.000i 0.267930i −0.990986 0.133965i \(-0.957229\pi\)
0.990986 0.133965i \(-0.0427709\pi\)
\(740\) −4.23665 + 70.5836i −0.00572520 + 0.0953833i
\(741\) 0 0
\(742\) 546.410 + 146.410i 0.736402 + 0.197318i
\(743\) −353.030 + 1317.52i −0.475141 + 1.77325i 0.145717 + 0.989326i \(0.453451\pi\)
−0.620858 + 0.783923i \(0.713216\pi\)
\(744\) 0 0
\(745\) −177.452 + 157.356i −0.238190 + 0.211216i
\(746\) −316.228 −0.423898
\(747\) 0 0
\(748\) −50.0000 50.0000i −0.0668449 0.0668449i
\(749\) −520.336 300.416i −0.694708 0.401090i
\(750\) 0 0
\(751\) −364.000 630.466i −0.484687 0.839503i 0.515158 0.857095i \(-0.327733\pi\)
−0.999845 + 0.0175925i \(0.994400\pi\)
\(752\) −1066.98 285.896i −1.41885 0.380181i
\(753\) 0 0
\(754\) 1299.04 + 750.000i 1.72286 + 0.994695i
\(755\) 34.7851 104.355i 0.0460729 0.138219i
\(756\) 0 0
\(757\) −170.000 + 170.000i −0.224571 + 0.224571i −0.810420 0.585849i \(-0.800761\pi\)
0.585849 + 0.810420i \(0.300761\pi\)
\(758\) −1205.21 + 322.935i −1.58999 + 0.426036i
\(759\) 0 0
\(760\) −332.654 + 503.827i −0.437702 + 0.662930i
\(761\) 15.8114 + 27.3861i 0.0207771 + 0.0359870i 0.876227 0.481899i \(-0.160053\pi\)
−0.855450 + 0.517886i \(0.826719\pi\)
\(762\) 0 0
\(763\) −1106.48 + 296.481i −1.45017 + 0.388572i
\(764\) 158.114i 0.206955i
\(765\) 0 0
\(766\) 890.000 1.16188
\(767\) 173.621 + 647.963i 0.226364 + 0.844801i
\(768\) 0 0
\(769\) 275.396 159.000i 0.358122 0.206762i −0.310134 0.950693i \(-0.600374\pi\)
0.668257 + 0.743931i \(0.267041\pi\)
\(770\) −250.600 1224.62i −0.325455 1.59042i
\(771\) 0 0
\(772\) −45.7532 170.753i −0.0592658 0.221183i
\(773\) −452.206 452.206i −0.585001 0.585001i 0.351272 0.936273i \(-0.385749\pi\)
−0.936273 + 0.351272i \(0.885749\pi\)
\(774\) 0 0
\(775\) −160.000 120.000i −0.206452 0.154839i
\(776\) −23.7171 + 41.0792i −0.0305633 + 0.0529371i
\(777\) 0 0
\(778\) 301.971 1126.97i 0.388137 1.44855i
\(779\) 492.950 284.605i 0.632799 0.365347i
\(780\) 0