Properties

Label 405.3.l.g.28.2
Level $405$
Weight $3$
Character 405.28
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.2
Root \(-0.578737 + 2.15988i\) of defining polynomial
Character \(\chi\) \(=\) 405.28
Dual form 405.3.l.g.217.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.15988 + 0.578737i) q^{2} +(0.866025 + 0.500000i) q^{4} +(-3.31735 - 3.74101i) q^{5} +(6.83013 + 1.83013i) q^{7} +(-4.74342 - 4.74342i) q^{8} +(-5.00000 - 10.0000i) q^{10} +(-7.90569 - 13.6931i) q^{11} +(-13.6603 + 3.66025i) q^{13} +(13.6931 + 7.90569i) q^{14} +(-9.50000 - 16.4545i) q^{16} +(3.16228 - 3.16228i) q^{17} -18.0000i q^{19} +(-1.00240 - 4.89849i) q^{20} +(-9.15064 - 34.1506i) q^{22} +(-4.31975 + 1.15747i) q^{23} +(-2.99038 + 24.8205i) q^{25} -31.6228 q^{26} +(5.00000 + 5.00000i) q^{28} +(41.0792 - 23.7171i) q^{29} +(-4.00000 + 6.92820i) q^{31} +(-4.05116 - 15.1191i) q^{32} +(8.66025 - 5.00000i) q^{34} +(-15.8114 - 31.6228i) q^{35} +(10.0000 - 10.0000i) q^{37} +(10.4173 - 38.8778i) q^{38} +(-2.00962 + 33.4808i) q^{40} +(15.8114 - 27.3861i) q^{41} +(3.66025 - 13.6603i) q^{43} -15.8114i q^{44} -10.0000 q^{46} +(-56.1568 - 15.0472i) q^{47} +(0.866025 + 0.500000i) q^{49} +(-20.8234 + 51.8786i) q^{50} +(-13.6603 - 3.66025i) q^{52} +(-25.2982 - 25.2982i) q^{53} +(-25.0000 + 75.0000i) q^{55} +(-23.7171 - 41.0792i) q^{56} +(102.452 - 27.4519i) q^{58} +(41.0792 + 23.7171i) q^{59} +(29.0000 + 50.2295i) q^{61} +(-12.6491 + 12.6491i) q^{62} +41.0000i q^{64} +(59.0089 + 38.9609i) q^{65} +(25.6218 + 95.6218i) q^{67} +(4.31975 - 1.15747i) q^{68} +(-15.8494 - 77.4519i) q^{70} +63.2456 q^{71} +(55.0000 + 55.0000i) q^{73} +(27.3861 - 15.8114i) q^{74} +(9.00000 - 15.5885i) q^{76} +(-28.9368 - 107.994i) q^{77} +(-10.3923 + 6.00000i) q^{79} +(-30.0416 + 90.1249i) q^{80} +(50.0000 - 50.0000i) q^{82} +(-19.6771 + 73.4358i) q^{83} +(-22.3205 - 1.33975i) q^{85} +(15.8114 - 27.3861i) q^{86} +(-27.4519 + 102.452i) q^{88} -100.000 q^{91} +(-4.31975 - 1.15747i) q^{92} +(-112.583 - 65.0000i) q^{94} +(-67.3383 + 59.7123i) q^{95} +(6.83013 + 1.83013i) q^{97} +(1.58114 + 1.58114i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 20 q^{7} - 40 q^{10} - 40 q^{13} - 76 q^{16} + 100 q^{22} + 80 q^{25} + 40 q^{28} - 32 q^{31} + 80 q^{37} - 120 q^{40} - 40 q^{43} - 80 q^{46} - 40 q^{52} - 200 q^{55} + 300 q^{58} + 232 q^{61} - 280 q^{67}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15988 + 0.578737i 1.07994 + 0.289368i 0.754570 0.656219i \(-0.227845\pi\)
0.325368 + 0.945588i \(0.394512\pi\)
\(3\) 0 0
\(4\) 0.866025 + 0.500000i 0.216506 + 0.125000i
\(5\) −3.31735 3.74101i −0.663470 0.748203i
\(6\) 0 0
\(7\) 6.83013 + 1.83013i 0.975732 + 0.261447i 0.711246 0.702943i \(-0.248131\pi\)
0.264486 + 0.964390i \(0.414798\pi\)
\(8\) −4.74342 4.74342i −0.592927 0.592927i
\(9\) 0 0
\(10\) −5.00000 10.0000i −0.500000 1.00000i
\(11\) −7.90569 13.6931i −0.718699 1.24482i −0.961515 0.274752i \(-0.911404\pi\)
0.242816 0.970072i \(-0.421929\pi\)
\(12\) 0 0
\(13\) −13.6603 + 3.66025i −1.05079 + 0.281558i −0.742578 0.669760i \(-0.766397\pi\)
−0.308211 + 0.951318i \(0.599730\pi\)
\(14\) 13.6931 + 7.90569i 0.978076 + 0.564692i
\(15\) 0 0
\(16\) −9.50000 16.4545i −0.593750 1.02841i
\(17\) 3.16228 3.16228i 0.186016 0.186016i −0.607955 0.793971i \(-0.708010\pi\)
0.793971 + 0.607955i \(0.208010\pi\)
\(18\) 0 0
\(19\) 18.0000i 0.947368i −0.880695 0.473684i \(-0.842924\pi\)
0.880695 0.473684i \(-0.157076\pi\)
\(20\) −1.00240 4.89849i −0.0501201 0.244924i
\(21\) 0 0
\(22\) −9.15064 34.1506i −0.415938 1.55230i
\(23\) −4.31975 + 1.15747i −0.187815 + 0.0503250i −0.351501 0.936188i \(-0.614328\pi\)
0.163685 + 0.986513i \(0.447662\pi\)
\(24\) 0 0
\(25\) −2.99038 + 24.8205i −0.119615 + 0.992820i
\(26\) −31.6228 −1.21626
\(27\) 0 0
\(28\) 5.00000 + 5.00000i 0.178571 + 0.178571i
\(29\) 41.0792 23.7171i 1.41652 0.817830i 0.420532 0.907278i \(-0.361843\pi\)
0.995992 + 0.0894471i \(0.0285100\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.129032 + 0.223490i −0.923302 0.384075i \(-0.874520\pi\)
0.794270 + 0.607565i \(0.207854\pi\)
\(32\) −4.05116 15.1191i −0.126599 0.472473i
\(33\) 0 0
\(34\) 8.66025 5.00000i 0.254713 0.147059i
\(35\) −15.8114 31.6228i −0.451754 0.903508i
\(36\) 0 0
\(37\) 10.0000 10.0000i 0.270270 0.270270i −0.558939 0.829209i \(-0.688791\pi\)
0.829209 + 0.558939i \(0.188791\pi\)
\(38\) 10.4173 38.8778i 0.274139 1.02310i
\(39\) 0 0
\(40\) −2.00962 + 33.4808i −0.0502405 + 0.837019i
\(41\) 15.8114 27.3861i 0.385644 0.667954i −0.606215 0.795301i \(-0.707313\pi\)
0.991858 + 0.127347i \(0.0406461\pi\)
\(42\) 0 0
\(43\) 3.66025 13.6603i 0.0851222 0.317680i −0.910215 0.414136i \(-0.864084\pi\)
0.995337 + 0.0964555i \(0.0307505\pi\)
\(44\) 15.8114i 0.359350i
\(45\) 0 0
\(46\) −10.0000 −0.217391
\(47\) −56.1568 15.0472i −1.19482 0.320152i −0.394034 0.919096i \(-0.628921\pi\)
−0.800791 + 0.598944i \(0.795587\pi\)
\(48\) 0 0
\(49\) 0.866025 + 0.500000i 0.0176740 + 0.0102041i
\(50\) −20.8234 + 51.8786i −0.416468 + 1.03757i
\(51\) 0 0
\(52\) −13.6603 3.66025i −0.262697 0.0703895i
\(53\) −25.2982 25.2982i −0.477325 0.477325i 0.426950 0.904275i \(-0.359588\pi\)
−0.904275 + 0.426950i \(0.859588\pi\)
\(54\) 0 0
\(55\) −25.0000 + 75.0000i −0.454545 + 1.36364i
\(56\) −23.7171 41.0792i −0.423519 0.733557i
\(57\) 0 0
\(58\) 102.452 27.4519i 1.76641 0.473309i
\(59\) 41.0792 + 23.7171i 0.696257 + 0.401984i 0.805952 0.591981i \(-0.201654\pi\)
−0.109695 + 0.993965i \(0.534987\pi\)
\(60\) 0 0
\(61\) 29.0000 + 50.2295i 0.475410 + 0.823434i 0.999603 0.0281652i \(-0.00896646\pi\)
−0.524193 + 0.851599i \(0.675633\pi\)
\(62\) −12.6491 + 12.6491i −0.204018 + 0.204018i
\(63\) 0 0
\(64\) 41.0000i 0.640625i
\(65\) 59.0089 + 38.9609i 0.907829 + 0.599398i
\(66\) 0 0
\(67\) 25.6218 + 95.6218i 0.382415 + 1.42719i 0.842202 + 0.539162i \(0.181259\pi\)
−0.459788 + 0.888029i \(0.652074\pi\)
\(68\) 4.31975 1.15747i 0.0635258 0.0170217i
\(69\) 0 0
\(70\) −15.8494 77.4519i −0.226419 1.10646i
\(71\) 63.2456 0.890782 0.445391 0.895336i \(-0.353065\pi\)
0.445391 + 0.895336i \(0.353065\pi\)
\(72\) 0 0
\(73\) 55.0000 + 55.0000i 0.753425 + 0.753425i 0.975117 0.221692i \(-0.0711580\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(74\) 27.3861 15.8114i 0.370083 0.213667i
\(75\) 0 0
\(76\) 9.00000 15.5885i 0.118421 0.205111i
\(77\) −28.9368 107.994i −0.375803 1.40252i
\(78\) 0 0
\(79\) −10.3923 + 6.00000i −0.131548 + 0.0759494i −0.564330 0.825549i \(-0.690865\pi\)
0.432782 + 0.901499i \(0.357532\pi\)
\(80\) −30.0416 + 90.1249i −0.375520 + 1.12656i
\(81\) 0 0
\(82\) 50.0000 50.0000i 0.609756 0.609756i
\(83\) −19.6771 + 73.4358i −0.237073 + 0.884768i 0.740130 + 0.672463i \(0.234764\pi\)
−0.977203 + 0.212305i \(0.931903\pi\)
\(84\) 0 0
\(85\) −22.3205 1.33975i −0.262594 0.0157617i
\(86\) 15.8114 27.3861i 0.183853 0.318443i
\(87\) 0 0
\(88\) −27.4519 + 102.452i −0.311953 + 1.16423i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −100.000 −1.09890
\(92\) −4.31975 1.15747i −0.0469538 0.0125812i
\(93\) 0 0
\(94\) −112.583 65.0000i −1.19769 0.691489i
\(95\) −67.3383 + 59.7123i −0.708824 + 0.628550i
\(96\) 0 0
\(97\) 6.83013 + 1.83013i 0.0704137 + 0.0188673i 0.293854 0.955850i \(-0.405062\pi\)
−0.223440 + 0.974718i \(0.571729\pi\)
\(98\) 1.58114 + 1.58114i 0.0161341 + 0.0161341i
\(99\) 0 0
\(100\) −15.0000 + 20.0000i −0.150000 + 0.200000i
\(101\) −7.90569 13.6931i −0.0782742 0.135575i 0.824231 0.566253i \(-0.191608\pi\)
−0.902505 + 0.430678i \(0.858274\pi\)
\(102\) 0 0
\(103\) 47.8109 12.8109i 0.464183 0.124378i −0.0191450 0.999817i \(-0.506094\pi\)
0.483328 + 0.875439i \(0.339428\pi\)
\(104\) 82.1584 + 47.4342i 0.789984 + 0.456098i
\(105\) 0 0
\(106\) −40.0000 69.2820i −0.377358 0.653604i
\(107\) 60.0833 60.0833i 0.561526 0.561526i −0.368215 0.929741i \(-0.620031\pi\)
0.929741 + 0.368215i \(0.120031\pi\)
\(108\) 0 0
\(109\) 162.000i 1.48624i −0.669159 0.743119i \(-0.733345\pi\)
0.669159 0.743119i \(-0.266655\pi\)
\(110\) −97.4022 + 147.522i −0.885474 + 1.34111i
\(111\) 0 0
\(112\) −34.7724 129.772i −0.310468 1.15868i
\(113\) −159.831 + 42.8265i −1.41443 + 0.378996i −0.883505 0.468422i \(-0.844823\pi\)
−0.530927 + 0.847418i \(0.678156\pi\)
\(114\) 0 0
\(115\) 18.6603 + 12.3205i 0.162263 + 0.107135i
\(116\) 47.4342 0.408915
\(117\) 0 0
\(118\) 75.0000 + 75.0000i 0.635593 + 0.635593i
\(119\) 27.3861 15.8114i 0.230136 0.132869i
\(120\) 0 0
\(121\) −64.5000 + 111.717i −0.533058 + 0.923283i
\(122\) 33.5667 + 125.273i 0.275137 + 1.02683i
\(123\) 0 0
\(124\) −6.92820 + 4.00000i −0.0558726 + 0.0322581i
\(125\) 102.774 71.1512i 0.822192 0.569210i
\(126\) 0 0
\(127\) 55.0000 55.0000i 0.433071 0.433071i −0.456601 0.889672i \(-0.650933\pi\)
0.889672 + 0.456601i \(0.150933\pi\)
\(128\) −39.9329 + 149.031i −0.311975 + 1.16431i
\(129\) 0 0
\(130\) 104.904 + 118.301i 0.806952 + 0.910010i
\(131\) 86.9626 150.624i 0.663837 1.14980i −0.315762 0.948838i \(-0.602260\pi\)
0.979599 0.200961i \(-0.0644064\pi\)
\(132\) 0 0
\(133\) 32.9423 122.942i 0.247686 0.924378i
\(134\) 221.359i 1.65194i
\(135\) 0 0
\(136\) −30.0000 −0.220588
\(137\) 21.5988 + 5.78737i 0.157655 + 0.0422436i 0.336783 0.941582i \(-0.390661\pi\)
−0.179128 + 0.983826i \(0.557328\pi\)
\(138\) 0 0
\(139\) −88.3346 51.0000i −0.635501 0.366906i 0.147379 0.989080i \(-0.452916\pi\)
−0.782879 + 0.622174i \(0.786250\pi\)
\(140\) 2.11832 35.2918i 0.0151309 0.252084i
\(141\) 0 0
\(142\) 136.603 + 36.6025i 0.961990 + 0.257764i
\(143\) 158.114 + 158.114i 1.10569 + 1.10569i
\(144\) 0 0
\(145\) −225.000 75.0000i −1.55172 0.517241i
\(146\) 86.9626 + 150.624i 0.595634 + 1.03167i
\(147\) 0 0
\(148\) 13.6603 3.66025i 0.0922990 0.0247314i
\(149\) 41.0792 + 23.7171i 0.275699 + 0.159175i 0.631475 0.775396i \(-0.282450\pi\)
−0.355776 + 0.934571i \(0.615783\pi\)
\(150\) 0 0
\(151\) 11.0000 + 19.0526i 0.0728477 + 0.126176i 0.900148 0.435584i \(-0.143458\pi\)
−0.827301 + 0.561759i \(0.810125\pi\)
\(152\) −85.3815 + 85.3815i −0.561720 + 0.561720i
\(153\) 0 0
\(154\) 250.000i 1.62338i
\(155\) 39.1879 8.01921i 0.252825 0.0517369i
\(156\) 0 0
\(157\) −73.2051 273.205i −0.466274 1.74016i −0.652629 0.757677i \(-0.726334\pi\)
0.186355 0.982482i \(-0.440333\pi\)
\(158\) −25.9185 + 6.94484i −0.164041 + 0.0439547i
\(159\) 0 0
\(160\) −43.1218 + 65.3109i −0.269511 + 0.408193i
\(161\) −31.6228 −0.196415
\(162\) 0 0
\(163\) 100.000 + 100.000i 0.613497 + 0.613497i 0.943856 0.330359i \(-0.107170\pi\)
−0.330359 + 0.943856i \(0.607170\pi\)
\(164\) 27.3861 15.8114i 0.166989 0.0964109i
\(165\) 0 0
\(166\) −85.0000 + 147.224i −0.512048 + 0.886893i
\(167\) −54.4013 203.028i −0.325756 1.21574i −0.913550 0.406727i \(-0.866670\pi\)
0.587793 0.809011i \(-0.299997\pi\)
\(168\) 0 0
\(169\) 26.8468 15.5000i 0.158857 0.0917160i
\(170\) −47.4342 15.8114i −0.279024 0.0930082i
\(171\) 0 0
\(172\) 10.0000 10.0000i 0.0581395 0.0581395i
\(173\) −40.5116 + 151.191i −0.234171 + 0.873938i 0.744350 + 0.667790i \(0.232760\pi\)
−0.978521 + 0.206148i \(0.933907\pi\)
\(174\) 0 0
\(175\) −65.8494 + 164.054i −0.376282 + 0.937454i
\(176\) −150.208 + 260.168i −0.853456 + 1.47823i
\(177\) 0 0
\(178\) 0 0
\(179\) 142.302i 0.794986i −0.917605 0.397493i \(-0.869880\pi\)
0.917605 0.397493i \(-0.130120\pi\)
\(180\) 0 0
\(181\) 218.000 1.20442 0.602210 0.798338i \(-0.294287\pi\)
0.602210 + 0.798338i \(0.294287\pi\)
\(182\) −215.988 57.8737i −1.18674 0.317987i
\(183\) 0 0
\(184\) 25.9808 + 15.0000i 0.141200 + 0.0815217i
\(185\) −70.5836 4.23665i −0.381533 0.0229008i
\(186\) 0 0
\(187\) −68.3013 18.3013i −0.365247 0.0978678i
\(188\) −41.1096 41.1096i −0.218668 0.218668i
\(189\) 0 0
\(190\) −180.000 + 90.0000i −0.947368 + 0.473684i
\(191\) −79.0569 136.931i −0.413911 0.716914i 0.581403 0.813616i \(-0.302504\pi\)
−0.995313 + 0.0967016i \(0.969171\pi\)
\(192\) 0 0
\(193\) 170.753 45.7532i 0.884731 0.237063i 0.212284 0.977208i \(-0.431910\pi\)
0.672447 + 0.740145i \(0.265243\pi\)
\(194\) 13.6931 + 7.90569i 0.0705828 + 0.0407510i
\(195\) 0 0
\(196\) 0.500000 + 0.866025i 0.00255102 + 0.00441850i
\(197\) 145.465 145.465i 0.738400 0.738400i −0.233868 0.972268i \(-0.575138\pi\)
0.972268 + 0.233868i \(0.0751385\pi\)
\(198\) 0 0
\(199\) 18.0000i 0.0904523i 0.998977 + 0.0452261i \(0.0144008\pi\)
−0.998977 + 0.0452261i \(0.985599\pi\)
\(200\) 131.919 103.549i 0.659593 0.517747i
\(201\) 0 0
\(202\) −9.15064 34.1506i −0.0453002 0.169063i
\(203\) 323.981 86.8105i 1.59597 0.427638i
\(204\) 0 0
\(205\) −154.904 + 31.6987i −0.755628 + 0.154628i
\(206\) 110.680 0.537280
\(207\) 0 0
\(208\) 190.000 + 190.000i 0.913462 + 0.913462i
\(209\) −246.475 + 142.302i −1.17931 + 0.680873i
\(210\) 0 0
\(211\) 149.000 258.076i 0.706161 1.22311i −0.260110 0.965579i \(-0.583759\pi\)
0.966271 0.257528i \(-0.0829079\pi\)
\(212\) −9.25979 34.5580i −0.0436783 0.163009i
\(213\) 0 0
\(214\) 164.545 95.0000i 0.768901 0.443925i
\(215\) −63.2456 + 31.6228i −0.294165 + 0.147083i
\(216\) 0 0
\(217\) −40.0000 + 40.0000i −0.184332 + 0.184332i
\(218\) 93.7554 349.900i 0.430071 1.60505i
\(219\) 0 0
\(220\) −59.1506 + 52.4519i −0.268867 + 0.238418i
\(221\) −31.6228 + 54.7723i −0.143089 + 0.247838i
\(222\) 0 0
\(223\) −78.6955 + 293.695i −0.352894 + 1.31702i 0.530219 + 0.847861i \(0.322110\pi\)
−0.883114 + 0.469159i \(0.844557\pi\)
\(224\) 110.680i 0.494106i
\(225\) 0 0
\(226\) −370.000 −1.63717
\(227\) 371.499 + 99.5428i 1.63656 + 0.438514i 0.955806 0.293999i \(-0.0949864\pi\)
0.680752 + 0.732514i \(0.261653\pi\)
\(228\) 0 0
\(229\) 67.5500 + 39.0000i 0.294978 + 0.170306i 0.640185 0.768221i \(-0.278858\pi\)
−0.345207 + 0.938527i \(0.612191\pi\)
\(230\) 33.1735 + 37.4101i 0.144233 + 0.162653i
\(231\) 0 0
\(232\) −307.356 82.3557i −1.32481 0.354982i
\(233\) −110.680 110.680i −0.475020 0.475020i 0.428515 0.903535i \(-0.359037\pi\)
−0.903535 + 0.428515i \(0.859037\pi\)
\(234\) 0 0
\(235\) 130.000 + 260.000i 0.553191 + 1.10638i
\(236\) 23.7171 + 41.0792i 0.100496 + 0.174064i
\(237\) 0 0
\(238\) 68.3013 18.3013i 0.286980 0.0768961i
\(239\) −328.634 189.737i −1.37504 0.793877i −0.383479 0.923550i \(-0.625274\pi\)
−0.991557 + 0.129672i \(0.958607\pi\)
\(240\) 0 0
\(241\) −106.000 183.597i −0.439834 0.761815i 0.557842 0.829947i \(-0.311629\pi\)
−0.997676 + 0.0681321i \(0.978296\pi\)
\(242\) −203.967 + 203.967i −0.842838 + 0.842838i
\(243\) 0 0
\(244\) 58.0000i 0.237705i
\(245\) −1.00240 4.89849i −0.00409144 0.0199938i
\(246\) 0 0
\(247\) 65.8846 + 245.885i 0.266739 + 0.995484i
\(248\) 51.8370 13.8897i 0.209020 0.0560068i
\(249\) 0 0
\(250\) 263.157 94.1987i 1.05263 0.376795i
\(251\) −363.662 −1.44885 −0.724426 0.689352i \(-0.757895\pi\)
−0.724426 + 0.689352i \(0.757895\pi\)
\(252\) 0 0
\(253\) 50.0000 + 50.0000i 0.197628 + 0.197628i
\(254\) 150.624 86.9626i 0.593007 0.342373i
\(255\) 0 0
\(256\) −90.5000 + 156.751i −0.353516 + 0.612307i
\(257\) 112.275 + 419.016i 0.436868 + 1.63041i 0.736557 + 0.676375i \(0.236450\pi\)
−0.299690 + 0.954037i \(0.596883\pi\)
\(258\) 0 0
\(259\) 86.6025 50.0000i 0.334373 0.193050i
\(260\) 31.6228 + 63.2456i 0.121626 + 0.243252i
\(261\) 0 0
\(262\) 275.000 275.000i 1.04962 1.04962i
\(263\) 105.330 393.097i 0.400495 1.49467i −0.411721 0.911310i \(-0.635072\pi\)
0.812216 0.583357i \(-0.198261\pi\)
\(264\) 0 0
\(265\) −10.7180 + 178.564i −0.0404452 + 0.673827i
\(266\) 142.302 246.475i 0.534972 0.926598i
\(267\) 0 0
\(268\) −25.6218 + 95.6218i −0.0956037 + 0.356798i
\(269\) 142.302i 0.529006i 0.964385 + 0.264503i \(0.0852078\pi\)
−0.964385 + 0.264503i \(0.914792\pi\)
\(270\) 0 0
\(271\) −178.000 −0.656827 −0.328413 0.944534i \(-0.606514\pi\)
−0.328413 + 0.944534i \(0.606514\pi\)
\(272\) −82.0753 21.9920i −0.301747 0.0808530i
\(273\) 0 0
\(274\) 43.3013 + 25.0000i 0.158034 + 0.0912409i
\(275\) 363.510 155.276i 1.32185 0.564640i
\(276\) 0 0
\(277\) 314.186 + 84.1858i 1.13424 + 0.303920i 0.776635 0.629951i \(-0.216925\pi\)
0.357610 + 0.933871i \(0.383592\pi\)
\(278\) −161.276 161.276i −0.580130 0.580130i
\(279\) 0 0
\(280\) −75.0000 + 225.000i −0.267857 + 0.803571i
\(281\) −79.0569 136.931i −0.281341 0.487298i 0.690374 0.723453i \(-0.257446\pi\)
−0.971715 + 0.236155i \(0.924113\pi\)
\(282\) 0 0
\(283\) 478.109 128.109i 1.68943 0.452682i 0.719188 0.694816i \(-0.244514\pi\)
0.970243 + 0.242134i \(0.0778474\pi\)
\(284\) 54.7723 + 31.6228i 0.192860 + 0.111348i
\(285\) 0 0
\(286\) 250.000 + 433.013i 0.874126 + 1.51403i
\(287\) 158.114 158.114i 0.550919 0.550919i
\(288\) 0 0
\(289\) 269.000i 0.930796i
\(290\) −442.567 292.207i −1.52609 1.00761i
\(291\) 0 0
\(292\) 20.1314 + 75.1314i 0.0689431 + 0.257299i
\(293\) −276.464 + 74.0783i −0.943563 + 0.252827i −0.697629 0.716459i \(-0.745762\pi\)
−0.245935 + 0.969286i \(0.579095\pi\)
\(294\) 0 0
\(295\) −47.5481 232.356i −0.161180 0.787646i
\(296\) −94.8683 −0.320501
\(297\) 0 0
\(298\) 75.0000 + 75.0000i 0.251678 + 0.251678i
\(299\) 54.7723 31.6228i 0.183185 0.105762i
\(300\) 0 0
\(301\) 50.0000 86.6025i 0.166113 0.287716i
\(302\) 12.7322 + 47.5173i 0.0421596 + 0.157342i
\(303\) 0 0
\(304\) −296.181 + 171.000i −0.974279 + 0.562500i
\(305\) 91.7061 275.118i 0.300676 0.902027i
\(306\) 0 0
\(307\) 190.000 190.000i 0.618893 0.618893i −0.326355 0.945247i \(-0.605820\pi\)
0.945247 + 0.326355i \(0.105820\pi\)
\(308\) 28.9368 107.994i 0.0939508 0.350629i
\(309\) 0 0
\(310\) 89.2820 + 5.35898i 0.288007 + 0.0172870i
\(311\) −126.491 + 219.089i −0.406724 + 0.704466i −0.994520 0.104542i \(-0.966662\pi\)
0.587797 + 0.809009i \(0.299996\pi\)
\(312\) 0 0
\(313\) 53.0737 198.074i 0.169564 0.632823i −0.827849 0.560951i \(-0.810436\pi\)
0.997414 0.0718727i \(-0.0228975\pi\)
\(314\) 632.456i 2.01419i
\(315\) 0 0
\(316\) −12.0000 −0.0379747
\(317\) 21.5988 + 5.78737i 0.0681349 + 0.0182567i 0.292725 0.956197i \(-0.405438\pi\)
−0.224591 + 0.974453i \(0.572104\pi\)
\(318\) 0 0
\(319\) −649.519 375.000i −2.03611 1.17555i
\(320\) 153.382 136.011i 0.479318 0.425035i
\(321\) 0 0
\(322\) −68.3013 18.3013i −0.212116 0.0568362i
\(323\) −56.9210 56.9210i −0.176226 0.176226i
\(324\) 0 0
\(325\) −50.0000 350.000i −0.153846 1.07692i
\(326\) 158.114 + 273.861i 0.485012 + 0.840065i
\(327\) 0 0
\(328\) −204.904 + 54.9038i −0.624707 + 0.167390i
\(329\) −356.020 205.548i −1.08213 0.624766i
\(330\) 0 0
\(331\) −241.000 417.424i −0.728097 1.26110i −0.957687 0.287813i \(-0.907072\pi\)
0.229590 0.973287i \(-0.426261\pi\)
\(332\) −53.7587 + 53.7587i −0.161924 + 0.161924i
\(333\) 0 0
\(334\) 470.000i 1.40719i
\(335\) 272.726 413.062i 0.814108 1.23302i
\(336\) 0 0
\(337\) −56.7339 211.734i −0.168350 0.628291i −0.997589 0.0693967i \(-0.977893\pi\)
0.829239 0.558894i \(-0.188774\pi\)
\(338\) 66.9562 17.9408i 0.198095 0.0530794i
\(339\) 0 0
\(340\) −18.6603 12.3205i −0.0548831 0.0362368i
\(341\) 126.491 0.370942
\(342\) 0 0
\(343\) −240.000 240.000i −0.699708 0.699708i
\(344\) −82.1584 + 47.4342i −0.238833 + 0.137890i
\(345\) 0 0
\(346\) −175.000 + 303.109i −0.505780 + 0.876037i
\(347\) 60.1886 + 224.627i 0.173454 + 0.647340i 0.996810 + 0.0798143i \(0.0254327\pi\)
−0.823355 + 0.567526i \(0.807901\pi\)
\(348\) 0 0
\(349\) −275.396 + 159.000i −0.789101 + 0.455587i −0.839646 0.543134i \(-0.817237\pi\)
0.0505453 + 0.998722i \(0.483904\pi\)
\(350\) −237.171 + 316.228i −0.677631 + 0.903508i
\(351\) 0 0
\(352\) −175.000 + 175.000i −0.497159 + 0.497159i
\(353\) −82.1807 + 306.702i −0.232806 + 0.868845i 0.746319 + 0.665588i \(0.231819\pi\)
−0.979125 + 0.203257i \(0.934847\pi\)
\(354\) 0 0
\(355\) −209.808 236.603i −0.591007 0.666486i
\(356\) 0 0
\(357\) 0 0
\(358\) 82.3557 307.356i 0.230044 0.858536i
\(359\) 284.605i 0.792772i 0.918084 + 0.396386i \(0.129736\pi\)
−0.918084 + 0.396386i \(0.870264\pi\)
\(360\) 0 0
\(361\) 37.0000 0.102493
\(362\) 470.853 + 126.165i 1.30070 + 0.348521i
\(363\) 0 0
\(364\) −86.6025 50.0000i −0.237919 0.137363i
\(365\) 23.3016 388.210i 0.0638399 1.06359i
\(366\) 0 0
\(367\) 252.715 + 67.7147i 0.688596 + 0.184509i 0.586117 0.810226i \(-0.300656\pi\)
0.102479 + 0.994735i \(0.467323\pi\)
\(368\) 60.0833 + 60.0833i 0.163270 + 0.163270i
\(369\) 0 0
\(370\) −150.000 50.0000i −0.405405 0.135135i
\(371\) −126.491 219.089i −0.340946 0.590536i
\(372\) 0 0
\(373\) −136.603 + 36.6025i −0.366227 + 0.0981301i −0.437239 0.899345i \(-0.644044\pi\)
0.0710125 + 0.997475i \(0.477377\pi\)
\(374\) −136.931 79.0569i −0.366125 0.211382i
\(375\) 0 0
\(376\) 195.000 + 337.750i 0.518617 + 0.898271i
\(377\) −474.342 + 474.342i −1.25820 + 1.25820i
\(378\) 0 0
\(379\) 558.000i 1.47230i −0.676821 0.736148i \(-0.736643\pi\)
0.676821 0.736148i \(-0.263357\pi\)
\(380\) −88.1728 + 18.0432i −0.232034 + 0.0474822i
\(381\) 0 0
\(382\) −91.5064 341.506i −0.239545 0.893996i
\(383\) 384.458 103.015i 1.00381 0.268969i 0.280767 0.959776i \(-0.409411\pi\)
0.723039 + 0.690807i \(0.242744\pi\)
\(384\) 0 0
\(385\) −308.013 + 466.506i −0.800033 + 1.21170i
\(386\) 395.285 1.02405
\(387\) 0 0
\(388\) 5.00000 + 5.00000i 0.0128866 + 0.0128866i
\(389\) −451.871 + 260.888i −1.16162 + 0.670663i −0.951692 0.307053i \(-0.900657\pi\)
−0.209930 + 0.977716i \(0.567324\pi\)
\(390\) 0 0
\(391\) −10.0000 + 17.3205i −0.0255754 + 0.0442980i
\(392\) −1.73621 6.47963i −0.00442911 0.0165297i
\(393\) 0 0
\(394\) 398.372 230.000i 1.01110 0.583756i
\(395\) 56.9210 + 18.9737i 0.144104 + 0.0480346i
\(396\) 0 0
\(397\) −260.000 + 260.000i −0.654912 + 0.654912i −0.954172 0.299260i \(-0.903260\pi\)
0.299260 + 0.954172i \(0.403260\pi\)
\(398\) −10.4173 + 38.8778i −0.0261740 + 0.0976828i
\(399\) 0 0
\(400\) 436.817 186.590i 1.09204 0.466474i
\(401\) −126.491 + 219.089i −0.315439 + 0.546357i −0.979531 0.201295i \(-0.935485\pi\)
0.664092 + 0.747651i \(0.268818\pi\)
\(402\) 0 0
\(403\) 29.2820 109.282i 0.0726601 0.271171i
\(404\) 15.8114i 0.0391371i
\(405\) 0 0
\(406\) 750.000 1.84729
\(407\) −215.988 57.8737i −0.530682 0.142196i
\(408\) 0 0
\(409\) 301.377 + 174.000i 0.736863 + 0.425428i 0.820928 0.571032i \(-0.193457\pi\)
−0.0840648 + 0.996460i \(0.526790\pi\)
\(410\) −352.918 21.1832i −0.860776 0.0516664i
\(411\) 0 0
\(412\) 47.8109 + 12.8109i 0.116046 + 0.0310944i
\(413\) 237.171 + 237.171i 0.574263 + 0.574263i
\(414\) 0 0
\(415\) 340.000 170.000i 0.819277 0.409639i
\(416\) 110.680 + 191.703i 0.266057 + 0.460824i
\(417\) 0 0
\(418\) −614.711 + 164.711i −1.47060 + 0.394046i
\(419\) 534.029 + 308.322i 1.27453 + 0.735852i 0.975838 0.218496i \(-0.0701151\pi\)
0.298696 + 0.954348i \(0.403448\pi\)
\(420\) 0 0
\(421\) −169.000 292.717i −0.401425 0.695289i 0.592473 0.805590i \(-0.298152\pi\)
−0.993898 + 0.110302i \(0.964818\pi\)
\(422\) 471.179 471.179i 1.11654 1.11654i
\(423\) 0 0
\(424\) 240.000i 0.566038i
\(425\) 69.0329 + 87.9458i 0.162430 + 0.206931i
\(426\) 0 0
\(427\) 106.147 + 396.147i 0.248589 + 0.927746i
\(428\) 82.0753 21.9920i 0.191765 0.0513832i
\(429\) 0 0
\(430\) −154.904 + 31.6987i −0.360241 + 0.0737180i
\(431\) −221.359 −0.513595 −0.256797 0.966465i \(-0.582667\pi\)
−0.256797 + 0.966465i \(0.582667\pi\)
\(432\) 0 0
\(433\) 145.000 + 145.000i 0.334873 + 0.334873i 0.854434 0.519561i \(-0.173904\pi\)
−0.519561 + 0.854434i \(0.673904\pi\)
\(434\) −109.545 + 63.2456i −0.252407 + 0.145727i
\(435\) 0 0
\(436\) 81.0000 140.296i 0.185780 0.321780i
\(437\) 20.8345 + 77.7555i 0.0476763 + 0.177930i
\(438\) 0 0
\(439\) 67.5500 39.0000i 0.153872 0.0888383i −0.421087 0.907020i \(-0.638351\pi\)
0.574959 + 0.818182i \(0.305018\pi\)
\(440\) 474.342 237.171i 1.07805 0.539025i
\(441\) 0 0
\(442\) −100.000 + 100.000i −0.226244 + 0.226244i
\(443\) −71.7634 + 267.825i −0.161994 + 0.604570i 0.836410 + 0.548104i \(0.184650\pi\)
−0.998404 + 0.0564665i \(0.982017\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −339.945 + 588.802i −0.762208 + 1.32018i
\(447\) 0 0
\(448\) −75.0352 + 280.035i −0.167489 + 0.625079i
\(449\) 284.605i 0.633864i 0.948448 + 0.316932i \(0.102653\pi\)
−0.948448 + 0.316932i \(0.897347\pi\)
\(450\) 0 0
\(451\) −500.000 −1.10865
\(452\) −159.831 42.8265i −0.353608 0.0947490i
\(453\) 0 0
\(454\) 744.782 + 430.000i 1.64049 + 0.947137i
\(455\) 331.735 + 374.101i 0.729088 + 0.822201i
\(456\) 0 0
\(457\) 498.599 + 133.599i 1.09103 + 0.292340i 0.759106 0.650967i \(-0.225637\pi\)
0.331921 + 0.943307i \(0.392303\pi\)
\(458\) 123.329 + 123.329i 0.269277 + 0.269277i
\(459\) 0 0
\(460\) 10.0000 + 20.0000i 0.0217391 + 0.0434783i
\(461\) 419.002 + 725.732i 0.908898 + 1.57426i 0.815598 + 0.578619i \(0.196408\pi\)
0.0932994 + 0.995638i \(0.470259\pi\)
\(462\) 0 0
\(463\) 47.8109 12.8109i 0.103263 0.0276693i −0.206817 0.978380i \(-0.566311\pi\)
0.310081 + 0.950710i \(0.399644\pi\)
\(464\) −780.505 450.625i −1.68212 0.971174i
\(465\) 0 0
\(466\) −175.000 303.109i −0.375536 0.650448i
\(467\) 117.004 117.004i 0.250544 0.250544i −0.570649 0.821194i \(-0.693308\pi\)
0.821194 + 0.570649i \(0.193308\pi\)
\(468\) 0 0
\(469\) 700.000i 1.49254i
\(470\) 130.312 + 636.804i 0.277260 + 1.35490i
\(471\) 0 0
\(472\) −82.3557 307.356i −0.174482 0.651177i
\(473\) −215.988 + 57.8737i −0.456633 + 0.122355i
\(474\) 0 0
\(475\) 446.769 + 53.8269i 0.940567 + 0.113320i
\(476\) 31.6228 0.0664344
\(477\) 0 0
\(478\) −600.000 600.000i −1.25523 1.25523i
\(479\) −328.634 + 189.737i −0.686083 + 0.396110i −0.802143 0.597132i \(-0.796307\pi\)
0.116060 + 0.993242i \(0.462973\pi\)
\(480\) 0 0
\(481\) −100.000 + 173.205i −0.207900 + 0.360094i
\(482\) −122.692 457.894i −0.254548 0.949987i
\(483\) 0 0
\(484\) −111.717 + 64.5000i −0.230821 + 0.133264i
\(485\) −15.8114 31.6228i −0.0326008 0.0652016i
\(486\) 0 0
\(487\) −125.000 + 125.000i −0.256674 + 0.256674i −0.823700 0.567026i \(-0.808094\pi\)
0.567026 + 0.823700i \(0.308094\pi\)
\(488\) 100.700 375.818i 0.206353 0.770120i
\(489\) 0 0
\(490\) 0.669873 11.1603i 0.00136709 0.0227760i
\(491\) 229.265 397.099i 0.466935 0.808755i −0.532351 0.846523i \(-0.678692\pi\)
0.999287 + 0.0377681i \(0.0120248\pi\)
\(492\) 0 0
\(493\) 54.9038 204.904i 0.111367 0.415626i
\(494\) 569.210i 1.15225i
\(495\) 0 0
\(496\) 152.000 0.306452
\(497\) 431.975 + 115.747i 0.869165 + 0.232892i
\(498\) 0 0
\(499\) 192.258 + 111.000i 0.385286 + 0.222445i 0.680116 0.733105i \(-0.261930\pi\)
−0.294830 + 0.955550i \(0.595263\pi\)
\(500\) 124.581 10.2318i 0.249161 0.0204636i
\(501\) 0 0
\(502\) −785.465 210.465i −1.56467 0.419252i
\(503\) 458.530 + 458.530i 0.911591 + 0.911591i 0.996397 0.0848065i \(-0.0270272\pi\)
−0.0848065 + 0.996397i \(0.527027\pi\)
\(504\) 0 0
\(505\) −25.0000 + 75.0000i −0.0495050 + 0.148515i
\(506\) 79.0569 + 136.931i 0.156239 + 0.270614i
\(507\) 0 0
\(508\) 75.1314 20.1314i 0.147896 0.0396287i
\(509\) −205.396 118.585i −0.403528 0.232977i 0.284477 0.958683i \(-0.408180\pi\)
−0.688005 + 0.725706i \(0.741513\pi\)
\(510\) 0 0
\(511\) 275.000 + 476.314i 0.538160 + 0.932121i
\(512\) 150.208 150.208i 0.293375 0.293375i
\(513\) 0 0
\(514\) 970.000i 1.88716i
\(515\) −206.531 136.363i −0.401031 0.264783i
\(516\) 0 0
\(517\) 237.917 + 887.917i 0.460187 + 1.71744i
\(518\) 215.988 57.8737i 0.416964 0.111725i
\(519\) 0 0
\(520\) −95.0962 464.711i −0.182877 0.893676i
\(521\) −790.569 −1.51741 −0.758704 0.651436i \(-0.774167\pi\)
−0.758704 + 0.651436i \(0.774167\pi\)
\(522\) 0 0
\(523\) 370.000 + 370.000i 0.707457 + 0.707457i 0.966000 0.258543i \(-0.0832423\pi\)
−0.258543 + 0.966000i \(0.583242\pi\)
\(524\) 150.624 86.9626i 0.287450 0.165959i
\(525\) 0 0
\(526\) 455.000 788.083i 0.865019 1.49826i
\(527\) 9.25979 + 34.5580i 0.0175708 + 0.0655750i
\(528\) 0 0
\(529\) −440.807 + 254.500i −0.833283 + 0.481096i
\(530\) −126.491 + 379.473i −0.238662 + 0.715987i
\(531\) 0 0
\(532\) 90.0000 90.0000i 0.169173 0.169173i
\(533\) −115.747 + 431.975i −0.217162 + 0.810460i
\(534\) 0 0
\(535\) −424.090 25.4552i −0.792691 0.0475798i
\(536\) 332.039 575.109i 0.619476 1.07296i
\(537\) 0 0
\(538\) −82.3557 + 307.356i −0.153078 + 0.571293i
\(539\) 15.8114i 0.0293347i
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) −384.458 103.015i −0.709332 0.190065i
\(543\) 0 0
\(544\) −60.6218 35.0000i −0.111437 0.0643382i
\(545\) −606.044 + 537.411i −1.11201 + 0.986075i
\(546\) 0 0
\(547\) −669.352 179.352i −1.22368 0.327884i −0.411564 0.911381i \(-0.635017\pi\)
−0.812115 + 0.583497i \(0.801684\pi\)
\(548\) 15.8114 + 15.8114i 0.0288529 + 0.0288529i
\(549\) 0 0
\(550\) 875.000 125.000i 1.59091 0.227273i
\(551\) −426.907 739.425i −0.774787 1.34197i
\(552\) 0 0
\(553\) −81.9615 + 21.9615i −0.148213 + 0.0397134i
\(554\) 629.881 + 363.662i 1.13697 + 0.656429i
\(555\) 0 0
\(556\) −51.0000 88.3346i −0.0917266 0.158875i
\(557\) −252.982 + 252.982i −0.454187 + 0.454187i −0.896742 0.442555i \(-0.854072\pi\)
0.442555 + 0.896742i \(0.354072\pi\)
\(558\) 0 0
\(559\) 200.000i 0.357782i
\(560\) −370.128 + 560.585i −0.660943 + 1.00104i
\(561\) 0 0
\(562\) −91.5064 341.506i −0.162823 0.607663i
\(563\) −276.464 + 74.0783i −0.491055 + 0.131578i −0.495846 0.868411i \(-0.665142\pi\)
0.00479040 + 0.999989i \(0.498475\pi\)
\(564\) 0 0
\(565\) 690.429 + 455.859i 1.22200 + 0.806830i
\(566\) 1106.80 1.95547
\(567\) 0 0
\(568\) −300.000 300.000i −0.528169 0.528169i
\(569\) 164.317 94.8683i 0.288782 0.166728i −0.348611 0.937268i \(-0.613346\pi\)
0.637392 + 0.770539i \(0.280013\pi\)
\(570\) 0 0
\(571\) 329.000 569.845i 0.576182 0.997977i −0.419730 0.907649i \(-0.637875\pi\)
0.995912 0.0903277i \(-0.0287914\pi\)
\(572\) 57.8737 + 215.988i 0.101178 + 0.377601i
\(573\) 0 0
\(574\) 433.013 250.000i 0.754378 0.435540i
\(575\) −15.8114 110.680i −0.0274981 0.192486i
\(576\) 0 0
\(577\) −35.0000 + 35.0000i −0.0606586 + 0.0606586i −0.736785 0.676127i \(-0.763657\pi\)
0.676127 + 0.736785i \(0.263657\pi\)
\(578\) −155.680 + 581.007i −0.269343 + 1.00520i
\(579\) 0 0
\(580\) −157.356 177.452i −0.271303 0.305952i
\(581\) −268.794 + 465.564i −0.462640 + 0.801315i
\(582\) 0 0
\(583\) −146.410 + 546.410i −0.251132 + 0.937239i
\(584\) 521.776i 0.893452i
\(585\) 0 0
\(586\) −640.000 −1.09215
\(587\) −211.668 56.7162i −0.360593 0.0966205i 0.0739741 0.997260i \(-0.476432\pi\)
−0.434567 + 0.900640i \(0.643098\pi\)
\(588\) 0 0
\(589\) 124.708 + 72.0000i 0.211728 + 0.122241i
\(590\) 31.7749 529.377i 0.0538557 0.897250i
\(591\) 0 0
\(592\) −259.545 69.5448i −0.438420 0.117474i
\(593\) −167.601 167.601i −0.282632 0.282632i 0.551526 0.834158i \(-0.314046\pi\)
−0.834158 + 0.551526i \(0.814046\pi\)
\(594\) 0 0
\(595\) −150.000 50.0000i −0.252101 0.0840336i
\(596\) 23.7171 + 41.0792i 0.0397938 + 0.0689248i
\(597\) 0 0
\(598\) 136.603 36.6025i 0.228432 0.0612083i
\(599\) 903.742 + 521.776i 1.50875 + 0.871078i 0.999948 + 0.0101955i \(0.00324539\pi\)
0.508804 + 0.860883i \(0.330088\pi\)
\(600\) 0 0
\(601\) 191.000 + 330.822i 0.317804 + 0.550452i 0.980029 0.198852i \(-0.0637214\pi\)
−0.662226 + 0.749304i \(0.730388\pi\)
\(602\) 158.114 158.114i 0.262648 0.262648i
\(603\) 0 0
\(604\) 22.0000i 0.0364238i
\(605\) 631.905 129.310i 1.04447 0.213735i
\(606\) 0 0
\(607\) 239.747 + 894.747i 0.394970 + 1.47405i 0.821832 + 0.569730i \(0.192952\pi\)
−0.426862 + 0.904317i \(0.640381\pi\)
\(608\) −272.144 + 72.9209i −0.447606 + 0.119936i
\(609\) 0 0
\(610\) 357.295 541.147i 0.585729 0.887127i
\(611\) 822.192 1.34565
\(612\) 0 0
\(613\) −620.000 620.000i −1.01142 1.01142i −0.999934 0.0114852i \(-0.996344\pi\)
−0.0114852 0.999934i \(-0.503656\pi\)
\(614\) 520.336 300.416i 0.847453 0.489277i
\(615\) 0 0
\(616\) −375.000 + 649.519i −0.608766 + 1.05441i
\(617\) −12.7322 47.5173i −0.0206357 0.0770134i 0.954840 0.297120i \(-0.0960261\pi\)
−0.975476 + 0.220107i \(0.929359\pi\)
\(618\) 0 0
\(619\) 223.435 129.000i 0.360961 0.208401i −0.308542 0.951211i \(-0.599841\pi\)
0.669502 + 0.742810i \(0.266508\pi\)
\(620\) 37.9473 + 12.6491i 0.0612054 + 0.0204018i
\(621\) 0 0
\(622\) −400.000 + 400.000i −0.643087 + 0.643087i
\(623\) 0 0
\(624\) 0 0
\(625\) −607.115 148.446i −0.971384 0.237513i
\(626\) 229.265 397.099i 0.366238 0.634343i
\(627\) 0 0
\(628\) 73.2051 273.205i 0.116569 0.435040i
\(629\) 63.2456i 0.100549i
\(630\) 0 0
\(631\) 812.000 1.28685 0.643423 0.765511i \(-0.277514\pi\)
0.643423 + 0.765511i \(0.277514\pi\)
\(632\) 77.7555 + 20.8345i 0.123031 + 0.0329660i
\(633\) 0 0
\(634\) 43.3013 + 25.0000i 0.0682985 + 0.0394322i
\(635\) −388.210 23.3016i −0.611354 0.0366954i
\(636\) 0 0
\(637\) −13.6603 3.66025i −0.0214447 0.00574608i
\(638\) −1185.85 1185.85i −1.85871 1.85871i
\(639\) 0 0
\(640\) 690.000 345.000i 1.07812 0.539062i
\(641\) −221.359 383.406i −0.345335 0.598137i 0.640080 0.768308i \(-0.278901\pi\)
−0.985414 + 0.170171i \(0.945568\pi\)
\(642\) 0 0
\(643\) −1120.14 + 300.141i −1.74205 + 0.466782i −0.982902 0.184131i \(-0.941053\pi\)
−0.759152 + 0.650913i \(0.774386\pi\)
\(644\) −27.3861 15.8114i −0.0425250 0.0245518i
\(645\) 0 0
\(646\) −90.0000 155.885i −0.139319 0.241307i
\(647\) −679.890 + 679.890i −1.05083 + 1.05083i −0.0521974 + 0.998637i \(0.516622\pi\)
−0.998637 + 0.0521974i \(0.983378\pi\)
\(648\) 0 0
\(649\) 750.000i 1.15562i
\(650\) 94.5642 784.893i 0.145483 1.20753i
\(651\) 0 0
\(652\) 36.6025 + 136.603i 0.0561389 + 0.209513i
\(653\) −704.120 + 188.668i −1.07828 + 0.288925i −0.753893 0.656998i \(-0.771826\pi\)
−0.324391 + 0.945923i \(0.605159\pi\)
\(654\) 0 0
\(655\) −851.971 + 174.343i −1.30072 + 0.266173i
\(656\) −600.833 −0.915904
\(657\) 0 0
\(658\) −650.000 650.000i −0.987842 0.987842i
\(659\) 780.505 450.625i 1.18438 0.683801i 0.227354 0.973812i \(-0.426992\pi\)
0.957023 + 0.290012i \(0.0936592\pi\)
\(660\) 0 0
\(661\) 401.000 694.552i 0.606657 1.05076i −0.385131 0.922862i \(-0.625844\pi\)
0.991787 0.127898i \(-0.0408230\pi\)
\(662\) −278.951 1041.06i −0.421376 1.57260i
\(663\) 0 0
\(664\) 441.673 255.000i 0.665170 0.384036i
\(665\) −569.210 + 284.605i −0.855955 + 0.427977i
\(666\) 0 0
\(667\) −150.000 + 150.000i −0.224888 + 0.224888i
\(668\) 54.4013 203.028i 0.0814390 0.303935i
\(669\) 0 0
\(670\) 828.109 734.327i 1.23598 1.09601i
\(671\) 458.530 794.198i 0.683354 1.18360i
\(672\) 0 0
\(673\) 283.670 1058.67i 0.421500 1.57306i −0.349948 0.936769i \(-0.613801\pi\)
0.771449 0.636291i \(-0.219532\pi\)
\(674\) 490.153i 0.727230i
\(675\) 0 0
\(676\) 31.0000 0.0458580
\(677\) −678.201 181.723i −1.00177 0.268425i −0.279585 0.960121i \(-0.590197\pi\)
−0.722189 + 0.691696i \(0.756864\pi\)
\(678\) 0 0
\(679\) 43.3013 + 25.0000i 0.0637721 + 0.0368189i
\(680\) 99.5205 + 112.230i 0.146354 + 0.165045i
\(681\) 0 0
\(682\) 273.205 + 73.2051i 0.400594 + 0.107339i
\(683\) 60.0833 + 60.0833i 0.0879697 + 0.0879697i 0.749722 0.661753i \(-0.230187\pi\)
−0.661753 + 0.749722i \(0.730187\pi\)
\(684\) 0 0
\(685\) −50.0000 100.000i −0.0729927 0.145985i
\(686\) −379.473 657.267i −0.553168 0.958115i
\(687\) 0 0
\(688\) −259.545 + 69.5448i −0.377245 + 0.101083i
\(689\) 438.178 + 252.982i 0.635962 + 0.367173i
\(690\) 0 0
\(691\) 281.000 + 486.706i 0.406657 + 0.704351i 0.994513 0.104615i \(-0.0333611\pi\)
−0.587856 + 0.808966i \(0.700028\pi\)
\(692\) −110.680 + 110.680i −0.159942 + 0.159942i
\(693\) 0 0
\(694\) 520.000i 0.749280i
\(695\) 102.245 + 499.646i 0.147115 + 0.718915i
\(696\) 0 0
\(697\) −36.6025 136.603i −0.0525144 0.195986i
\(698\) −686.841 + 184.038i −0.984012 + 0.263665i
\(699\) 0 0
\(700\) −139.054 + 109.151i −0.198649 + 0.155929i
\(701\) −363.662 −0.518776 −0.259388 0.965773i \(-0.583521\pi\)
−0.259388 + 0.965773i \(0.583521\pi\)
\(702\) 0 0
\(703\) −180.000 180.000i −0.256046 0.256046i
\(704\) 561.416 324.133i 0.797465 0.460417i
\(705\) 0 0
\(706\) −355.000 + 614.878i −0.502833 + 0.870932i
\(707\) −28.9368 107.994i −0.0409291 0.152749i
\(708\) 0 0
\(709\) −431.281 + 249.000i −0.608294 + 0.351199i −0.772298 0.635261i \(-0.780893\pi\)
0.164003 + 0.986460i \(0.447559\pi\)
\(710\) −316.228 632.456i −0.445391 0.890782i
\(711\) 0 0
\(712\) 0 0
\(713\) 9.25979 34.5580i 0.0129871 0.0484685i
\(714\) 0 0
\(715\) 66.9873 1116.03i 0.0936885 1.56087i
\(716\) 71.1512 123.238i 0.0993733 0.172120i
\(717\) 0 0
\(718\) −164.711 + 614.711i −0.229403 + 0.856144i
\(719\) 569.210i 0.791669i 0.918322 + 0.395834i \(0.129545\pi\)
−0.918322 + 0.395834i \(0.870455\pi\)
\(720\) 0 0
\(721\) 350.000 0.485437
\(722\) 79.9154 + 21.4133i 0.110686 + 0.0296583i
\(723\) 0 0
\(724\) 188.794 + 109.000i 0.260765 + 0.150552i
\(725\) 465.828 + 1090.53i 0.642521 + 1.50418i
\(726\) 0 0
\(727\) 1236.25 + 331.253i 1.70049 + 0.455644i 0.973062 0.230545i \(-0.0740508\pi\)
0.727424 + 0.686188i \(0.240717\pi\)
\(728\) 474.342 + 474.342i 0.651568 + 0.651568i
\(729\) 0 0
\(730\) 275.000 825.000i 0.376712 1.13014i
\(731\) −31.6228 54.7723i −0.0432596 0.0749278i
\(732\) 0 0
\(733\) −751.314 + 201.314i −1.02498 + 0.274644i −0.731878 0.681436i \(-0.761356\pi\)
−0.293107 + 0.956080i \(0.594689\pi\)
\(734\) 506.643 + 292.511i 0.690250 + 0.398516i
\(735\) 0 0
\(736\) 35.0000 + 60.6218i 0.0475543 + 0.0823665i
\(737\) 1106.80 1106.80i 1.50176 1.50176i
\(738\) 0 0
\(739\) 198.000i 0.267930i −0.990986 0.133965i \(-0.957229\pi\)
0.990986 0.133965i \(-0.0427709\pi\)
\(740\) −59.0089 38.9609i −0.0797418 0.0526498i
\(741\) 0 0
\(742\) −146.410 546.410i −0.197318 0.736402i
\(743\) 1317.52 353.030i 1.77325 0.475141i 0.783923 0.620858i \(-0.213216\pi\)
0.989326 + 0.145717i \(0.0465490\pi\)
\(744\) 0 0
\(745\) −47.5481 232.356i −0.0638229 0.311887i
\(746\) −316.228 −0.423898
\(747\) 0 0
\(748\) −50.0000 50.0000i −0.0668449 0.0668449i
\(749\) 520.336 300.416i 0.694708 0.401090i
\(750\) 0 0
\(751\) −364.000 + 630.466i −0.484687 + 0.839503i −0.999845 0.0175925i \(-0.994400\pi\)
0.515158 + 0.857095i \(0.327733\pi\)
\(752\) 285.896 + 1066.98i 0.380181 + 1.41885i
\(753\) 0 0
\(754\) −1299.04 + 750.000i −1.72286 + 0.994695i
\(755\) 34.7851 104.355i 0.0460729 0.138219i
\(756\) 0 0
\(757\) −170.000 + 170.000i −0.224571 + 0.224571i −0.810420 0.585849i \(-0.800761\pi\)
0.585849 + 0.810420i \(0.300761\pi\)
\(758\) 322.935 1205.21i 0.426036 1.58999i
\(759\) 0 0
\(760\) 602.654 + 36.1731i 0.792965 + 0.0475962i
\(761\) 15.8114 27.3861i 0.0207771 0.0359870i −0.855450 0.517886i \(-0.826719\pi\)
0.876227 + 0.481899i \(0.160053\pi\)
\(762\) 0 0
\(763\) 296.481 1106.48i 0.388572 1.45017i
\(764\) 158.114i 0.206955i
\(765\) 0 0
\(766\) 890.000 1.16188
\(767\) −647.963 173.621i −0.844801 0.226364i
\(768\) 0 0
\(769\) −275.396 159.000i −0.358122 0.206762i 0.310134 0.950693i \(-0.399626\pi\)
−0.668257 + 0.743931i \(0.732959\pi\)
\(770\) −935.254 + 829.337i −1.21462 + 1.07706i
\(771\) 0 0
\(772\) 170.753 + 45.7532i 0.221183 + 0.0592658i
\(773\) −452.206 452.206i −0.585001 0.585001i 0.351272 0.936273i \(-0.385749\pi\)
−0.936273 + 0.351272i \(0.885749\pi\)
\(774\) 0 0
\(775\) −160.000 120.000i −0.206452 0.154839i
\(776\) −23.7171 41.0792i −0.0305633 0.0529371i
\(777\) 0 0
\(778\) −1126.97 + 301.971i −1.44855 + 0.388137i
\(779\) −492.950 284.605i −0.632799 0.365347i
\(780\) 0