Properties

Label 405.3.l.g.217.2
Level $405$
Weight $3$
Character 405.217
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 217.2
Root \(-0.578737 - 2.15988i\) of defining polynomial
Character \(\chi\) \(=\) 405.217
Dual form 405.3.l.g.28.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.15988 - 0.578737i) q^{2} +(0.866025 - 0.500000i) q^{4} +(-3.31735 + 3.74101i) q^{5} +(6.83013 - 1.83013i) q^{7} +(-4.74342 + 4.74342i) q^{8} +(-5.00000 + 10.0000i) q^{10} +(-7.90569 + 13.6931i) q^{11} +(-13.6603 - 3.66025i) q^{13} +(13.6931 - 7.90569i) q^{14} +(-9.50000 + 16.4545i) q^{16} +(3.16228 + 3.16228i) q^{17} +18.0000i q^{19} +(-1.00240 + 4.89849i) q^{20} +(-9.15064 + 34.1506i) q^{22} +(-4.31975 - 1.15747i) q^{23} +(-2.99038 - 24.8205i) q^{25} -31.6228 q^{26} +(5.00000 - 5.00000i) q^{28} +(41.0792 + 23.7171i) q^{29} +(-4.00000 - 6.92820i) q^{31} +(-4.05116 + 15.1191i) q^{32} +(8.66025 + 5.00000i) q^{34} +(-15.8114 + 31.6228i) q^{35} +(10.0000 + 10.0000i) q^{37} +(10.4173 + 38.8778i) q^{38} +(-2.00962 - 33.4808i) q^{40} +(15.8114 + 27.3861i) q^{41} +(3.66025 + 13.6603i) q^{43} +15.8114i q^{44} -10.0000 q^{46} +(-56.1568 + 15.0472i) q^{47} +(0.866025 - 0.500000i) q^{49} +(-20.8234 - 51.8786i) q^{50} +(-13.6603 + 3.66025i) q^{52} +(-25.2982 + 25.2982i) q^{53} +(-25.0000 - 75.0000i) q^{55} +(-23.7171 + 41.0792i) q^{56} +(102.452 + 27.4519i) q^{58} +(41.0792 - 23.7171i) q^{59} +(29.0000 - 50.2295i) q^{61} +(-12.6491 - 12.6491i) q^{62} -41.0000i q^{64} +(59.0089 - 38.9609i) q^{65} +(25.6218 - 95.6218i) q^{67} +(4.31975 + 1.15747i) q^{68} +(-15.8494 + 77.4519i) q^{70} +63.2456 q^{71} +(55.0000 - 55.0000i) q^{73} +(27.3861 + 15.8114i) q^{74} +(9.00000 + 15.5885i) q^{76} +(-28.9368 + 107.994i) q^{77} +(-10.3923 - 6.00000i) q^{79} +(-30.0416 - 90.1249i) q^{80} +(50.0000 + 50.0000i) q^{82} +(-19.6771 - 73.4358i) q^{83} +(-22.3205 + 1.33975i) q^{85} +(15.8114 + 27.3861i) q^{86} +(-27.4519 - 102.452i) q^{88} -100.000 q^{91} +(-4.31975 + 1.15747i) q^{92} +(-112.583 + 65.0000i) q^{94} +(-67.3383 - 59.7123i) q^{95} +(6.83013 - 1.83013i) q^{97} +(1.58114 - 1.58114i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 20 q^{7} - 40 q^{10} - 40 q^{13} - 76 q^{16} + 100 q^{22} + 80 q^{25} + 40 q^{28} - 32 q^{31} + 80 q^{37} - 120 q^{40} - 40 q^{43} - 80 q^{46} - 40 q^{52} - 200 q^{55} + 300 q^{58} + 232 q^{61} - 280 q^{67}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.15988 0.578737i 1.07994 0.289368i 0.325368 0.945588i \(-0.394512\pi\)
0.754570 + 0.656219i \(0.227845\pi\)
\(3\) 0 0
\(4\) 0.866025 0.500000i 0.216506 0.125000i
\(5\) −3.31735 + 3.74101i −0.663470 + 0.748203i
\(6\) 0 0
\(7\) 6.83013 1.83013i 0.975732 0.261447i 0.264486 0.964390i \(-0.414798\pi\)
0.711246 + 0.702943i \(0.248131\pi\)
\(8\) −4.74342 + 4.74342i −0.592927 + 0.592927i
\(9\) 0 0
\(10\) −5.00000 + 10.0000i −0.500000 + 1.00000i
\(11\) −7.90569 + 13.6931i −0.718699 + 1.24482i 0.242816 + 0.970072i \(0.421929\pi\)
−0.961515 + 0.274752i \(0.911404\pi\)
\(12\) 0 0
\(13\) −13.6603 3.66025i −1.05079 0.281558i −0.308211 0.951318i \(-0.599730\pi\)
−0.742578 + 0.669760i \(0.766397\pi\)
\(14\) 13.6931 7.90569i 0.978076 0.564692i
\(15\) 0 0
\(16\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(17\) 3.16228 + 3.16228i 0.186016 + 0.186016i 0.793971 0.607955i \(-0.208010\pi\)
−0.607955 + 0.793971i \(0.708010\pi\)
\(18\) 0 0
\(19\) 18.0000i 0.947368i 0.880695 + 0.473684i \(0.157076\pi\)
−0.880695 + 0.473684i \(0.842924\pi\)
\(20\) −1.00240 + 4.89849i −0.0501201 + 0.244924i
\(21\) 0 0
\(22\) −9.15064 + 34.1506i −0.415938 + 1.55230i
\(23\) −4.31975 1.15747i −0.187815 0.0503250i 0.163685 0.986513i \(-0.447662\pi\)
−0.351501 + 0.936188i \(0.614328\pi\)
\(24\) 0 0
\(25\) −2.99038 24.8205i −0.119615 0.992820i
\(26\) −31.6228 −1.21626
\(27\) 0 0
\(28\) 5.00000 5.00000i 0.178571 0.178571i
\(29\) 41.0792 + 23.7171i 1.41652 + 0.817830i 0.995992 0.0894471i \(-0.0285100\pi\)
0.420532 + 0.907278i \(0.361843\pi\)
\(30\) 0 0
\(31\) −4.00000 6.92820i −0.129032 0.223490i 0.794270 0.607565i \(-0.207854\pi\)
−0.923302 + 0.384075i \(0.874520\pi\)
\(32\) −4.05116 + 15.1191i −0.126599 + 0.472473i
\(33\) 0 0
\(34\) 8.66025 + 5.00000i 0.254713 + 0.147059i
\(35\) −15.8114 + 31.6228i −0.451754 + 0.903508i
\(36\) 0 0
\(37\) 10.0000 + 10.0000i 0.270270 + 0.270270i 0.829209 0.558939i \(-0.188791\pi\)
−0.558939 + 0.829209i \(0.688791\pi\)
\(38\) 10.4173 + 38.8778i 0.274139 + 1.02310i
\(39\) 0 0
\(40\) −2.00962 33.4808i −0.0502405 0.837019i
\(41\) 15.8114 + 27.3861i 0.385644 + 0.667954i 0.991858 0.127347i \(-0.0406461\pi\)
−0.606215 + 0.795301i \(0.707313\pi\)
\(42\) 0 0
\(43\) 3.66025 + 13.6603i 0.0851222 + 0.317680i 0.995337 0.0964555i \(-0.0307505\pi\)
−0.910215 + 0.414136i \(0.864084\pi\)
\(44\) 15.8114i 0.359350i
\(45\) 0 0
\(46\) −10.0000 −0.217391
\(47\) −56.1568 + 15.0472i −1.19482 + 0.320152i −0.800791 0.598944i \(-0.795587\pi\)
−0.394034 + 0.919096i \(0.628921\pi\)
\(48\) 0 0
\(49\) 0.866025 0.500000i 0.0176740 0.0102041i
\(50\) −20.8234 51.8786i −0.416468 1.03757i
\(51\) 0 0
\(52\) −13.6603 + 3.66025i −0.262697 + 0.0703895i
\(53\) −25.2982 + 25.2982i −0.477325 + 0.477325i −0.904275 0.426950i \(-0.859588\pi\)
0.426950 + 0.904275i \(0.359588\pi\)
\(54\) 0 0
\(55\) −25.0000 75.0000i −0.454545 1.36364i
\(56\) −23.7171 + 41.0792i −0.423519 + 0.733557i
\(57\) 0 0
\(58\) 102.452 + 27.4519i 1.76641 + 0.473309i
\(59\) 41.0792 23.7171i 0.696257 0.401984i −0.109695 0.993965i \(-0.534987\pi\)
0.805952 + 0.591981i \(0.201654\pi\)
\(60\) 0 0
\(61\) 29.0000 50.2295i 0.475410 0.823434i −0.524193 0.851599i \(-0.675633\pi\)
0.999603 + 0.0281652i \(0.00896646\pi\)
\(62\) −12.6491 12.6491i −0.204018 0.204018i
\(63\) 0 0
\(64\) 41.0000i 0.640625i
\(65\) 59.0089 38.9609i 0.907829 0.599398i
\(66\) 0 0
\(67\) 25.6218 95.6218i 0.382415 1.42719i −0.459788 0.888029i \(-0.652074\pi\)
0.842202 0.539162i \(-0.181259\pi\)
\(68\) 4.31975 + 1.15747i 0.0635258 + 0.0170217i
\(69\) 0 0
\(70\) −15.8494 + 77.4519i −0.226419 + 1.10646i
\(71\) 63.2456 0.890782 0.445391 0.895336i \(-0.353065\pi\)
0.445391 + 0.895336i \(0.353065\pi\)
\(72\) 0 0
\(73\) 55.0000 55.0000i 0.753425 0.753425i −0.221692 0.975117i \(-0.571158\pi\)
0.975117 + 0.221692i \(0.0711580\pi\)
\(74\) 27.3861 + 15.8114i 0.370083 + 0.213667i
\(75\) 0 0
\(76\) 9.00000 + 15.5885i 0.118421 + 0.205111i
\(77\) −28.9368 + 107.994i −0.375803 + 1.40252i
\(78\) 0 0
\(79\) −10.3923 6.00000i −0.131548 0.0759494i 0.432782 0.901499i \(-0.357532\pi\)
−0.564330 + 0.825549i \(0.690865\pi\)
\(80\) −30.0416 90.1249i −0.375520 1.12656i
\(81\) 0 0
\(82\) 50.0000 + 50.0000i 0.609756 + 0.609756i
\(83\) −19.6771 73.4358i −0.237073 0.884768i −0.977203 0.212305i \(-0.931903\pi\)
0.740130 0.672463i \(-0.234764\pi\)
\(84\) 0 0
\(85\) −22.3205 + 1.33975i −0.262594 + 0.0157617i
\(86\) 15.8114 + 27.3861i 0.183853 + 0.318443i
\(87\) 0 0
\(88\) −27.4519 102.452i −0.311953 1.16423i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −100.000 −1.09890
\(92\) −4.31975 + 1.15747i −0.0469538 + 0.0125812i
\(93\) 0 0
\(94\) −112.583 + 65.0000i −1.19769 + 0.691489i
\(95\) −67.3383 59.7123i −0.708824 0.628550i
\(96\) 0 0
\(97\) 6.83013 1.83013i 0.0704137 0.0188673i −0.223440 0.974718i \(-0.571729\pi\)
0.293854 + 0.955850i \(0.405062\pi\)
\(98\) 1.58114 1.58114i 0.0161341 0.0161341i
\(99\) 0 0
\(100\) −15.0000 20.0000i −0.150000 0.200000i
\(101\) −7.90569 + 13.6931i −0.0782742 + 0.135575i −0.902505 0.430678i \(-0.858274\pi\)
0.824231 + 0.566253i \(0.191608\pi\)
\(102\) 0 0
\(103\) 47.8109 + 12.8109i 0.464183 + 0.124378i 0.483328 0.875439i \(-0.339428\pi\)
−0.0191450 + 0.999817i \(0.506094\pi\)
\(104\) 82.1584 47.4342i 0.789984 0.456098i
\(105\) 0 0
\(106\) −40.0000 + 69.2820i −0.377358 + 0.653604i
\(107\) 60.0833 + 60.0833i 0.561526 + 0.561526i 0.929741 0.368215i \(-0.120031\pi\)
−0.368215 + 0.929741i \(0.620031\pi\)
\(108\) 0 0
\(109\) 162.000i 1.48624i 0.669159 + 0.743119i \(0.266655\pi\)
−0.669159 + 0.743119i \(0.733345\pi\)
\(110\) −97.4022 147.522i −0.885474 1.34111i
\(111\) 0 0
\(112\) −34.7724 + 129.772i −0.310468 + 1.15868i
\(113\) −159.831 42.8265i −1.41443 0.378996i −0.530927 0.847418i \(-0.678156\pi\)
−0.883505 + 0.468422i \(0.844823\pi\)
\(114\) 0 0
\(115\) 18.6603 12.3205i 0.162263 0.107135i
\(116\) 47.4342 0.408915
\(117\) 0 0
\(118\) 75.0000 75.0000i 0.635593 0.635593i
\(119\) 27.3861 + 15.8114i 0.230136 + 0.132869i
\(120\) 0 0
\(121\) −64.5000 111.717i −0.533058 0.923283i
\(122\) 33.5667 125.273i 0.275137 1.02683i
\(123\) 0 0
\(124\) −6.92820 4.00000i −0.0558726 0.0322581i
\(125\) 102.774 + 71.1512i 0.822192 + 0.569210i
\(126\) 0 0
\(127\) 55.0000 + 55.0000i 0.433071 + 0.433071i 0.889672 0.456601i \(-0.150933\pi\)
−0.456601 + 0.889672i \(0.650933\pi\)
\(128\) −39.9329 149.031i −0.311975 1.16431i
\(129\) 0 0
\(130\) 104.904 118.301i 0.806952 0.910010i
\(131\) 86.9626 + 150.624i 0.663837 + 1.14980i 0.979599 + 0.200961i \(0.0644064\pi\)
−0.315762 + 0.948838i \(0.602260\pi\)
\(132\) 0 0
\(133\) 32.9423 + 122.942i 0.247686 + 0.924378i
\(134\) 221.359i 1.65194i
\(135\) 0 0
\(136\) −30.0000 −0.220588
\(137\) 21.5988 5.78737i 0.157655 0.0422436i −0.179128 0.983826i \(-0.557328\pi\)
0.336783 + 0.941582i \(0.390661\pi\)
\(138\) 0 0
\(139\) −88.3346 + 51.0000i −0.635501 + 0.366906i −0.782879 0.622174i \(-0.786250\pi\)
0.147379 + 0.989080i \(0.452916\pi\)
\(140\) 2.11832 + 35.2918i 0.0151309 + 0.252084i
\(141\) 0 0
\(142\) 136.603 36.6025i 0.961990 0.257764i
\(143\) 158.114 158.114i 1.10569 1.10569i
\(144\) 0 0
\(145\) −225.000 + 75.0000i −1.55172 + 0.517241i
\(146\) 86.9626 150.624i 0.595634 1.03167i
\(147\) 0 0
\(148\) 13.6603 + 3.66025i 0.0922990 + 0.0247314i
\(149\) 41.0792 23.7171i 0.275699 0.159175i −0.355776 0.934571i \(-0.615783\pi\)
0.631475 + 0.775396i \(0.282450\pi\)
\(150\) 0 0
\(151\) 11.0000 19.0526i 0.0728477 0.126176i −0.827301 0.561759i \(-0.810125\pi\)
0.900148 + 0.435584i \(0.143458\pi\)
\(152\) −85.3815 85.3815i −0.561720 0.561720i
\(153\) 0 0
\(154\) 250.000i 1.62338i
\(155\) 39.1879 + 8.01921i 0.252825 + 0.0517369i
\(156\) 0 0
\(157\) −73.2051 + 273.205i −0.466274 + 1.74016i 0.186355 + 0.982482i \(0.440333\pi\)
−0.652629 + 0.757677i \(0.726334\pi\)
\(158\) −25.9185 6.94484i −0.164041 0.0439547i
\(159\) 0 0
\(160\) −43.1218 65.3109i −0.269511 0.408193i
\(161\) −31.6228 −0.196415
\(162\) 0 0
\(163\) 100.000 100.000i 0.613497 0.613497i −0.330359 0.943856i \(-0.607170\pi\)
0.943856 + 0.330359i \(0.107170\pi\)
\(164\) 27.3861 + 15.8114i 0.166989 + 0.0964109i
\(165\) 0 0
\(166\) −85.0000 147.224i −0.512048 0.886893i
\(167\) −54.4013 + 203.028i −0.325756 + 1.21574i 0.587793 + 0.809011i \(0.299997\pi\)
−0.913550 + 0.406727i \(0.866670\pi\)
\(168\) 0 0
\(169\) 26.8468 + 15.5000i 0.158857 + 0.0917160i
\(170\) −47.4342 + 15.8114i −0.279024 + 0.0930082i
\(171\) 0 0
\(172\) 10.0000 + 10.0000i 0.0581395 + 0.0581395i
\(173\) −40.5116 151.191i −0.234171 0.873938i −0.978521 0.206148i \(-0.933907\pi\)
0.744350 0.667790i \(-0.232760\pi\)
\(174\) 0 0
\(175\) −65.8494 164.054i −0.376282 0.937454i
\(176\) −150.208 260.168i −0.853456 1.47823i
\(177\) 0 0
\(178\) 0 0
\(179\) 142.302i 0.794986i 0.917605 + 0.397493i \(0.130120\pi\)
−0.917605 + 0.397493i \(0.869880\pi\)
\(180\) 0 0
\(181\) 218.000 1.20442 0.602210 0.798338i \(-0.294287\pi\)
0.602210 + 0.798338i \(0.294287\pi\)
\(182\) −215.988 + 57.8737i −1.18674 + 0.317987i
\(183\) 0 0
\(184\) 25.9808 15.0000i 0.141200 0.0815217i
\(185\) −70.5836 + 4.23665i −0.381533 + 0.0229008i
\(186\) 0 0
\(187\) −68.3013 + 18.3013i −0.365247 + 0.0978678i
\(188\) −41.1096 + 41.1096i −0.218668 + 0.218668i
\(189\) 0 0
\(190\) −180.000 90.0000i −0.947368 0.473684i
\(191\) −79.0569 + 136.931i −0.413911 + 0.716914i −0.995313 0.0967016i \(-0.969171\pi\)
0.581403 + 0.813616i \(0.302504\pi\)
\(192\) 0 0
\(193\) 170.753 + 45.7532i 0.884731 + 0.237063i 0.672447 0.740145i \(-0.265243\pi\)
0.212284 + 0.977208i \(0.431910\pi\)
\(194\) 13.6931 7.90569i 0.0705828 0.0407510i
\(195\) 0 0
\(196\) 0.500000 0.866025i 0.00255102 0.00441850i
\(197\) 145.465 + 145.465i 0.738400 + 0.738400i 0.972268 0.233868i \(-0.0751385\pi\)
−0.233868 + 0.972268i \(0.575138\pi\)
\(198\) 0 0
\(199\) 18.0000i 0.0904523i −0.998977 0.0452261i \(-0.985599\pi\)
0.998977 0.0452261i \(-0.0144008\pi\)
\(200\) 131.919 + 103.549i 0.659593 + 0.517747i
\(201\) 0 0
\(202\) −9.15064 + 34.1506i −0.0453002 + 0.169063i
\(203\) 323.981 + 86.8105i 1.59597 + 0.427638i
\(204\) 0 0
\(205\) −154.904 31.6987i −0.755628 0.154628i
\(206\) 110.680 0.537280
\(207\) 0 0
\(208\) 190.000 190.000i 0.913462 0.913462i
\(209\) −246.475 142.302i −1.17931 0.680873i
\(210\) 0 0
\(211\) 149.000 + 258.076i 0.706161 + 1.22311i 0.966271 + 0.257528i \(0.0829079\pi\)
−0.260110 + 0.965579i \(0.583759\pi\)
\(212\) −9.25979 + 34.5580i −0.0436783 + 0.163009i
\(213\) 0 0
\(214\) 164.545 + 95.0000i 0.768901 + 0.443925i
\(215\) −63.2456 31.6228i −0.294165 0.147083i
\(216\) 0 0
\(217\) −40.0000 40.0000i −0.184332 0.184332i
\(218\) 93.7554 + 349.900i 0.430071 + 1.60505i
\(219\) 0 0
\(220\) −59.1506 52.4519i −0.268867 0.238418i
\(221\) −31.6228 54.7723i −0.143089 0.247838i
\(222\) 0 0
\(223\) −78.6955 293.695i −0.352894 1.31702i −0.883114 0.469159i \(-0.844557\pi\)
0.530219 0.847861i \(-0.322110\pi\)
\(224\) 110.680i 0.494106i
\(225\) 0 0
\(226\) −370.000 −1.63717
\(227\) 371.499 99.5428i 1.63656 0.438514i 0.680752 0.732514i \(-0.261653\pi\)
0.955806 + 0.293999i \(0.0949864\pi\)
\(228\) 0 0
\(229\) 67.5500 39.0000i 0.294978 0.170306i −0.345207 0.938527i \(-0.612191\pi\)
0.640185 + 0.768221i \(0.278858\pi\)
\(230\) 33.1735 37.4101i 0.144233 0.162653i
\(231\) 0 0
\(232\) −307.356 + 82.3557i −1.32481 + 0.354982i
\(233\) −110.680 + 110.680i −0.475020 + 0.475020i −0.903535 0.428515i \(-0.859037\pi\)
0.428515 + 0.903535i \(0.359037\pi\)
\(234\) 0 0
\(235\) 130.000 260.000i 0.553191 1.10638i
\(236\) 23.7171 41.0792i 0.100496 0.174064i
\(237\) 0 0
\(238\) 68.3013 + 18.3013i 0.286980 + 0.0768961i
\(239\) −328.634 + 189.737i −1.37504 + 0.793877i −0.991557 0.129672i \(-0.958607\pi\)
−0.383479 + 0.923550i \(0.625274\pi\)
\(240\) 0 0
\(241\) −106.000 + 183.597i −0.439834 + 0.761815i −0.997676 0.0681321i \(-0.978296\pi\)
0.557842 + 0.829947i \(0.311629\pi\)
\(242\) −203.967 203.967i −0.842838 0.842838i
\(243\) 0 0
\(244\) 58.0000i 0.237705i
\(245\) −1.00240 + 4.89849i −0.00409144 + 0.0199938i
\(246\) 0 0
\(247\) 65.8846 245.885i 0.266739 0.995484i
\(248\) 51.8370 + 13.8897i 0.209020 + 0.0560068i
\(249\) 0 0
\(250\) 263.157 + 94.1987i 1.05263 + 0.376795i
\(251\) −363.662 −1.44885 −0.724426 0.689352i \(-0.757895\pi\)
−0.724426 + 0.689352i \(0.757895\pi\)
\(252\) 0 0
\(253\) 50.0000 50.0000i 0.197628 0.197628i
\(254\) 150.624 + 86.9626i 0.593007 + 0.342373i
\(255\) 0 0
\(256\) −90.5000 156.751i −0.353516 0.612307i
\(257\) 112.275 419.016i 0.436868 1.63041i −0.299690 0.954037i \(-0.596883\pi\)
0.736557 0.676375i \(-0.236450\pi\)
\(258\) 0 0
\(259\) 86.6025 + 50.0000i 0.334373 + 0.193050i
\(260\) 31.6228 63.2456i 0.121626 0.243252i
\(261\) 0 0
\(262\) 275.000 + 275.000i 1.04962 + 1.04962i
\(263\) 105.330 + 393.097i 0.400495 + 1.49467i 0.812216 + 0.583357i \(0.198261\pi\)
−0.411721 + 0.911310i \(0.635072\pi\)
\(264\) 0 0
\(265\) −10.7180 178.564i −0.0404452 0.673827i
\(266\) 142.302 + 246.475i 0.534972 + 0.926598i
\(267\) 0 0
\(268\) −25.6218 95.6218i −0.0956037 0.356798i
\(269\) 142.302i 0.529006i −0.964385 0.264503i \(-0.914792\pi\)
0.964385 0.264503i \(-0.0852078\pi\)
\(270\) 0 0
\(271\) −178.000 −0.656827 −0.328413 0.944534i \(-0.606514\pi\)
−0.328413 + 0.944534i \(0.606514\pi\)
\(272\) −82.0753 + 21.9920i −0.301747 + 0.0808530i
\(273\) 0 0
\(274\) 43.3013 25.0000i 0.158034 0.0912409i
\(275\) 363.510 + 155.276i 1.32185 + 0.564640i
\(276\) 0 0
\(277\) 314.186 84.1858i 1.13424 0.303920i 0.357610 0.933871i \(-0.383592\pi\)
0.776635 + 0.629951i \(0.216925\pi\)
\(278\) −161.276 + 161.276i −0.580130 + 0.580130i
\(279\) 0 0
\(280\) −75.0000 225.000i −0.267857 0.803571i
\(281\) −79.0569 + 136.931i −0.281341 + 0.487298i −0.971715 0.236155i \(-0.924113\pi\)
0.690374 + 0.723453i \(0.257446\pi\)
\(282\) 0 0
\(283\) 478.109 + 128.109i 1.68943 + 0.452682i 0.970243 0.242134i \(-0.0778474\pi\)
0.719188 + 0.694816i \(0.244514\pi\)
\(284\) 54.7723 31.6228i 0.192860 0.111348i
\(285\) 0 0
\(286\) 250.000 433.013i 0.874126 1.51403i
\(287\) 158.114 + 158.114i 0.550919 + 0.550919i
\(288\) 0 0
\(289\) 269.000i 0.930796i
\(290\) −442.567 + 292.207i −1.52609 + 1.00761i
\(291\) 0 0
\(292\) 20.1314 75.1314i 0.0689431 0.257299i
\(293\) −276.464 74.0783i −0.943563 0.252827i −0.245935 0.969286i \(-0.579095\pi\)
−0.697629 + 0.716459i \(0.745762\pi\)
\(294\) 0 0
\(295\) −47.5481 + 232.356i −0.161180 + 0.787646i
\(296\) −94.8683 −0.320501
\(297\) 0 0
\(298\) 75.0000 75.0000i 0.251678 0.251678i
\(299\) 54.7723 + 31.6228i 0.183185 + 0.105762i
\(300\) 0 0
\(301\) 50.0000 + 86.6025i 0.166113 + 0.287716i
\(302\) 12.7322 47.5173i 0.0421596 0.157342i
\(303\) 0 0
\(304\) −296.181 171.000i −0.974279 0.562500i
\(305\) 91.7061 + 275.118i 0.300676 + 0.902027i
\(306\) 0 0
\(307\) 190.000 + 190.000i 0.618893 + 0.618893i 0.945247 0.326355i \(-0.105820\pi\)
−0.326355 + 0.945247i \(0.605820\pi\)
\(308\) 28.9368 + 107.994i 0.0939508 + 0.350629i
\(309\) 0 0
\(310\) 89.2820 5.35898i 0.288007 0.0172870i
\(311\) −126.491 219.089i −0.406724 0.704466i 0.587797 0.809009i \(-0.299996\pi\)
−0.994520 + 0.104542i \(0.966662\pi\)
\(312\) 0 0
\(313\) 53.0737 + 198.074i 0.169564 + 0.632823i 0.997414 + 0.0718727i \(0.0228975\pi\)
−0.827849 + 0.560951i \(0.810436\pi\)
\(314\) 632.456i 2.01419i
\(315\) 0 0
\(316\) −12.0000 −0.0379747
\(317\) 21.5988 5.78737i 0.0681349 0.0182567i −0.224591 0.974453i \(-0.572104\pi\)
0.292725 + 0.956197i \(0.405438\pi\)
\(318\) 0 0
\(319\) −649.519 + 375.000i −2.03611 + 1.17555i
\(320\) 153.382 + 136.011i 0.479318 + 0.425035i
\(321\) 0 0
\(322\) −68.3013 + 18.3013i −0.212116 + 0.0568362i
\(323\) −56.9210 + 56.9210i −0.176226 + 0.176226i
\(324\) 0 0
\(325\) −50.0000 + 350.000i −0.153846 + 1.07692i
\(326\) 158.114 273.861i 0.485012 0.840065i
\(327\) 0 0
\(328\) −204.904 54.9038i −0.624707 0.167390i
\(329\) −356.020 + 205.548i −1.08213 + 0.624766i
\(330\) 0 0
\(331\) −241.000 + 417.424i −0.728097 + 1.26110i 0.229590 + 0.973287i \(0.426261\pi\)
−0.957687 + 0.287813i \(0.907072\pi\)
\(332\) −53.7587 53.7587i −0.161924 0.161924i
\(333\) 0 0
\(334\) 470.000i 1.40719i
\(335\) 272.726 + 413.062i 0.814108 + 1.23302i
\(336\) 0 0
\(337\) −56.7339 + 211.734i −0.168350 + 0.628291i 0.829239 + 0.558894i \(0.188774\pi\)
−0.997589 + 0.0693967i \(0.977893\pi\)
\(338\) 66.9562 + 17.9408i 0.198095 + 0.0530794i
\(339\) 0 0
\(340\) −18.6603 + 12.3205i −0.0548831 + 0.0362368i
\(341\) 126.491 0.370942
\(342\) 0 0
\(343\) −240.000 + 240.000i −0.699708 + 0.699708i
\(344\) −82.1584 47.4342i −0.238833 0.137890i
\(345\) 0 0
\(346\) −175.000 303.109i −0.505780 0.876037i
\(347\) 60.1886 224.627i 0.173454 0.647340i −0.823355 0.567526i \(-0.807901\pi\)
0.996810 0.0798143i \(-0.0254327\pi\)
\(348\) 0 0
\(349\) −275.396 159.000i −0.789101 0.455587i 0.0505453 0.998722i \(-0.483904\pi\)
−0.839646 + 0.543134i \(0.817237\pi\)
\(350\) −237.171 316.228i −0.677631 0.903508i
\(351\) 0 0
\(352\) −175.000 175.000i −0.497159 0.497159i
\(353\) −82.1807 306.702i −0.232806 0.868845i −0.979125 0.203257i \(-0.934847\pi\)
0.746319 0.665588i \(-0.231819\pi\)
\(354\) 0 0
\(355\) −209.808 + 236.603i −0.591007 + 0.666486i
\(356\) 0 0
\(357\) 0 0
\(358\) 82.3557 + 307.356i 0.230044 + 0.858536i
\(359\) 284.605i 0.792772i −0.918084 0.396386i \(-0.870264\pi\)
0.918084 0.396386i \(-0.129736\pi\)
\(360\) 0 0
\(361\) 37.0000 0.102493
\(362\) 470.853 126.165i 1.30070 0.348521i
\(363\) 0 0
\(364\) −86.6025 + 50.0000i −0.237919 + 0.137363i
\(365\) 23.3016 + 388.210i 0.0638399 + 1.06359i
\(366\) 0 0
\(367\) 252.715 67.7147i 0.688596 0.184509i 0.102479 0.994735i \(-0.467323\pi\)
0.586117 + 0.810226i \(0.300656\pi\)
\(368\) 60.0833 60.0833i 0.163270 0.163270i
\(369\) 0 0
\(370\) −150.000 + 50.0000i −0.405405 + 0.135135i
\(371\) −126.491 + 219.089i −0.340946 + 0.590536i
\(372\) 0 0
\(373\) −136.603 36.6025i −0.366227 0.0981301i 0.0710125 0.997475i \(-0.477377\pi\)
−0.437239 + 0.899345i \(0.644044\pi\)
\(374\) −136.931 + 79.0569i −0.366125 + 0.211382i
\(375\) 0 0
\(376\) 195.000 337.750i 0.518617 0.898271i
\(377\) −474.342 474.342i −1.25820 1.25820i
\(378\) 0 0
\(379\) 558.000i 1.47230i 0.676821 + 0.736148i \(0.263357\pi\)
−0.676821 + 0.736148i \(0.736643\pi\)
\(380\) −88.1728 18.0432i −0.232034 0.0474822i
\(381\) 0 0
\(382\) −91.5064 + 341.506i −0.239545 + 0.893996i
\(383\) 384.458 + 103.015i 1.00381 + 0.268969i 0.723039 0.690807i \(-0.242744\pi\)
0.280767 + 0.959776i \(0.409411\pi\)
\(384\) 0 0
\(385\) −308.013 466.506i −0.800033 1.21170i
\(386\) 395.285 1.02405
\(387\) 0 0
\(388\) 5.00000 5.00000i 0.0128866 0.0128866i
\(389\) −451.871 260.888i −1.16162 0.670663i −0.209930 0.977716i \(-0.567324\pi\)
−0.951692 + 0.307053i \(0.900657\pi\)
\(390\) 0 0
\(391\) −10.0000 17.3205i −0.0255754 0.0442980i
\(392\) −1.73621 + 6.47963i −0.00442911 + 0.0165297i
\(393\) 0 0
\(394\) 398.372 + 230.000i 1.01110 + 0.583756i
\(395\) 56.9210 18.9737i 0.144104 0.0480346i
\(396\) 0 0
\(397\) −260.000 260.000i −0.654912 0.654912i 0.299260 0.954172i \(-0.403260\pi\)
−0.954172 + 0.299260i \(0.903260\pi\)
\(398\) −10.4173 38.8778i −0.0261740 0.0976828i
\(399\) 0 0
\(400\) 436.817 + 186.590i 1.09204 + 0.466474i
\(401\) −126.491 219.089i −0.315439 0.546357i 0.664092 0.747651i \(-0.268818\pi\)
−0.979531 + 0.201295i \(0.935485\pi\)
\(402\) 0 0
\(403\) 29.2820 + 109.282i 0.0726601 + 0.271171i
\(404\) 15.8114i 0.0391371i
\(405\) 0 0
\(406\) 750.000 1.84729
\(407\) −215.988 + 57.8737i −0.530682 + 0.142196i
\(408\) 0 0
\(409\) 301.377 174.000i 0.736863 0.425428i −0.0840648 0.996460i \(-0.526790\pi\)
0.820928 + 0.571032i \(0.193457\pi\)
\(410\) −352.918 + 21.1832i −0.860776 + 0.0516664i
\(411\) 0 0
\(412\) 47.8109 12.8109i 0.116046 0.0310944i
\(413\) 237.171 237.171i 0.574263 0.574263i
\(414\) 0 0
\(415\) 340.000 + 170.000i 0.819277 + 0.409639i
\(416\) 110.680 191.703i 0.266057 0.460824i
\(417\) 0 0
\(418\) −614.711 164.711i −1.47060 0.394046i
\(419\) 534.029 308.322i 1.27453 0.735852i 0.298696 0.954348i \(-0.403448\pi\)
0.975838 + 0.218496i \(0.0701151\pi\)
\(420\) 0 0
\(421\) −169.000 + 292.717i −0.401425 + 0.695289i −0.993898 0.110302i \(-0.964818\pi\)
0.592473 + 0.805590i \(0.298152\pi\)
\(422\) 471.179 + 471.179i 1.11654 + 1.11654i
\(423\) 0 0
\(424\) 240.000i 0.566038i
\(425\) 69.0329 87.9458i 0.162430 0.206931i
\(426\) 0 0
\(427\) 106.147 396.147i 0.248589 0.927746i
\(428\) 82.0753 + 21.9920i 0.191765 + 0.0513832i
\(429\) 0 0
\(430\) −154.904 31.6987i −0.360241 0.0737180i
\(431\) −221.359 −0.513595 −0.256797 0.966465i \(-0.582667\pi\)
−0.256797 + 0.966465i \(0.582667\pi\)
\(432\) 0 0
\(433\) 145.000 145.000i 0.334873 0.334873i −0.519561 0.854434i \(-0.673904\pi\)
0.854434 + 0.519561i \(0.173904\pi\)
\(434\) −109.545 63.2456i −0.252407 0.145727i
\(435\) 0 0
\(436\) 81.0000 + 140.296i 0.185780 + 0.321780i
\(437\) 20.8345 77.7555i 0.0476763 0.177930i
\(438\) 0 0
\(439\) 67.5500 + 39.0000i 0.153872 + 0.0888383i 0.574959 0.818182i \(-0.305018\pi\)
−0.421087 + 0.907020i \(0.638351\pi\)
\(440\) 474.342 + 237.171i 1.07805 + 0.539025i
\(441\) 0 0
\(442\) −100.000 100.000i −0.226244 0.226244i
\(443\) −71.7634 267.825i −0.161994 0.604570i −0.998404 0.0564665i \(-0.982017\pi\)
0.836410 0.548104i \(-0.184650\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −339.945 588.802i −0.762208 1.32018i
\(447\) 0 0
\(448\) −75.0352 280.035i −0.167489 0.625079i
\(449\) 284.605i 0.633864i −0.948448 0.316932i \(-0.897347\pi\)
0.948448 0.316932i \(-0.102653\pi\)
\(450\) 0 0
\(451\) −500.000 −1.10865
\(452\) −159.831 + 42.8265i −0.353608 + 0.0947490i
\(453\) 0 0
\(454\) 744.782 430.000i 1.64049 0.947137i
\(455\) 331.735 374.101i 0.729088 0.822201i
\(456\) 0 0
\(457\) 498.599 133.599i 1.09103 0.292340i 0.331921 0.943307i \(-0.392303\pi\)
0.759106 + 0.650967i \(0.225637\pi\)
\(458\) 123.329 123.329i 0.269277 0.269277i
\(459\) 0 0
\(460\) 10.0000 20.0000i 0.0217391 0.0434783i
\(461\) 419.002 725.732i 0.908898 1.57426i 0.0932994 0.995638i \(-0.470259\pi\)
0.815598 0.578619i \(-0.196408\pi\)
\(462\) 0 0
\(463\) 47.8109 + 12.8109i 0.103263 + 0.0276693i 0.310081 0.950710i \(-0.399644\pi\)
−0.206817 + 0.978380i \(0.566311\pi\)
\(464\) −780.505 + 450.625i −1.68212 + 0.971174i
\(465\) 0 0
\(466\) −175.000 + 303.109i −0.375536 + 0.650448i
\(467\) 117.004 + 117.004i 0.250544 + 0.250544i 0.821194 0.570649i \(-0.193308\pi\)
−0.570649 + 0.821194i \(0.693308\pi\)
\(468\) 0 0
\(469\) 700.000i 1.49254i
\(470\) 130.312 636.804i 0.277260 1.35490i
\(471\) 0 0
\(472\) −82.3557 + 307.356i −0.174482 + 0.651177i
\(473\) −215.988 57.8737i −0.456633 0.122355i
\(474\) 0 0
\(475\) 446.769 53.8269i 0.940567 0.113320i
\(476\) 31.6228 0.0664344
\(477\) 0 0
\(478\) −600.000 + 600.000i −1.25523 + 1.25523i
\(479\) −328.634 189.737i −0.686083 0.396110i 0.116060 0.993242i \(-0.462973\pi\)
−0.802143 + 0.597132i \(0.796307\pi\)
\(480\) 0 0
\(481\) −100.000 173.205i −0.207900 0.360094i
\(482\) −122.692 + 457.894i −0.254548 + 0.949987i
\(483\) 0 0
\(484\) −111.717 64.5000i −0.230821 0.133264i
\(485\) −15.8114 + 31.6228i −0.0326008 + 0.0652016i
\(486\) 0 0
\(487\) −125.000 125.000i −0.256674 0.256674i 0.567026 0.823700i \(-0.308094\pi\)
−0.823700 + 0.567026i \(0.808094\pi\)
\(488\) 100.700 + 375.818i 0.206353 + 0.770120i
\(489\) 0 0
\(490\) 0.669873 + 11.1603i 0.00136709 + 0.0227760i
\(491\) 229.265 + 397.099i 0.466935 + 0.808755i 0.999287 0.0377681i \(-0.0120248\pi\)
−0.532351 + 0.846523i \(0.678692\pi\)
\(492\) 0 0
\(493\) 54.9038 + 204.904i 0.111367 + 0.415626i
\(494\) 569.210i 1.15225i
\(495\) 0 0
\(496\) 152.000 0.306452
\(497\) 431.975 115.747i 0.869165 0.232892i
\(498\) 0 0
\(499\) 192.258 111.000i 0.385286 0.222445i −0.294830 0.955550i \(-0.595263\pi\)
0.680116 + 0.733105i \(0.261930\pi\)
\(500\) 124.581 + 10.2318i 0.249161 + 0.0204636i
\(501\) 0 0
\(502\) −785.465 + 210.465i −1.56467 + 0.419252i
\(503\) 458.530 458.530i 0.911591 0.911591i −0.0848065 0.996397i \(-0.527027\pi\)
0.996397 + 0.0848065i \(0.0270272\pi\)
\(504\) 0 0
\(505\) −25.0000 75.0000i −0.0495050 0.148515i
\(506\) 79.0569 136.931i 0.156239 0.270614i
\(507\) 0 0
\(508\) 75.1314 + 20.1314i 0.147896 + 0.0396287i
\(509\) −205.396 + 118.585i −0.403528 + 0.232977i −0.688005 0.725706i \(-0.741513\pi\)
0.284477 + 0.958683i \(0.408180\pi\)
\(510\) 0 0
\(511\) 275.000 476.314i 0.538160 0.932121i
\(512\) 150.208 + 150.208i 0.293375 + 0.293375i
\(513\) 0 0
\(514\) 970.000i 1.88716i
\(515\) −206.531 + 136.363i −0.401031 + 0.264783i
\(516\) 0 0
\(517\) 237.917 887.917i 0.460187 1.71744i
\(518\) 215.988 + 57.8737i 0.416964 + 0.111725i
\(519\) 0 0
\(520\) −95.0962 + 464.711i −0.182877 + 0.893676i
\(521\) −790.569 −1.51741 −0.758704 0.651436i \(-0.774167\pi\)
−0.758704 + 0.651436i \(0.774167\pi\)
\(522\) 0 0
\(523\) 370.000 370.000i 0.707457 0.707457i −0.258543 0.966000i \(-0.583242\pi\)
0.966000 + 0.258543i \(0.0832423\pi\)
\(524\) 150.624 + 86.9626i 0.287450 + 0.165959i
\(525\) 0 0
\(526\) 455.000 + 788.083i 0.865019 + 1.49826i
\(527\) 9.25979 34.5580i 0.0175708 0.0655750i
\(528\) 0 0
\(529\) −440.807 254.500i −0.833283 0.481096i
\(530\) −126.491 379.473i −0.238662 0.715987i
\(531\) 0 0
\(532\) 90.0000 + 90.0000i 0.169173 + 0.169173i
\(533\) −115.747 431.975i −0.217162 0.810460i
\(534\) 0 0
\(535\) −424.090 + 25.4552i −0.792691 + 0.0475798i
\(536\) 332.039 + 575.109i 0.619476 + 1.07296i
\(537\) 0 0
\(538\) −82.3557 307.356i −0.153078 0.571293i
\(539\) 15.8114i 0.0293347i
\(540\) 0 0
\(541\) 362.000 0.669131 0.334566 0.942372i \(-0.391410\pi\)
0.334566 + 0.942372i \(0.391410\pi\)
\(542\) −384.458 + 103.015i −0.709332 + 0.190065i
\(543\) 0 0
\(544\) −60.6218 + 35.0000i −0.111437 + 0.0643382i
\(545\) −606.044 537.411i −1.11201 0.986075i
\(546\) 0 0
\(547\) −669.352 + 179.352i −1.22368 + 0.327884i −0.812115 0.583497i \(-0.801684\pi\)
−0.411564 + 0.911381i \(0.635017\pi\)
\(548\) 15.8114 15.8114i 0.0288529 0.0288529i
\(549\) 0 0
\(550\) 875.000 + 125.000i 1.59091 + 0.227273i
\(551\) −426.907 + 739.425i −0.774787 + 1.34197i
\(552\) 0 0
\(553\) −81.9615 21.9615i −0.148213 0.0397134i
\(554\) 629.881 363.662i 1.13697 0.656429i
\(555\) 0 0
\(556\) −51.0000 + 88.3346i −0.0917266 + 0.158875i
\(557\) −252.982 252.982i −0.454187 0.454187i 0.442555 0.896742i \(-0.354072\pi\)
−0.896742 + 0.442555i \(0.854072\pi\)
\(558\) 0 0
\(559\) 200.000i 0.357782i
\(560\) −370.128 560.585i −0.660943 1.00104i
\(561\) 0 0
\(562\) −91.5064 + 341.506i −0.162823 + 0.607663i
\(563\) −276.464 74.0783i −0.491055 0.131578i 0.00479040 0.999989i \(-0.498475\pi\)
−0.495846 + 0.868411i \(0.665142\pi\)
\(564\) 0 0
\(565\) 690.429 455.859i 1.22200 0.806830i
\(566\) 1106.80 1.95547
\(567\) 0 0
\(568\) −300.000 + 300.000i −0.528169 + 0.528169i
\(569\) 164.317 + 94.8683i 0.288782 + 0.166728i 0.637392 0.770539i \(-0.280013\pi\)
−0.348611 + 0.937268i \(0.613346\pi\)
\(570\) 0 0
\(571\) 329.000 + 569.845i 0.576182 + 0.997977i 0.995912 + 0.0903277i \(0.0287914\pi\)
−0.419730 + 0.907649i \(0.637875\pi\)
\(572\) 57.8737 215.988i 0.101178 0.377601i
\(573\) 0 0
\(574\) 433.013 + 250.000i 0.754378 + 0.435540i
\(575\) −15.8114 + 110.680i −0.0274981 + 0.192486i
\(576\) 0 0
\(577\) −35.0000 35.0000i −0.0606586 0.0606586i 0.676127 0.736785i \(-0.263657\pi\)
−0.736785 + 0.676127i \(0.763657\pi\)
\(578\) −155.680 581.007i −0.269343 1.00520i
\(579\) 0 0
\(580\) −157.356 + 177.452i −0.271303 + 0.305952i
\(581\) −268.794 465.564i −0.462640 0.801315i
\(582\) 0 0
\(583\) −146.410 546.410i −0.251132 0.937239i
\(584\) 521.776i 0.893452i
\(585\) 0 0
\(586\) −640.000 −1.09215
\(587\) −211.668 + 56.7162i −0.360593 + 0.0966205i −0.434567 0.900640i \(-0.643098\pi\)
0.0739741 + 0.997260i \(0.476432\pi\)
\(588\) 0 0
\(589\) 124.708 72.0000i 0.211728 0.122241i
\(590\) 31.7749 + 529.377i 0.0538557 + 0.897250i
\(591\) 0 0
\(592\) −259.545 + 69.5448i −0.438420 + 0.117474i
\(593\) −167.601 + 167.601i −0.282632 + 0.282632i −0.834158 0.551526i \(-0.814046\pi\)
0.551526 + 0.834158i \(0.314046\pi\)
\(594\) 0 0
\(595\) −150.000 + 50.0000i −0.252101 + 0.0840336i
\(596\) 23.7171 41.0792i 0.0397938 0.0689248i
\(597\) 0 0
\(598\) 136.603 + 36.6025i 0.228432 + 0.0612083i
\(599\) 903.742 521.776i 1.50875 0.871078i 0.508804 0.860883i \(-0.330088\pi\)
0.999948 0.0101955i \(-0.00324539\pi\)
\(600\) 0 0
\(601\) 191.000 330.822i 0.317804 0.550452i −0.662226 0.749304i \(-0.730388\pi\)
0.980029 + 0.198852i \(0.0637214\pi\)
\(602\) 158.114 + 158.114i 0.262648 + 0.262648i
\(603\) 0 0
\(604\) 22.0000i 0.0364238i
\(605\) 631.905 + 129.310i 1.04447 + 0.213735i
\(606\) 0 0
\(607\) 239.747 894.747i 0.394970 1.47405i −0.426862 0.904317i \(-0.640381\pi\)
0.821832 0.569730i \(-0.192952\pi\)
\(608\) −272.144 72.9209i −0.447606 0.119936i
\(609\) 0 0
\(610\) 357.295 + 541.147i 0.585729 + 0.887127i
\(611\) 822.192 1.34565
\(612\) 0 0
\(613\) −620.000 + 620.000i −1.01142 + 1.01142i −0.0114852 + 0.999934i \(0.503656\pi\)
−0.999934 + 0.0114852i \(0.996344\pi\)
\(614\) 520.336 + 300.416i 0.847453 + 0.489277i
\(615\) 0 0
\(616\) −375.000 649.519i −0.608766 1.05441i
\(617\) −12.7322 + 47.5173i −0.0206357 + 0.0770134i −0.975476 0.220107i \(-0.929359\pi\)
0.954840 + 0.297120i \(0.0960261\pi\)
\(618\) 0 0
\(619\) 223.435 + 129.000i 0.360961 + 0.208401i 0.669502 0.742810i \(-0.266508\pi\)
−0.308542 + 0.951211i \(0.599841\pi\)
\(620\) 37.9473 12.6491i 0.0612054 0.0204018i
\(621\) 0 0
\(622\) −400.000 400.000i −0.643087 0.643087i
\(623\) 0 0
\(624\) 0 0
\(625\) −607.115 + 148.446i −0.971384 + 0.237513i
\(626\) 229.265 + 397.099i 0.366238 + 0.634343i
\(627\) 0 0
\(628\) 73.2051 + 273.205i 0.116569 + 0.435040i
\(629\) 63.2456i 0.100549i
\(630\) 0 0
\(631\) 812.000 1.28685 0.643423 0.765511i \(-0.277514\pi\)
0.643423 + 0.765511i \(0.277514\pi\)
\(632\) 77.7555 20.8345i 0.123031 0.0329660i
\(633\) 0 0
\(634\) 43.3013 25.0000i 0.0682985 0.0394322i
\(635\) −388.210 + 23.3016i −0.611354 + 0.0366954i
\(636\) 0 0
\(637\) −13.6603 + 3.66025i −0.0214447 + 0.00574608i
\(638\) −1185.85 + 1185.85i −1.85871 + 1.85871i
\(639\) 0 0
\(640\) 690.000 + 345.000i 1.07812 + 0.539062i
\(641\) −221.359 + 383.406i −0.345335 + 0.598137i −0.985414 0.170171i \(-0.945568\pi\)
0.640080 + 0.768308i \(0.278901\pi\)
\(642\) 0 0
\(643\) −1120.14 300.141i −1.74205 0.466782i −0.759152 0.650913i \(-0.774386\pi\)
−0.982902 + 0.184131i \(0.941053\pi\)
\(644\) −27.3861 + 15.8114i −0.0425250 + 0.0245518i
\(645\) 0 0
\(646\) −90.0000 + 155.885i −0.139319 + 0.241307i
\(647\) −679.890 679.890i −1.05083 1.05083i −0.998637 0.0521974i \(-0.983378\pi\)
−0.0521974 0.998637i \(-0.516622\pi\)
\(648\) 0 0
\(649\) 750.000i 1.15562i
\(650\) 94.5642 + 784.893i 0.145483 + 1.20753i
\(651\) 0 0
\(652\) 36.6025 136.603i 0.0561389 0.209513i
\(653\) −704.120 188.668i −1.07828 0.288925i −0.324391 0.945923i \(-0.605159\pi\)
−0.753893 + 0.656998i \(0.771826\pi\)
\(654\) 0 0
\(655\) −851.971 174.343i −1.30072 0.266173i
\(656\) −600.833 −0.915904
\(657\) 0 0
\(658\) −650.000 + 650.000i −0.987842 + 0.987842i
\(659\) 780.505 + 450.625i 1.18438 + 0.683801i 0.957023 0.290012i \(-0.0936592\pi\)
0.227354 + 0.973812i \(0.426992\pi\)
\(660\) 0 0
\(661\) 401.000 + 694.552i 0.606657 + 1.05076i 0.991787 + 0.127898i \(0.0408230\pi\)
−0.385131 + 0.922862i \(0.625844\pi\)
\(662\) −278.951 + 1041.06i −0.421376 + 1.57260i
\(663\) 0 0
\(664\) 441.673 + 255.000i 0.665170 + 0.384036i
\(665\) −569.210 284.605i −0.855955 0.427977i
\(666\) 0 0
\(667\) −150.000 150.000i −0.224888 0.224888i
\(668\) 54.4013 + 203.028i 0.0814390 + 0.303935i
\(669\) 0 0
\(670\) 828.109 + 734.327i 1.23598 + 1.09601i
\(671\) 458.530 + 794.198i 0.683354 + 1.18360i
\(672\) 0 0
\(673\) 283.670 + 1058.67i 0.421500 + 1.57306i 0.771449 + 0.636291i \(0.219532\pi\)
−0.349948 + 0.936769i \(0.613801\pi\)
\(674\) 490.153i 0.727230i
\(675\) 0 0
\(676\) 31.0000 0.0458580
\(677\) −678.201 + 181.723i −1.00177 + 0.268425i −0.722189 0.691696i \(-0.756864\pi\)
−0.279585 + 0.960121i \(0.590197\pi\)
\(678\) 0 0
\(679\) 43.3013 25.0000i 0.0637721 0.0368189i
\(680\) 99.5205 112.230i 0.146354 0.165045i
\(681\) 0 0
\(682\) 273.205 73.2051i 0.400594 0.107339i
\(683\) 60.0833 60.0833i 0.0879697 0.0879697i −0.661753 0.749722i \(-0.730187\pi\)
0.749722 + 0.661753i \(0.230187\pi\)
\(684\) 0 0
\(685\) −50.0000 + 100.000i −0.0729927 + 0.145985i
\(686\) −379.473 + 657.267i −0.553168 + 0.958115i
\(687\) 0 0
\(688\) −259.545 69.5448i −0.377245 0.101083i
\(689\) 438.178 252.982i 0.635962 0.367173i
\(690\) 0 0
\(691\) 281.000 486.706i 0.406657 0.704351i −0.587856 0.808966i \(-0.700028\pi\)
0.994513 + 0.104615i \(0.0333611\pi\)
\(692\) −110.680 110.680i −0.159942 0.159942i
\(693\) 0 0
\(694\) 520.000i 0.749280i
\(695\) 102.245 499.646i 0.147115 0.718915i
\(696\) 0 0
\(697\) −36.6025 + 136.603i −0.0525144 + 0.195986i
\(698\) −686.841 184.038i −0.984012 0.263665i
\(699\) 0 0
\(700\) −139.054 109.151i −0.198649 0.155929i
\(701\) −363.662 −0.518776 −0.259388 0.965773i \(-0.583521\pi\)
−0.259388 + 0.965773i \(0.583521\pi\)
\(702\) 0 0
\(703\) −180.000 + 180.000i −0.256046 + 0.256046i
\(704\) 561.416 + 324.133i 0.797465 + 0.460417i
\(705\) 0 0
\(706\) −355.000 614.878i −0.502833 0.870932i
\(707\) −28.9368 + 107.994i −0.0409291 + 0.152749i
\(708\) 0 0
\(709\) −431.281 249.000i −0.608294 0.351199i 0.164003 0.986460i \(-0.447559\pi\)
−0.772298 + 0.635261i \(0.780893\pi\)
\(710\) −316.228 + 632.456i −0.445391 + 0.890782i
\(711\) 0 0
\(712\) 0 0
\(713\) 9.25979 + 34.5580i 0.0129871 + 0.0484685i
\(714\) 0 0
\(715\) 66.9873 + 1116.03i 0.0936885 + 1.56087i
\(716\) 71.1512 + 123.238i 0.0993733 + 0.172120i
\(717\) 0 0
\(718\) −164.711 614.711i −0.229403 0.856144i
\(719\) 569.210i 0.791669i −0.918322 0.395834i \(-0.870455\pi\)
0.918322 0.395834i \(-0.129545\pi\)
\(720\) 0 0
\(721\) 350.000 0.485437
\(722\) 79.9154 21.4133i 0.110686 0.0296583i
\(723\) 0 0
\(724\) 188.794 109.000i 0.260765 0.150552i
\(725\) 465.828 1090.53i 0.642521 1.50418i
\(726\) 0 0
\(727\) 1236.25 331.253i 1.70049 0.455644i 0.727424 0.686188i \(-0.240717\pi\)
0.973062 + 0.230545i \(0.0740508\pi\)
\(728\) 474.342 474.342i 0.651568 0.651568i
\(729\) 0 0
\(730\) 275.000 + 825.000i 0.376712 + 1.13014i
\(731\) −31.6228 + 54.7723i −0.0432596 + 0.0749278i
\(732\) 0 0
\(733\) −751.314 201.314i −1.02498 0.274644i −0.293107 0.956080i \(-0.594689\pi\)
−0.731878 + 0.681436i \(0.761356\pi\)
\(734\) 506.643 292.511i 0.690250 0.398516i
\(735\) 0 0
\(736\) 35.0000 60.6218i 0.0475543 0.0823665i
\(737\) 1106.80 + 1106.80i 1.50176 + 1.50176i
\(738\) 0 0
\(739\) 198.000i 0.267930i 0.990986 + 0.133965i \(0.0427709\pi\)
−0.990986 + 0.133965i \(0.957229\pi\)
\(740\) −59.0089 + 38.9609i −0.0797418 + 0.0526498i
\(741\) 0 0
\(742\) −146.410 + 546.410i −0.197318 + 0.736402i
\(743\) 1317.52 + 353.030i 1.77325 + 0.475141i 0.989326 0.145717i \(-0.0465490\pi\)
0.783923 + 0.620858i \(0.213216\pi\)
\(744\) 0 0
\(745\) −47.5481 + 232.356i −0.0638229 + 0.311887i
\(746\) −316.228 −0.423898
\(747\) 0 0
\(748\) −50.0000 + 50.0000i −0.0668449 + 0.0668449i
\(749\) 520.336 + 300.416i 0.694708 + 0.401090i
\(750\) 0 0
\(751\) −364.000 630.466i −0.484687 0.839503i 0.515158 0.857095i \(-0.327733\pi\)
−0.999845 + 0.0175925i \(0.994400\pi\)
\(752\) 285.896 1066.98i 0.380181 1.41885i
\(753\) 0 0
\(754\) −1299.04 750.000i −1.72286 0.994695i
\(755\) 34.7851 + 104.355i 0.0460729 + 0.138219i
\(756\) 0 0
\(757\) −170.000 170.000i −0.224571 0.224571i 0.585849 0.810420i \(-0.300761\pi\)
−0.810420 + 0.585849i \(0.800761\pi\)
\(758\) 322.935 + 1205.21i 0.426036 + 1.58999i
\(759\) 0 0
\(760\) 602.654 36.1731i 0.792965 0.0475962i
\(761\) 15.8114 + 27.3861i 0.0207771 + 0.0359870i 0.876227 0.481899i \(-0.160053\pi\)
−0.855450 + 0.517886i \(0.826719\pi\)
\(762\) 0 0
\(763\) 296.481 + 1106.48i 0.388572 + 1.45017i
\(764\) 158.114i 0.206955i
\(765\) 0 0
\(766\) 890.000 1.16188
\(767\) −647.963 + 173.621i −0.844801 + 0.226364i
\(768\) 0 0
\(769\) −275.396 + 159.000i −0.358122 + 0.206762i −0.668257 0.743931i \(-0.732959\pi\)
0.310134 + 0.950693i \(0.399626\pi\)
\(770\) −935.254 829.337i −1.21462 1.07706i
\(771\) 0 0
\(772\) 170.753 45.7532i 0.221183 0.0592658i
\(773\) −452.206 + 452.206i −0.585001 + 0.585001i −0.936273 0.351272i \(-0.885749\pi\)
0.351272 + 0.936273i \(0.385749\pi\)
\(774\) 0 0
\(775\) −160.000 + 120.000i −0.206452 + 0.154839i
\(776\) −23.7171 + 41.0792i −0.0305633 + 0.0529371i
\(777\) 0 0
\(778\) −1126.97 301.971i −1.44855 0.388137i
\(779\) −492.950 + 284.605i −0.632799 + 0.365347i
\(780\) 0 0